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Abstract

Agent-based simulations and activity-based models used to analyse nationwide transport networks require detailed
synthetic populations. These applications are becoming more and more complex and thus require more precise synthetic
data. However, standard statistical techniques such as Iterative Proportional Fitting (IPF) or Gibbs sampling fail to
provide data with a high enough standard, e.g. these techniques fail to generate rare combinations of attributes, also
known as sampling zeros in the literature. Researchers have, thus, been investigating new deep learning techniques
such as Generative Adversarial Networks (GANs) for population synthesis. These methods have already shown great
success in other fields. However, one fundamental limitation is that GANs are data-driven techniques, and it is thus not
possible to integrate expert knowledge in the data generation process. This can lead to the following issues: lack of
representativity in the generated data, the introduction of bias, and the possibility of overfitting the sample’s noise.

To address these limitations, we present the Directed Acyclic Tabular GAN (DATGAN) to integrate expert knowledge
in deep learning models for synthetic populations. This approach allows the interactions between variables to be
specified explicitly using a Directed Acyclic Graph (DAG). The DAG is then converted to a network of modified Long
Short-Term Memory (LSTM) cells. Two types of multi-input LSTM cells have been developed to allow such structure
in the generator. The DATGAN is then tested on the Chicago travel survey dataset. We show that our model outperforms
state-of-the-art methods on Machine Learning efficacy and statistical metrics.
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1 Introduction

Population synthesis refers to combining different data sources to derive a representation of agents matching given
criteria. Usually, it is compromised of methods that predict populations in social and geographic spaces. This area
of research has seen increasing attention in recent years due to an increased focus on agent-based modelling in
transportation (Miranda, 2019). In the past, data have been collected through phone surveys, household or individual
travel diaries and questionnaires given by Census agencies. However, these surveys tend to cost much money. Therefore,
much effort is made to reduce the size of such survey to cut the costs. Indeed, researchers are working on generating
synthetic populations that represent the real population with as little data as possible. While reducing cost is one of the
reasons why synthetic populations are needed, it is not the only one. For example, one might want to make sure that the
collected data are anonymous. Using a synthetic population generator is a technique that has shown success over the
years. In addition, being able to generate synthetic populations opens new opportunities for hypothetical scenarios.
For example, we could derive information from one population to apply it to another one. The latter is called transfer
learning. There are multiple reasons why synthetic population generation is needed, and researchers have come up with
many different methods to generate them.

The three main existing approaches for generating synthetic populations are resampling techniques, simulation tech-
niques and deep learning techniques. While the �rst two techniques have been well studied within the transport
community, the latter comes from Machine Learning. Generative Adversarial Networks (GANs) are the main models
used to generate synthetic data. While these models were �rst created to generate images, especially human portraits,
researchers have developed new models to generate all kinds of data: language, time series, and tabular data (such as
synthetic population).

In this article, we propose a novel model that controls the generation process of such a synthetic population. Indeed,
while GANs have shown to generate accurate synthetic populations, the researchers have no control over the model. We,
thus, propose to let the researcher design a network to represent the interactions between the variables with a Directed
Acyclic Graph (DAG). This DAG is then used to generate the structure of the model that will generate such a population.
Allowing researchers to control the process has two main advantages: they can tinker with the data generation process,
create hypothetical populations, and control the dependencies for forecasting. In this article, we thus present our new
GAN model named Directed Acyclic Table GAN (DATGAN). We show that it outperforms state-of-the-art synthetic
data generators on multiple metrics. We also make a sensitivity analysis on the DAG to show its effect on the data
generation process.

The rest of this article is laid as follows. In the next section, we present the Literature Review. We �rst introduce
the existing approaches for population synthesis and then discuss the different research axes. Finally, we conclude
the literature review with the opportunities and limitations of existing research. In Section 3, we present the whole
methodology for the DATGAN. We discuss how to preprocess the data, what models are used for the generator and the
discriminator, and how to use the DAG to create the generator's structure using LSTM cells. Section 4 presents the case
study and Section 5 shows the results. We conclude this article in Section 6 and give ideas for future work.

2 Literature Review

As stated in Section 2.1, synthetic data generation is used to overcome �ve limitations that can be found in real datasets:
simulation/activity-based modelling, Machine Learning ef�cacy, bias correction, privacy preservation, and transfer
learning. These research axes are discussed in detail in Section 2.2. At the same time, methods for synthetic data
generation can be grouped into three main approaches: resampling techniques based on Iterative Proportional Fitting
(IPF), simulation techniques based on Markov Chain Monte-Carlo (MCMC), and deep learning approaches. The former
two have been extensively researched in transportation and are usually motivated using activity-based models. The
latter �nds its origin in the Machine Learning community and are used to improve Machine Learning models. However,
in recent years, transportation researchers have been using deep learning approaches for population synthesis whilst
keeping the same motivation as previously. In Section 2.1, we give an overview of these three groups of methodologies.
Finally, in Section 2.3, we discuss the opportunities and limitations of these techniques linked to the �ve research axes.

2.1 Existing approaches for population synthesis

Synthetic data have a large span of applications. For example, we can �nd such data in marketing, computer vision,
security, and transportation. In the context of this article, we study the literature on one particular application: population
synthesis. As stated in Section , population synthesis is included in the �eld of synthetic data generation, and it is mainly
used for transportation-related applications. While the techniques for both of these �elds are similar, this literature
review only covers the approaches used for the latter.
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2.1.1 Resampling techniques

The �rst method used for generating synthetic populations is the Iterative Proportional Fitting method (IPF) presented
by Beckman et al. (1996). The method was �rst introduced by Deming and Stephan (1940). It consists of proportionally
adjusting a matrix to produce a new table such that the speci�ed marginals are individually conserved. In other terms,
the idea is to memorize the marginal (sum of all the elements) of the columns and the rows in a given dataset. The
algorithm starts by �lling the synthetic dataset with random values. Then, it iterates over the columns and the rows
such that the sum becomes equal to the marginal of the original dataset. Therefore, such methodology does not have
any interaction between the rows nor the columns. In addition, the type of values is not always respected, as shown in
Figure 1.

