Rebalancing Idle Vehicles via Distributed Coverage Control in Mobility-on-Demand systems

Pengbo Zhu, Isik Ilber Sirmatel, Giancarlo Ferrari Trecate, Nikolas Geroliminis
Urban Transport Systems Laboratory (LUTS)
EPFL
Idle/empty vehicles have no destinations. Where should they go?
Imbalance in the spatial distribution of vehicles:

- Non-uniform passenger’s demand for rides in different districts
- Asymmetry between origin and destination distributions of trips

Goal: rebalancing vehicles

- Relocating idle/empty vehicles to the high-demand regions
Vehicle rebalancing problem

Coverage control problem:

Every agent/vehicle is responsible for covering a certain area

$$H(X, W) = \sum_{i=1}^{n} H(x_i, W_i') = \sum_{i=1}^{n} \int_{q \in W_i'} f(||x_i - q||^2) \varphi(q) dq$$

$$\varphi(q)$$: demand density function,
$$f: [0, \infty) \rightarrow \mathbb{R}$$, a performance function which degrades with distance.

Ref: S. Martinez(2007), J. Cortes and F. Bullo, "Motion Coordination with Distributed Information"
Voronoi partition:

- The partitioning of a plane with \(n \) points into convex polygons
- Each cell contains one generator/seed
- Every point in a given cell is closer to its seed than to any other

- With Voronoi diagram, we can disperse the vehicles in the region
Coverage Control Algorithm

Important variables:
- \(N \) = Number of agents
- \(r \) = Agent coverage radius

Objective:
Maximize the value of \(H \)

\[
H(X,W) = \sum_{i=1}^{n} H(x_i, W_i) = \sum_{i=1}^{n} \int_{q \in W_i} f(\|x_i - q\|^2) \varphi(q) dq \\
W_i = S_i \cap V_i
\]
Distributed Coverage Control Algorithm

Important variables:
- N = Number of agents
- r = Agent coverage radius
- R = Agent communication limitation radius

Objective:
Maximize the value of H

$$H(X,W') = \sum_{i=1}^{n} H(x_i, W_i') = \sum_{i=1}^{n} \int_{q \in W'_i} f(||x_i - q||^2)\varphi(q)dq$$

$$W_i' = S_i \cap V_i'$$
Proposition: The local maximum of H can be obtained when all x_i are located at centroids (centers of mass, $C_{W'_i}$) of their respective Voronoi cells (W'_i), i.e., *Centroidal Voronoi Configuration* (CVC).

Distributed Control Law Formulation:

$$\frac{dx_i}{dt} = u_i, \quad \frac{\partial H}{\partial x_i} = -2M_{W'_i} \| x_i - C_{W'_i} \|,$$

$$u_i = -k_p (x_i - C_{W'_i}),$$

$$\frac{\partial H}{\partial t} = \sum_{i=1}^{n} \frac{\partial H}{\partial x_i} \frac{dx_i}{dt} = 2k_p \sum_{i=1}^{n} M_{W'_i} \| x_i - C_{W'_i} \|^2 > 0.$$

which steer the agent team to converge to CVC.

Case Study I: Continuous Case

(a) Demand density function
(b) Initial configuration
(c) Final configuration
Case Study II: Shenzhen, China

Simulated network:
- Luohu District of Shenzhen, China
- 1858 nodes
- 2013 links
- 199,819 trips consisting of origins, destinations, and time

Experimental Setup

- 3-hour simulation
- Time Pattern of demand: low-high-low, each period lasts for 1 hour
- 2400 orders
- Fleet size = 100

