arXiv:2103.04854v1 [cs.Al] 8 Mar 2021

Injecting Knowledge in Data-driven
Vehicle Trajectory Predictors

Mohammadhossein Bahari Ismail Nejjar Alexandre Alahi

Ecole polytechnique fédérale de lausanne (EPFL)
mohammadhossein.bahari@epfl.ch

Abstract

Vehicle trajectory prediction tasks have been commonly tackled from two distinct
perspectives: either with knowledge-driven methods or more recently with data-
driven ones. On the one hand, we can explicitly implement domain-knowledge
or physical priors such as anticipating that vehicles will follow the middle of the
roads. While this perspective leads to feasible outputs, it has limited performance
due to the difficulty to hand-craft complex interactions in urban environments.
On the other hand, recent works use data-driven approaches which can learn
complex interactions from the data leading to superior performance. However,
generalization, i.e., having accurate predictions on unseen data, is an issue leading
to unrealistic outputs. In this paper, we propose to learn a "Realistic Residual
Block" (RRB), which effectively connects these two perspectives. Our RRB
takes any off-the-shelf knowledge-driven model and finds the required residuals
to add to the knowledge-aware trajectory. Our proposed method outputs realistic
predictions by confining the residual range and taking into account its uncertainty.
We also constrain our output with Model Predictive Control (MPC) to satisfy
kinematic constraints. Using a publicly available dataset, we show that our method
outperforms previous works in terms of accuracy and generalization to new scenes.
We will release our code and data split here: https://github.com/vita-epfl/RRB.

1 Introduction

While driving, humans have this powerful capability to anticipate other drivers’ decisions. Similarly,
an autonomous vehicle should have the same prediction capability to safely navigate alongside human
drivers. Some researchers addressed the vehicle trajectory prediction task, also known as microscopic
traffic modeling, by building hand-crafted functions based on the available domain-knowledge to
model average driving behaviors [28 [11} 52} 10} 9} 56]. These methods are interpretable and usually
lead to a set of feasible predictions. However, they have limited performance since they not only miss
non-average behaviors, but also are not able to model complex interactions. Conversely, recent works
solely rely on experience, i.e., learning from data, mostly using neural networks [S9} 55} |1} 12} 32, 150].
Using large amount of data helps these methods to achieve accurate predictions without explicitly
modeling the domain-knowledge. However, their predictions are not essentially realistic (on-road)
and in some cases, even counter-intuitive. Moreover, they are prone to overfitting on the training data
or poor performance on out-of-distribution data. Combining the domain-knowledge and the data will
benefit from the strengths of both approaches and avoid their shortcomings.

We argue that driving is a skill learned from domain-knowledge and experience. The former is
typically driven by physical constraints such as respecting road constraints or avoiding collisions.
The later is driven by social conventions e.g., the way drivers interact with each other or the safe
way to enter a roundabout. Consequently, learning to predict vehicle trajectories can be re-framed as
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Figure 1: Illustration of our Realistic Residual Block (RRB) model. The knowledge-based model
generates a scene-compliant trajectory (yellow dots) which could not effectively account for other
agents, hence, is too conservative. Our data-driven RRB improves the prediction (purple dots) by
adding confined residuals conditioned on other agents in the scene (illustrated by the arrows). The
blue region shows the physically-constrained output space for our RRB predictions.

learning to combine both knowledge-driven and data-driven methods. Human’s ability to employ
both knowledge and data is not specific to driving. Researchers believe that humans learn rich
representations (we refer to as knowledge) as well as patterns from observed examples in everyday
life [34]]. This allows them to learn from fewer examples and to generalize to new conditions [33]].

A popular way of adding domain-knowledge to the neural network is by adding constraints to the
problem and optimizing the network under these constraints. Authors in [42] proposed a road-loss
which can be interpreted as an approximation of the scene constraint in order to avoid off-road
predictions. However, directly optimizing the model under constraints makes the optimization
difficult and leads to sub-optimal results [17, |44]].

There exist two main challenges towards creating a knowledge-driven and data-driven model. First,
the combined model should be differentiable so that the data-driven part can be trained. This means
that the integration needs careful design as the knowledge-driven part of the model usually is not
differentiable. The second challenge is to preserve the benefits of both worlds after merging them
i.e., the final output should be realistic despite the fact that neural network might generate unrealistic
outputs.

In this work, we address the aforementioned challenges. In the proposed approach shown in figure|[T}
the knowledge-driven (KD) trajectory is achieved by any knowledge-driven model. The KD output is
then taken as input by our Realistic Residual Block (RRB) and the residuals required to be added to
KD trajectory are found. In other words, the KD trajectory estimates coarse-grained behaviors based
on the common driving performances while the residuals address fine-grained behaviors coming
from non-modeled social interactions in KD trajectory as well as the long-tail of performances.
This structure allows imposing knowledge by any function while allowing the residual block to be
trainable. Moreover, in order not to diminish the feasibility of KD prediction, we can physically
constrain the output of our RRB (i.e., the allowed feasible offset) and leverage its uncertainty in the
combination. Hence, our RRB uses a physically-constrained Inverse-variance weighting approach to
add feasible and confident residuals to the KD trajectory. We finally constrain the final output with
Model Predictive Controller (MPC) to ensure kinematic-feasibility of predictions.