Figure 1: Example of a dataset transformation using the IPF methodology. The table on the left is the original table and
the one on the right is the synthetic table.

Beckman et al. (1996) use this methodology to create a synthetic population based on the SF3 (San Francisco area)
census data. Auld et al. (2009) and Barthelemy and Toint (2013) both propose to improve the IPF methodology using a
multi-step procedures. For example, Barthelemy and Toint (2013) propose to separate the generation of individuals
and households. They �rst generate a pool of individuals and then estimate the households' joint distributions. Finally,
they gather individuals inside households to generate the synthetic population. They show that their methodology
outperforms the standard IPF approach on a synthetic Belgian population using the Absolute Percentage Difference
(APD) and the Freeman-Tukey Goodness-of-Fit test. Rich (2018) improved the IPF method even further using a
three-step procedure to generate a synthetic population. He �rst pre-processes the data by harmonizing the constraints.
He then uses IPF for the matrix �tting procedure for the individuals and �nishes his procedure with a micro-simulation
on the households.

While IPF methods are simple to implement, there are multiple majors issues with this technique. The �rst one is
that there is no interaction between the variables with the basic algorithm. It is possible to add these interactions by
adding multiple dimensions to the table. However, for each level of interaction, one more dimension has to be added
to the table. It, thus, quickly become a computationally expensive algorithm. In addition, IPF cannot differentiate
between structural and sampling zeros. Multiple methods have been suggested to avoid sampling zero issues in the
literature, such as Auld et al. (2009). Finally, IPF cannot differentiate between the different types of data (categorical
and continuous). Thus, researchers have been developing new techniques to generate synthetic populations, such as
MCMC simulation.

2.1.2 Simulation techniques

The �rst use of simulation for generating synthetic population dates from 2013. Farooq et al. (2013) proposes to use a
Markov Chain Monte Carlo (MCMC) simulation using Gibbs sampling to generate synthetic populations. They show
that this simulation technique outperforms IPF methods using multiple statistical metrics such asR2 and Standardized
Root Mean Squared Error (SRMSE) (Müller and Axhausen, 2010). Casati et al. (2015) improved on the MCMC
approach of Farooq et al. (2013) by adding a hierarchical structure to the simulation process. They rank the individuals
living in the same household according to their role. Kim and Lee (2016) and Philips et al. (2017) both propose a mix
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of Simulated Annealing (SA) and simulation to generate the synthetic population. In the case of Kim and Lee (2016),
the SA algorithm is used to generate potential individuals, while the MCMC simulation is used to decided whether to
select or dismiss the distribution to avoid the hill-climbing phenomenon.

2.1.3 Deep learning techniques

Recent advances in deep learning and data generation have enabled new approaches for generating synthetic populations.
For example, Borysov et al. (2019) use a Variational AutoEncoder (VAE) (Kingma and Welling, 2014) to generate
synthetic population. VAE aim to reduce the dimensionality of the data into an encoded vector in the latent space.
Data can then be generated more easily in this latent space since it is smaller in dimensionality. Borysov et al.
(2019) demonstrated that their VAE model outperforms both IPF and Gibbs sampling for generating complex data.
Another deep learning approach to generate synthetic data are Generative Adversarial Networks (GANs) introduced
by Goodfellow et al. (2014). The key concept of the GAN is to train two neural networks against each other: agenerator
and adiscriminator. The generator processes random noise to produce synthetic data. The discriminator (or critic)
then evaluates the synthetic data against real data to provide a classi�cation or continuous score on each data point
on whether the data is real or synthetic. Initial GANs made use of a binary classi�er for the discriminator network.
However, Arjovsky et al. (2017) demonstrated that the use of a discrete loss function results in issues such as vanishing
gradients. They thus propose an alternative continuous loss function based on the Wasserstein distance. This GAN is
therefore named Wasserstein GAN (WGAN). Further key developments in GAN research include the introduction of
a penalty on the gradient during model training (Gulrajani et al., 2017) or the addition of conditionality (Mirza and
Osindero, 2014). Whilst the primary application of GANs has been the generation of image data, with a particular focus
on human faces (Alqahtani et al., 2021), researchers have also developed speci�c architectures for tabular data. Such
GANs can thus be used to generate synthetic populations.

For example, TableGAN (Park et al., 2018) and TGAN (Xu and Veeramachaneni, 2018) are two speci�c GANs models
for tabular data. TableGAN has been developed with privacy-preservation techniques in mind. This model is based on
Deep Convolutional GAN (DCGAN) (Radford et al., 2016). On the other, TGAN has been developed to reproduce
tabular data as realistically as possible using Long Short Term Memory (LSTM) cells for the generator (Hochreiter
and Schmidhuber, 1997). The authors demonstrated that the TGAN outperforms TableGAN when both models are
used to generate synthetic data. In the transport community, researchers have also developed their own GAN structures
to generate synthetic populations. For example, Garrido et al. (2019) developed their own GAN structure based on
the WGAN to use tabular data. They showed that this new model was statistically better than IPF techniques, Gibbs
sampling and the VAE of Borysov et al. (2019). Finally, Badu-Marfo et al. (2020) created a new GAN named Composite
Travel GAN (CTGAN). Their GAN is based on the Coupled GAN (CoGAN) (Liu and Tuzel, 2016) and is used to
generate the table of attributes for the population and the sequence of Origin-Destination segments. They show that the
CTGAN outperforms the VAE statistically.

2.2 Research axes

The previous section shows that the primary focus of existing population synthesis in the transportation domain has
been for direct use in simulation models. On the other hand, the deep learning community motivates their research
by stating that using more data improves the ef�cacy of Machine Learning models. For example, Jha et al. (2019)
show that a more extensive dataset leads to better validation and fewer uncertainties. Other examples discussing the
dataset size can be found in the literature (Barbedo, 2018, Linjordet and Balog, 2019). However, this does not represent
the only research axis for population synthesis. In the remainder of this section, we present and discuss �ve different
directions for the research in data generation.