- Private vehicles; Ride-hailing vehicles
- macroscopic fundamental diagram (MFD) for Shenzhen

\[v(n) = \begin{cases}
\frac{29m}{36e^{\frac{m}{600}}}, & \text{if } m \leq 36, \\
6.31 - 0.28(m - 36), & \text{if } 36 < m \leq 60, \\
0, & \text{if } m > 60
\end{cases} \]

where \(m = \frac{n}{1000} \).
blue: idle vehicle (i.e., empty, looking for a passenger),
red: passenger-assigned vehicle,
green: passenger-carrying vehicle.
blue: idle vehicle (i.e., empty, looking for a passenger),
red: passenger-assigned vehicle,
green: passenger-carrying vehicle.
Performance metrics

- Order completion rate:
 \[\frac{N_1}{N} = \frac{N_1}{N_1 + N_2} \times 100\% \]

- Average Waiting time:
 \[t_w = \frac{\sum_{i=1}^{N_1} (t_p^r(i) - t_o(i))}{N_1} \]

- Average System time (with penalty for cancelled orders):
 \[t_{sys} = \frac{\sum_{i=1}^{N_1} (t_p^r(i) - t_o(i)) + N_2 \cdot \alpha \cdot w_{tol}}{N} \]
 \[\alpha = 1.5, w_{tol} = 5 \text{ min} \]
• 3-hour simulation
• Time Pattern of demand: low-high-low, each period lasts for 1 hour
• 2400 orders
• Fleet size = 150

<table>
<thead>
<tr>
<th></th>
<th>Proposed method</th>
<th>Do-nothing policy</th>
<th>Improvement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completion rate(%)</td>
<td>82.9</td>
<td>73.2</td>
<td>13.3%↑</td>
</tr>
<tr>
<td>Average waiting time(s)</td>
<td>132.5</td>
<td>173.9</td>
<td>23.8%↓</td>
</tr>
<tr>
<td>Average system time(s)</td>
<td>186.8</td>
<td>247.9</td>
<td>24.6%↓</td>
</tr>
</tbody>
</table>
- Operate the fleet more efficiently as a larger amount of vehicles are actively serving passengers.
\(p'_d(q) = \gamma \cdot p_d(q) + (1 - \gamma) \cdot p'_\delta(q) \)

where \(p'_\delta \) is an artificial distribution which has the maximum difference from the origin distribution.

- When \(\gamma = 1 \), the generated destination distribution is equal to the original destination distribution.
- The smaller the \(\gamma \) is, the more discrepancy is introduced between the origin and generated destination distributions.
- When \(\gamma = 0 \), the generated destination distribution has a shape that is maximally different than the origin one.
Comparison of performance metrics for various γ and fleet size value

- Fleet size
- Gamma

(a) Results with varying values of origin destination demand imbalance parameter γ.

(b) Results with varying values of fleet size.
Comparison of performance metrics for various γ and fleet size value

(a) Results with varying values of origin destination demand imbalance parameter γ.

(b) Results with varying values of fleet size.

- Fleet size
- Gamma
Comparison of performance metrics for various γ and fleet size value

- Fleet size

(a) Results with varying values of origin destination demand imbalance parameter γ.

- Gamma

(b) Results with varying values of fleet size.

Average system time
Comparison of performance metrics for various \(r \) and \(R \)

(a) Results with varying values of covering radius \(r \).

(b) Results with varying values of the communication limitation radius \(R \).
Conclusion

Demand density function + Control Algorithm

Local information

Relocate position
Conclusion

Distributed Coverage Control Algorithm:

- Application to rebalancing of vehicle fleets for urban Mobility-on-Demand systems

- Countering spatiotemporal imbalances in the origins and destinations of trip demands

- Dynamically rebalance spatial distribution, serve more trips with less waiting time.

- Tested on both continuous and discrete space compared with a do-nothing policy.

- The effects of coverage and communication radius are demonstrated respectively.
Future steps

1. Estimate time-varying demands from real-time data
2. Ride-sharing/pooling
3. Detour problem
4. Price Policy
Thanks for your attention!

Avez-vous des questions?

Pengbo ZHU
LUTS, EPFL
pengbo.zhu@epfl.ch