2.2.1 Simulation/activity-based modelling

Activity-based models, as explained by Bhat and Koppelman (2003), are a type of model used to understand travel
demand using a behavioural approach. It is often linked to trip-based models. However, the latter tend to only look at
the trips without taking into account humans' behaviour. Activity-based models, thus, require datasets with multiple
information on individuals, such as socio-economic characteristics and trips.

In Section 2.1, we already presented multiple articles in the transportation community discussing data genera-
tion/population synthesis. Indeed, most of these articles' motivation is about the creation of synthetic population such
that they can be used for activity-based models or simulation. For example, Farooq et al. (2013) developed a simulation
technique based on Gibbs sampling for population synthesis. They state that their research is motivated using the idea
that activity-based modelling requires synthetic population and demographic updates. More recently, Borysov et al.
(2019) and Garrido et al. (2019) both motivate their article by saying that population synthesis has received increasing
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attention due to an increased focus on agent-based models (ABMs). These models, for example, are used to simulate the
behaviour of individuals, or group of individuals, to assess their effect on the whole system. Similar data are required
for both ABMs and activity-based models.

2.2.2 Privacy Preservation

Privacy preservation techniques consist of ensuring that any private information is not disclosed while using data or
Machine Learning models. For example, trip diaries datasets with precise origin and destinations might give out too
much information and lead to malicious use of the data. Usually, privacy preservation already starts at the data mining
step. However, it might not always be possible. Thus, data needs to be altered to avoid leaking any private data.

While privacy preservation has received much attention recently, it has always been used to motivate synthetic population
generation research. For example, Barthelemy and Toint (2013) present a three-step procedure using IPF (Iterative
Proportional Fitting) to improve the privacy preservation of the standard IPF methods. They state that the standard
method tends to repeat observations, and thus it is possible to retrieve information from the true dataset. More recently,
Park et al. (2018) developed the table-GAN, which has been speci�cally designed to preserve the original datasets'
privacy. They show that their synthetic dataset leads to similar Machine Learning ef�cacy. However, they do not try to
use data augmentation to show improvements in the Machine Learning models. In computer vision, multiple GANs
models have been created with privacy preservation as the core motivation. For example, Liu et al. (2019) created the
Privacy-Preserving GAN (PPGAN). This GAN uses differential privacy by adding noise that has been speci�cally
designed in their case to the gradient during the learning procedure. Yin and Yang (2018), on the other hand, directly
generated protected data within the generator of their GAN by removing some sensible information and encoding them
in the generated data. They tested their synthetic data against attack models to show that their GAN can generate more
complex data to be deciphered.

2.2.3 Machine Learning Ef�cacy

Machine Learning ef�cacy corresponds to study how ef�cient and why are Machine Learning models. Usually, it is
done using prediction as to the core component of the studies. As stated in the introduction of Section 2.2, multiple
articles have been published on the impact of the dataset size on the Machine Learning models. It is known that having
larger datasets will often lead to better results in prediction. Thus, researchers have been working on �nding ways to
make existing datasets larger. It is called data augmentation. This concept is already widely used on images (Shorten
and Khoshgoftaar, 2019). While simple techniques such as rotating or scaling images can be used in Computer Vision,
it is impossible to apply such simple tricks on tabular data. Thus, researchers have been developing models aiming at
augmenting tabular data.

Since GANs are one of the most promising research axes on data augmentation, multiple researchers have been working
on this topic. However, as stated in Section??, most of GANs applications are about Computer Vision. Nonetheless, we
can still �nd a few articles dealing with tabular data. Among these articles, Xu and Veeramachaneni (2018) motivates
the development of the TGAN because organisations are using Machine Learning on relational tabular data to augment
process work�ows carried out by humans. They say that these synthetic datasets can either be used as an augmentation
for the existing datasets or as a mean to preserve privacy, which is discussed in Section 2.2.2. The follow-up article of
Xu et al. (2019) does not give a clear motivation on the usage of synthetic datasets. However, they test their models on
Machine Learning ef�cacy by replacing the training data with the generated synthetic data.

2.2.4 Bias Correction

Bias correction is used when a dataset is not homogeneous. The collected data often do not re�ect the true distributions.
For example, if one might create a travel survey using smartphones, there is a high possibility of getting fewer answers
from the elderly than the youth. Therefore, such datasets have to be corrected according to some known statistics.
In Machine Learning, we often talk about an imbalanced dataset in which one or multiple classes are under/over-
represented. Usually, standard techniques rely on sampling methods (Rubin, 1973) to rebalance the dataset. However,
data generation techniques can also be used to augment the dataset and rebalance it.

If one has to rebalance a dataset with synthetic data, the easy path is to "hand-pick" the synthetic data close to the
missing data from the original dataset and add them to the original dataset. While this technique might work, it requires
the generation of many data. Indeed, synthetic datasets are generated to be as close as the original dataset. Thus, a
category underrepresented in the original data will also be underrepresented in the synthetic dataset. Therefore, Machine
Learning researchers have developed the Conditional GANs (Mirza and Osindero, 2014), an updated version of the
GAN that allows generating data based on their labels. This, thus, increases the probability to generate synthetic data
with the given label. Xu et al. (2019) have adapted this methodology to tabular data with the Conditional Table GAN
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(CTGAN). They show that the conditionality is especially ef�cient for Machine Learning models when the data is
highly imbalanced. They created synthetic datasets addressing the imbalance and trained Machine Learning models on
both these datasets and the original dataset. The models trained on the synthetic datasets performed better than the ones
trained on the original dataset. Previously, Farooq et al. (2013) motivates their research on population synthesis with
Gibbs sampling using the fact that it can complete datasets.

2.2.5 Transfer Learning

Transferability, or transfer learning in Machine Learning, represents the fact to train a model on a dataset and then apply
this knowledge to another, usually smaller or incomplete, dataset. Multiple GANs models have been developed in the
past couple of year using transfer learning for images. However, the main purpose of using transfer learning is to reduce
the computational cost. Indeed, training GANs on large datasets takes a lot of time and resources. Noguchi and Harada
(2019) proposed a new method using the BigGANto transfer the knowledge learned on large datasets and apply this
knowledge to a dataset with only 25 images. They show that they are able to add a new class to a pre-trained generator
without disturbing the performance on the original domain. Wang et al. (2020) proposed to use a miner network that
identi�es which distribution of multiple pre-trained GANs is the most bene�cial for a speci�c target. This mining
pushed the sampling towards more suitable regions in the latent space. The MineGAN is therefore able to transfer the
knowledge of multiple GANs such as the BigGAN and the Progressive GAN to a domain with fewer images. Jeon et al.
(2020) takes a slightly different approach. Indeed, the goal of this research is to develop an image detection framework
to classify between real and GANs-generated images. The T-GD is using both a teacher and a student network that
works in pair for the detection. The teacher model is pre-trained on source data while the student model is pre-trained on
target data. This framework allows the student network to require only a small amount of data to be able to ef�ciently
detect if an image is real or has been generated. Frégier and Gouray (2020) propose another transfer learning method
that consists in freezing the low-level layers of both the critic and the generator of the original GAN. Indeed, they reuse
the weights of an autoencoder already trained on a source dataset. The weights of the low-level layers will be given to
the decoder and encoder. The MindGAN is, therefore, a subnetwork trained as a GAN on the encoded features of the
target dataset.

2.3 Opportunities and limitations

As we have discussed in Section 2.1, deep learning models are promising in multiple aspects. First, they outperform
previous models in terms of statistics, as has been shown multiple times in the transportation community (Borysov
et al., 2019, Badu-Marfo et al., 2020). In addition, researchers have already shown that their models can improve
Machine Learning ef�cacy and bias correction. Furthermore, transfer learning is a promising research axis, but it has
not been explored in the transportation community yet. Finally, the use of synthetic population for simulation has been
discussed multiple times already. However, the generation of such a population raises multiple limitations with the
current available deep learning models.

For example, the deep learning community have developed their own performance metric, similarly for the transportation
community. However, we cannot �nd any standard practice to evaluate the generation of synthetic populations yet.
While the goal of generating synthetic data might be different, a standard assessment method should be applied across
these �elds. For example, we lack a metric to assess how representative a synthetic population is compared to the
original dataset. In addition, we know that Machine Learning models are usually prone to over�tting. We thus need
to have a better assessment method. Finally, one of the main issues with deep learning models is the lack of control
over the generation process. Indeed, neural networks are considered as black-box models in which humans do not
interfere. Since these models have been initially created to improve the prediction power of Machine Learning models,
they excel at creating a new population for this purpose. However, we state that integrating expert knowledge with these
models helps us improve the quality of synthetic populations, especially in simulation. For example, the variables of a
dataset do not make sense for a neural network. It will only learn from the data. However, an expert can help the neural
network if they can provide the structure of the variables. In this work, we aim at delivering such a model.

3 Methodology

The Directed Acyclic Graph Tabular GAN (DATGAN) is a direct extension of the Tabular GAN (TGAN) published
by Xu and Veeramachaneni (2018). Indeed, we kept the same pre-processing, described in Section 3.1, as well as the
discriminator, in Section 3.3. On the other hand, we modi�ed the generator of the TGAN, see Section 3.2, to support
the use of a directed acyclic graph to model the relationship between the different variables in a given dataset.

Before introducing every component of the DATGAN, we need to de�ne some mathematical elements. We de�ne the
table containing the original tabular data asT . It containsnc continuous random variablesf C1; : : : ; Cn c g, andnd
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discrete random variablesf D1; : : : ; Dn d g. The generative modelM (C1;n c ; D1;n d ) is used to learn the unknown joint
distributionP(C1;n c ; D1;n d ) and create a synthetic dataset namedT synth . In this case, we do not consider sequential
data. Therefore, each row is sampled independently from the joint distributed and is denoted using lowercase characters
f c1;j ; : : : ; cn c ;j ; d1;j ; : : : ; dn d ;j g.

3.1 Data preprocessing

In tabular data, we generally encounter two types of variables: continuous and categorical. Continuous variables can
be drawn from complex multimodal distributions, in which categorical variables are drawn from a �nite set of unique
values. However, Neural Networks are not able to generate such complex data without some preprocessing. Indeed,
Neural Networks generally works better in the range(� 1; 1). We, thus, transform the continuous variables into two
variables using Gaussian Mixture Models (GMMs) and the categorical variables into a multinomial distribution.

3.1.1 Continuous variables

Xu and Veeramachaneni (2018) selected three datasets for their case study. They show that in two out of the three,
continuous variables are, in the majority, multimodal. It is, therefore, mandatory to take into account this multimodality.
As stated by Xu and Veeramachaneni (2018), using normalization andtanh function would make the gradient saturate
when back-propagating if a mode is close to� 1 or 1, we use the same methodology as the authors to transform the
continuous variables. The idea is to cluster the values of the continuous variables using a Gaussian Mixture Model
(GMM). We do this for both uni- and multimodal variables. Indeed, if a variable has only one mode, the GMM returns
a very low probability tom � 1 components and only works with one component.

We want to transform each continuous variableci;j into two different variables: a vector of probabilitiesu i;j and the
scalar valuevi;j . To achieve this, we �rst train a GMM withm = 5 components. The means and standard deviations
are

�
� 1

i ; : : : ; � m
i

	
and

�
� 1

i ; : : : ; � m
i

	
. These values are not known by any components of the DATGAN. We can then

compute the probabilityuk
i;j thatci;j belongs to the Gaussian distributionk for eachk = 1 ; : : : ; m. These probabilities

are stored in the vectoru i;j . Finally, we normalizeci;j as

vi;j =
ci;j � � k �

i

2� k �

i
(1)

wherek� = arg max k uk
i;j . For numerical purposes, we clipvi;j to [� 0:99; 0:99].

The postprocessing for continuous variable is straighforward. Indeed, we can getci;j from u i;j andvi;j using the
following formula:

ci;j = 2vi;j � k �

i + � k �

i (2)

wherek� = arg max k uk
i;j .

3.1.2 Categorical variables

The dif�culty with categorical variables is to make the model differentiable. In our case, categorical variables tend to
have few unique values. Therefore, it is possible to generate a probability distribution using softmax. However, it is
necessary �rst to transform these variables into one-hot encoding representation. We also add some noise to smooth the
results.

Therefore, the �rst step is to transform each categorical variabledi;j in a jD i j-dimensional one-hot vectord i;j . We then
add Gaussian noise to each dimension ofd i;j , thus giving:

�
bd i;j

�

k
= ( d i;j )k + N (0;  ) (3)

where = 0 :2. We can normalize the �nal representation to get:

ed i;j =
bd i;j

P jD i j
k=1

�
bd i;j

�

k

(4)

After preprocessing of both the continuous and the categorical variables, we obtain a new tablebT that has nownc(m +

1) +
P n d

i =1 jD i j variables. Each row ofbT is represented as
n

v1;j ; u1;j ; v2;j ; u2;j ; : : : ; vn c ;j ; un c ;j ; ed1;j ; : : : ; edn d ;j

o
.

This vector is the output of the generator as well as the input of the disciminator.
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3.2 Generator

The role of the generatorG is to generate synthetic data to fool the discriminator. We use Long-Short Term Memory
(LSTM) network to generate the variables inbT . Usually, the LSTM cells are arranged linearly following a given order.
In the case of the TGAN, the LSTM cells follow the order of the columns in the dataset. For example, if the dataset
looks as in Figure 2a, the LSTM cells will have the same order, as shown in Figure 2b. However, multiple problems can
arise from this con�guration. In the case of Figure 4, we have multiple issues with the con�guration of the TGAN:

• If the variable "Mode choice" is the variable that we want to predict, it should, logically, inherit all the
information from the other variables. In the case of the TGAN, the order of the columns can be rearranged to
�x this.

• Some variables might not be useful to generate the others. In the case of Figure 4, the variable "Type of
survey" should not be used to generate the others since it should not in�uence the mode choice. In the case of
TGAN, it is possible to remove it from the dataset completely. However, if this variable were used for other
purposes, it would not appear in the synthetic data.

• While LSTM has a long term memory, information tends to fade away the more cells there are. Therefore,
we state that some variables should directly in�uence others. For example, both "Work status" and "Age"
will in�uence the ownership of a driving license. Therefore, we want these two variables to directly pass
information to the LSTM cell to generate the variable "Driving License". However, this creates an issue since
an LSTM cell cannot take multiple inputs as is. We discuss this in Section 3.2.1.

While the �rst two issues can be tackled by changing the input data in the TGAN, the DATGAN aims to �x all of
these issues simultaneously using a DAG to represent the relationships between the variables. The DAG can either be
created by experts or using any statistical/ML technique using the data. In the context of this article, we use expert
knowledge to create it. We leave the automatic speci�cation of the DAG for future improvements. In Figure 2c, we
show a possible DAG for the mock dataset in Figure 2a. In this case, we see that the variables "Age" and "Work status"
are both directly linked to the variable "Driving license". Usually, LSTM cells cannot take multiple inputs. To tackle
this issue, we provide two different solutions in Section 3.2.1. For all the other variables without multi-input, we keep
the same structure as done in the TGAN.

The DATGAN generates continuous variables in 2 steps. The scalar valuevi is �rst generated, followed by the vector
of probabilitiesu i . For both steps, a single LSTM cell is used. The categorical variable is generated in only one
step. Figure 3 shows how information is passed between two LSTM cells. The elongated blue hexagons represent
the variables used in the LSTM cells. The grey rounded rectangles represent Neural Networks operators such as the
LSTM cells, Fully Connected Layers (FCC), or other functions performed bytensorflow . Finally, the orange ellipses
represent mathematical operators. In Figure 3, we simplify the representation of an LSTM cell by only showing the
inputs and outputs of such a cell1.

First, we need to de�ne the following sizes:

• H : Size of the hidden state of an LSTM unit. This value is generally chosen based on the hardware and the
complexity of the task.

• B: Size of the input batch. Inputs are very rarely fed one by one. They are usually fed into any LSTM based
model in the form of a subset of the total number of examples,i.e. batch.

• D: Size of the inputs, i.e. number of features in the input data. In this case, it is a variable with random noise.

LSTM cells take two different variables as inputs: the cell state and the input variable. The input variable of the LSTM
cell LSTMt is a concatenation (++ ) of three variables:

• z 2 RB�D : a random variable such that each dimension is sampled fromN (0; 1).

• f t � 1 2 RB�H : the output of the previous LSTM cell (or an embedding vector depending in the case of a
continuous variable)

• at � 1 2 RB�H (att t � 1 in Figure 3): a weighted context vector, also name the attention vector. It is built using
information from all the ancestors of the current LSTM cell.

The concatenation is done on the second dimension. Therefore, the �nal input has the sizeB � (2H + D). The cell
stateCt � 1 2 RB�H is also given to the LSTM cell. If an LSTM cell does not have an ancestor,f 0 is learned during

1We refer the reader to https://colah.github.io/posts/2015-08-Understanding-LSTMs/ for a detailed explanation of how an LSTM
cell works.
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(a) Example of a mock dataset

(b) Structure of the LSTM cells in the TGAN

(c) Structure of the LSTM cells in the DATGAN

Figure 2: Example of the structure of the data. Figure (a) shows the structure of a table with �ve variables. Figure (b)
and (c) show the structure of the LSTM cells in the generator of the TGAN, respectively, the DATGAN.

the learning process whilea0 is a zero vector andC0 is the zero state vector fromtensorflow . The LSTM cell then
provides two variables as outputs: the new cell stateCi 2 RB�H and the outputoi 2 RB�H . The cell stateCt is
directly passed to the new LSTM cell as the previous cell state, and it is stored (_ ) in a list of cell statesC. However,
we cannot pass the output ofLSTMt to LSTMt +1 as is since we are using an attention vector to keep a better long-term
memory. Indeed, the outputoi is transformed through multiple Fully Connected Layers (FCC) to change its size
according to the desired variable. The �rst one uses an FCC with atanh activation function to make sure the output
values are within the speci�ed bounds. It leads tohi 2 RB�H . Fromhi , we can produce the different outputs:

• if wt = vt , the value part of a continuous variable, we havevi = tanh( Ww;t ht ) andf t = ht .

• if wt = ut , the cluster part of a continuous variable, we haveui = softmax(Ww;t ht ) andf t = I(Wf;t ut ).

• if wt = ed t , the output of a categorical variable, we haveed t = softmax(Ww;t ht ) andf t = E i

h
arg maxed t

i
,

whereE i 2 RjD i j�H is an embedding matrix for the categorical variableD i .

f t is then concatenated with the random variablez before concatenating both withat as explained earlier. The variable
at corresponds to the attention vector for the cellLSTMt +1 . In order to compute it, we need to learn the variable
� t 2 RjA t +1 j (attw in Figure 3) whereA t +1 corresponds to the list of ancestors of the current LSTM cell,LSTMt +1 .
Using the functionssoftmax , stack , andreduce_sumin tensorflow , we are able to compute the new attention
vector:

at =
X

k2 A t +1

exp� t;kP
j exp� t;j

(C)k (5)

At this point, we know how to generate variables and to pass information from one LSTM cell to another. In the case of
the TGAN that uses a linear representation of the dependencies between the variables, see Figure 2b, we have enough
information to build the generator. However, in the case of the DATGAN using a DAG to represent the variables'
dependencies, see Figure 2c, we need to address two issues:
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Figure 3: Representation of the mathematical operators, "Neural Network" operators and variables between two LSTM
cells in the DATGAN.

• How can we create an LSTM cell that takes multiple other LSTM cells as inputs? Indeed, Figure 3 only provides
the answer for a single LSTM cell as an input. We discuss the solutions to this problem in Section 3.2.1.

• How can we build the sequence of LSTM cells using the DAG? We have to be careful about multiple elements
while using the DAG to create the generator. We, thus, discuss this in Section 3.2.2.

3.2.1 multi-input LSTM

Figure 3 shows how to pass information from one LSTM cell to another. However, as shown in Figure 2c, it is possible
to have multiple LSTM cells as inputs. At �rst, one could think that simply concatenating the different variables along
their second axis could work. It is, of course, a possible solution. However, this would lead to increasing the size of the
LSTM cells exponentially. Indeed, if the cellLSTMt hasnanc direct ancestors, the size of its inputs and outputs would
then be of sizeB � nH . For example, in Figure 5, the cell for the variablework_status would have a size of2H and,
thus, the cell forchoice would have a size of12H since 5 of its direct ancestors have the variablework_status has
an ancestor. Thus, we have to �nd a way to keep the cell size consistent no matter how many direct ancestors there are.
To achieve this, we propose two different solutions: the multi-input post-LSTM cell (Figure 4a) and the multi-input
pre-LSTM cell (Figure 4b).

multi-input post-LSTM cell
This multi-input LSTM cell consists in usingnanc LSTM cells that will output the same variable. In the case of a
continuous variables, eachLSTMn +1 ;l would be composed of the two LSTM cells used to generate the continuous
variables. We thus have a total ofnanc outputswt;l , cell statesCt;l , and attention vectorsat;l . The outputs have to be
transformed so that only one �nal variable is outputed in the model. The same applies to the cell states and attention
vectors such that they can be passed to the next LSTM cell. We, therefore, concatenate each elements along the second
axis,e.g.Ct;l ; l = 1 ; : : : ; n are concatenated in a vectorC t 2 RB� n anc H . Finally, a FCC is used to transformC t into
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(a) multi-input post-LSTM cell

(b) multi-input pre-LSTM cell

Figure 4: Structure of the two multi-input LSTM cells. Figure (a) shows the fully connected layer after the LSTM cells
and Figure (b) shows the fully connected layer before the LSTM cell.

Ct 2 RB�H . For the outputs, we use the same activation functions describe earlier. For the other variables, we do not
use any activation function.

This way to reduce the dimensions of multiple outputs is valid. However, it has a couple of issues:

• The number of LSTM cells to be trained greatly increased. Indeed, we will have the same number of additional
LSTM cells to be trained for each variable with multiple inputs. It thus leads to a larger training time.

• There are no interactions between the different inputs. Since we concatenate the results after the generation of
the variable, each LSTM cell only sees one input. It is, thus, similar to taking a weighted average of the results
instead of using more information.

multi-input pre-LSTM cell
This second version of the multi-input LSTM cell aims at �xing the issues with the �rst method. The idea is to
concatenate the inputs of the cellLSTMn +1 instead of the outputs. We, thus, have to concatenate the inputsf t ,
the attention vectorsat , and the statesCt of each direct ancestors of the cellLSTMn +1 . Each of these variables is
concatenated on their second axis, similarly to the post-LSTM methodology. The FCC are all used to resize the variables
and, thus, do not use any activation function. Therefore, the interaction between the different ancestors is directly taken
into account while training each FCC. In addition, as seen in Figure 4b, this multi-input LSTM cell only uses one
LSTM cell. Therefore, it does not change the complexity of the model by much.
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3.2.2 LSTM sequence using a DAG

The graph representing the dependencies variables has to be an ensemble of Directed Acyclic Graph (DAG). A DAG is
a graph with directed edges that does not contain any cycle. Therefore, it must follow the following rules:

• Each variable must be represented as a vertex in a graph. However, it is unnecessary to have edges between
each vertex,i.e. some vertices or group of vertices can be separated.

• The graph cannot contain any cycles.

If these two conditions are met, the speci�ed DAG can then be used to build the generator. However, one must use an
algorithm to determine the order of the built variables in the generator. Algorithm 1 shows the algorithms used to order
the variables before building the generator.

Algorithm 1 Ordering of the variables using a DAG

Inputs: DAG: G
Output: ordered list of variables:L
1: Compute a dictionaryin_edges with the variable names as keys and the list of vertices that are the origin of an

in-edge.
2: Initialize untreated as a set with all the variables names andtreated an empty list
3: Initialize to_treat as a list containing all the variables with 0 in-edges
4: while juntreated j > 0 do
5: for all n 2 to_treat do
6: Removen from untreated and add it totreated
7: Setto_treat as an empty list
8: for all e 2 G:E do . e is an edge and it is a tuple with 2 values: the out-vertex and the in-vertex
9: Initialize booleanall_ancestors_treated to True

10: for all l 2 in_edges [e[1]] do
11: if l =2 treated then
12: Setall_ancestors_treated to False
13: if e[0] 2 treated AND all_ancestors_treated is True AND e[1] =2 treated AND e[1] =2

to_treat then
14: Add e[1] to the listto_treat
15: return treated

We start Algorithm 1 by selecting all the variables with 0 in-edges. We can choose these variables as the �rst ones since
they do not have any ancestors. Then, we go through each edge of the DAGGon line 8. On lines 9-12, we make sure
that all the ancestors of the given edgee have been selected �rst. Indeed, it is not possible to have a descendant appear
before an ancestor in the list. Thus, the variableall_ancestors_treated is used to verify this condition. Finally, we
can add the in-vertex of edgee in the list of vertices that have to be treated if:

• the out-vertex ofe has been treated

• all the ancestors ofe have been treated

• the in-vertex has not already been treated (to avoid duplicates)

• the in-vertex is not already part of the vertices that have to be treated (to avoid duplicates)

Once we have the correct order of variables, we can build the generator by looping on the variables in the listtreated .
However, three different cases exist depending on the number of in-edges of the current variablev:

• v has 0 in-edges:We use the usual single-input LSTM cell. However, we have to use the "zero" vectors as
inputs as shown for the cellLSTM1 in Figure 3.

• v has 1 in-edge:We use the usual single-input LSTM cell. The different inputs of the LSTM cell have to be
taken as shown for the cellLSTM2 in Figure 3.

• v has more than one in-edge:We have to use a multi-input LSTM cell taking into account all the direct
ancestors of variablev.
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3.3 Discriminator and Loss function

The discriminator and the loss function are the same between the TGAN and the DATGAN. However, we recall them in
this section.

3.3.1 Discriminator

The discriminator is fully connected neural network withl layers. We concatenaten
v1;j ; u1;j ; v2;j ; u2;j ; : : : ; vn c ;j ; un c ;j ; ed1;j ; : : : ; edn d ;j

o
together as the input. The internal layers are given

by

f (D )
1 = LeakyReLU

�
BN

�
W (D )

1

�
v1:n c ++ u1:n c ++ ed1:n d

���
(6)

f (D )
i = LeakyReLU

�
BN

�
W (D )

i

�
f (D )

i � 1 ++ diversity
�

f (D )
i � 1

����
; 8i = 2 ; : : : ; l (7)

where++ is the concatenation operator, diversity(�) is the mini-batch discrimination vector presented by Salimans et al.
(2016). Each dimension of the diversity vector corresponds to the total distance between one sample and all the other
samples in the mini-batch. The distance is computed using a learned distance metric. BN(�) is the batch normalization,
and LeakyReLU(�) is the leaky recti�ed linear unit activation function. The output of the discriminator is a scalar
computed the following way:

o = W (D )
�

f (D )
l ++ diversity

�
f (D )

l

��
(8)

3.3.2 Loss function

This model is trained using Adam optimizer (Kingma and Ba, 2014). To warm up the mode more ef�ciently, we
optimize the KL divergence of the categorical variables and the cluster vector of the continuously variables at the same
time. It is done by adding them to the loss function. In addition, it is known that adding the KL divergence term can
also make the model more stable. Therefore, the loss of the generator is given by:

L G = � Ez�N (0 ;1) [logD(G(z))] +
n cX

i =1

KL (u0
i ; u i ) +

n dX

i =1

KL (ed0
i ; ed i ) (9)

whereu0
i anded0

i are generated data, andu i anded i are real data. The discriminator, on the other hand, is optimized
using the conventional cross-entropy loss:

L D = � Ev1: n c ;u 1: n c ;ed 1: n d � P(T )

h
logD

�
v1:n c ; u1:n c ; ed1:n d

�i
+ Ez�N (0 ;1) [logD(G(z))] (10)

wherev1:n c ; u1:n c ; ed1:n d corresponds to
n

v1;j ; u1;j ; v2;j ; u2;j ; : : : ; vn c ;j ; un c ;j ; ed1;j ; : : : ; edn d ;j

o
.

4 Case Study

Currently, we have only one dataset that has been used to assess the performance of the DATGAN. We will add other
datasets in the future. Nevertheless, this topic is further discussed in Section 6. The dataset we are using for this
study-travel tracker survey was carried out between January 2007 and February 2008 by the Chicago Metropolitan
Agency for Planning (CMAP). This dataset contains 87'946 trips (rows) and has 15 variables. All the variables are
represented in the DAG in Figure 5. Amongst these variables, three of them are considered continuous:age, distance ,
anddeparture_time . The rest of the variables are either binary or categorical.
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Figure 5: DAG representing the dependencies of the variables in the CMAP dataset. The dashed blue links are
considered secondary links since a longer path exists between the two nodes. Therefore, the DAG with only the black
arrows is the transitive reduction of the current graph.

The DAG in Figure 5 has been designed around the idea of forecasting the variablechoice . Indeed, we tried to create
links such that the dependencies would explain the mode choice used in each trip. To analyse the sensitivity of the
DATGAN on the DAG, we propose two versions of the DAG. The �rst one is the complete one with all the links
presented in Figure 5. The second one is the transitive reduction of the DAG, in which we removed the blue dashed
lines. This allows us to have a simpler graph and compare the results of the DATGAN with different DAG. In addition,
both versions of multi-input LSTM cells are tested against two of the current state-of-the-art model for generating
tabular data: Tabular GAN (TGAN) by Xu and Veeramachaneni (2018) and Conditional Tabular GAN (CTGAN) by Xu
et al. (2019). All these models have been trained for 2'000 epochs.

5 Results

5.1 Comparison with state-of-the-art models

In this section, we present the results obtained by the two methods presented in the Methodology (Section 3) and
compare them against some state-of-the-art methods. Since GANs do not have precise stopping criteria, we trained
each model for 2000 epochs and generated a synthetic dataset using the resulting models. The �rst analysis we can
make is on the distribution of each variable separately. Figure 6 shows some examples for four different variables.

Since these datasets contain multi-modal discrete data and continuous variables, we compute a frequency list for each
variable. The maximum number of bins is set to 50. We can then compare the frequencies between the synthetic dataset
and the original dataset as shown in Figure 7. These histograms allow us to draw two conclusions. The �rst one is
that continuous variables are generally noisier than categorical variables. Indeed, the number of possible values is
much higher, thus making the generating method less precise. In the case of TGAN and DATGAN, these continuous
variables are generated using a GMM. CTGAN, on the other hand, is using a Variational Gaussian Mixture (VGM)
model. The second conclusion is that CTGAN seems to be slightly worse than the other models for discrete variables
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(a)age (continuous) (b) distance (continuous)

(c) choice (categorical) (d) work_status (categorical)

Figure 6: Qualitative comparison of some variables

with an equivalent training time. This is expected since all these models are one-hot encoding the categorical variables.
However, the CTGAN is a more complex Neural Network than the TGAN or the DATGAN since it contains many
more neurons.

Visually comparing distributions is not suf�cient to get a good assessment of the synthetic dataset. We, thus, follow the
procedure given by (Müller and Axhausen, 2010) to compute the SRMSE on all the synthetic datasets. To compute
the SRMSE, we �rst need to create frequencies for the generated data. For the categorical ones, we use the different
categories as the bins. For the continuous variables, we create 50 bins and compute the frequencies on these bins. We
can then compare the simulated frequencies against the observed ones and compute some statistics. Figure 7 shows the
results for each model. In terms of SRMSE andR2, the DATGAN pre-LSTM is the best model. In terms of slope, the
DATGAN post-LSTM is slightly better. However, the slope is not the best assessment method since a larger dispersion
of the data can lead to a better average, as seen in Figure 7c.

It is also possible to compute different statistics on each variable separately and study the results. For example, table 1
shows the average and standard deviation for �ve different statistics. THe DATGAN pre-LSTM has the best average for
four of these statistics and the CTGAN for one. It is interesting to note that the DATGAN pre-LSTM shows consistently
better results than the DATGAN post-LSTM. While the latter contains more LSTM cells, it seems that at an equivalent
training time, fewer LSTM cells leads to a better �nal model. In addition, we see that CTGAN is the worst model if we
use the RMSE and the MAE statistics. However, it is the most consistent one with the smallest standard deviation. This
is explained by the fact that the TGAN and the DATGAN are less good at generating continuous variables than the
CTGAN. For example, Table 2 shows the comparison of the average SRMSE on continuous and categorical variables.
The CTGAN is consistent across both types of data. However, the other models are much better with discrete variables.

16



(a) TGAN (b) CTGAN

(c) DATGAN post-LSTM (d) DATGAN pre-LSTM

Figure 7: Frequency and SRMSE for the three models

Since the CMAP dataset is mainly comprised of categorical variables, the DATGAN models show better results across
the different statistics.

SRMSE RMSE MAE R2 Pearson
TGAN 0:161� 0:244 744:6 � 343:3 555:9 � 267:5 0:900� 0:234 0:970� 0:071
CTGAN 0:189� 0:106 1947:5 � 1244:7 1447:5 � 840:5 0:915� 0:088 0:962� 0:042
DATGAN post-LSTM 0:212� 0:364 776:5 � 511:0 557:4 � 270:5 0:819� 0:444 0:953� 0:113
DATGAN pre-LSTM 0:147� 0:220 661:8 � 273:6 498:9 � 197:0 0:906� 0:222 0:971� 0:071

Table 1: Statistics for the different models (average over all variables)
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Continuous Categorical
TGAN 0:631� 0:146 0:044� 0:021

CTGAN 0:221� 0:027 0:181� 0:117

DATGAN post-LSTM 0:899� 0:265 0:040� 0:020

DATGAN pre-LSTM 0:578� 0:084 0:039� 0:019
Table 2: Comparison of the SRMSE values for the continuous and the categorical variables

5.2 Sensitivity analysis on the DAG

We have shown that the DATGAN with a complete DAG such as the one given in Figure 5 leads to a more accurate
synthetic dataset. However, we want to know the impact of the DAG on the results. It would not make sense to generate
a DAG that is only comprised of nodes. In addition, the TGAN corresponds to a DATGAN with only one edge exiting
and entering each node. We can, thus, already conclude that a complete DAG leads to better results. However, it is
interesting to investigate the effect of the transitive reduction on the DAG in Figure 5. Figure 8 shows the same results
as Figure 7 for the two DATGAN models with the reduced DAG. Interestingly, the DATGAN post-LSTM has better
results with this simplified graph, while the DATGAN pre-LSTM shows worse results. Table ?? confirms these results
with the other statistics. These results are most likely due to the fact that removing some of these edges made the
DATGAN post-LSTM a lot simpler and easier to train, thus achieving better training status. However, none of these
models can generate better results than the DATGAN pre-LSTM with the complete DAG. We, thus, recommend the
user to create a graph as complete as possible and use the DATGAN pre-LSTM.

(a) DATGAN post-LSTM (b) DATGAN pre-LSTM

Figure 8: Frequency and SRMSE for the two DATGAN with transitive reduction

SRMSE RMSE MAE R2 Pearson
DATGAN post-LSTM 0:212� 0:364 776:5� 511:0 557:4� 270:5 0:819� 0:444 0:953� 0:113

DATGAN post-LSTM (trans. red.) 0:175� 0:273 732:3� 357:8 553:2� 273:2 0:845� 0:355 0:958� 0:100

DATGAN pre-LSTM 0:147� 0:220 661:8� 273:6 498:9� 197:0 0:906� 0:222 0:971� 0:071

DATGAN pre-LSTM (trans. red.) 0:174� 0:236 876:0� 406:6 654:3� 285:8 0:857� 0:332 0:960� 0:096

Table 3: Statistics for the different models (average over all variables)
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