The contributions of this work can be summarized as: (1) proposing a Realistic Residual Block (RRB)
as an effective way of leveraging both knowledge and data in vehicle trajectory prediction. Our RRB
complements the knowledge-driven output with realistic and confident outputs. (2) Using Model
Predictive Controller (MPC) to bring kinematic constraints to the vehicle trajectory prediction task
with latent control variables. (3) Demonstrate the generalization of our approach to new scenes and
the multimodal case.

2 Related Work

Vehicle trajectory prediction: Pioneering works addressed vehicle trajectory prediction problem by
means of knowledge-driven methods. Researchers in [11]] used Kalman filter [24]] to predict vehicle



future trajectory. In order to incorporate scene information, [60] proposed associating vehicle’s
positions with the lanes of the road. Vehicle-vehicle interaction is addressed in [52] to predict the
longitudinal motion of a target vehicle. In [56], an asymmetric optimal velocity model is presented to
capture the asymmetry between acceleration and deceleration and [28]] studied lane change decision
empirically. On the other hand, many researchers tackle the problem by leveraging data-driven models.
A deep belief network is proposed in [55] to model lane-changing behavior. Authors in [59, [14]]
model lane-changing and car following behaviors simultaneously by employing long short-term
memory (LSTM) neural networks and convolutional social pooling respectively. Authors in [47] used
an attention module to incorporate scene features into an LSTM model. An inverse optimal control
(I0C) ranking module is used in [36] to determine the most likely hypotheses incorporating scene
context and interactions. Moreover, some researchers addressed the multimodal nature of human
behavior prediction by using Winner-Takes-All (WTA) loss method [[13,41]]. While all mentioned
works rely on knowledge or data exclusively, our solution benefits from both approaches.

Injecting domain-knowledge to neural networks: Knowledge has been incorporated into the
non-data-driven models to preserve realisticity and improve generalization. In [3| 51]], space-time
constraints were employed to confine the outputs to the feasible range. Researchers have proposed
different means for incorporating domain-knowledge into neural networks [54, |6l |45]]. It can be
injected into neural networks by designing specialized network structures [16} [18]. As an example,
Convolutional neural network (CNN) was created by changing multilayer perceptron (MLP) networks,
considering image specifications [35]. Another approach for fusing neural networks with domain
knowledge is to modify the learning algorithm. This can be done by exposing knowledge-driven
negative samples to the model [40] or adding constraints to the outputs of the network [45]. Other
approaches are adding knowledge to the training data [26]] and post-processing [15]. From another
perspective, some researchers used neural networks to address the imperfection of knowledge-driven
models. They used knowledge-driven models to find biases of the data and the neural network
compensates the error by outputting required residuals. [57,49] predict residuals on top of a physics-
based robotic controller and [25] finds residual minimiser of numerically discretized differential
equations.

A key limitation in residual modeling is by adding neural network-based residuals, the physics-based
constraints, which are required for a realistic prediction, are hard to preserve [54]. In this paper, we
mitigate this limitation by confining the residual values. Moreover, we replaced naive addition of
residuals by variance-based integration methods.

In the context of vehicle trajectory prediction, previous works attempt to add scene knowledge by
adding penalty terms to the loss function. Researchers in [5] defined an on-road loss to keep the
predictions inside the road. The proposed loss requires the output to be an occupancy heatmap, which
is computationally expensive to achieve and also not compatible with most of the trajectory prediction
works [42]. Authors in [42] proposed an off-road loss defined as the euclidean distance between each
predicted waypoint and the nearest drivable point to penalize off-road predictions. Their experiments
show that although off-road predictions are reduced, the performance deteriorates in terms of /5 loss.
This is due to the fact that direct optimization of the model with constraints which are non-linear with
respect to model parameters is difficult and leads to sub-optimal solutions [[17, 44]. In this paper, we
propose a new method for adding scene knowledge to the model.

Kinematically-feasible predictions: Kinematic constraints are physical rules that need to be satisfied
for a realistic vehicle prediction. Authors in [12]] showed that the predictions of the neural network
model were not essentially kinematically-possible. Researchers in [[12}[38]] solved the problem by
adding the bicycle model [30] as a layer to the model. The network estimates control commands
instead of coordinates and the kinematic layer converts them to a feasible trajectory. Despite the
effectiveness of this approach, in many cases, it cannot be employed as most of the off-the-shelf
models predict coordinates rather than control commands. Moreover, having control commands as
the outputs prevents any further knowledge injection to the model’s output, since any changes to the
predicted trajectory can lead to a non-kinematically-feasible trajectory. In contrast, we propose using
a Model Predictive Controller (MPC) to satisfy kinematic constraints. This allows the outputs to be
in the coordinate format while the control commands are latent variables and mitigates the mentioned
problems. Model Predictive Controller is commonly used for planning (60, [7, 27, 23} |4]]. In this work,
we show how it can also be used for the vehicle trajectory prediction task.
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Figure 2: Our proposed Realistic Residual Block (RRB) takes as input (i) the state of the scene,
S;, and (ii) the knowledge-driven prediction, y*?. The Residual estimator block builds physically-
constrained residuals y"**. Then, the IVW-addition block merges y*¢ and y"** by Inverse-Variance
Weighted sum and forms y"°f according to equation 3| Finally, Model Predictive Controller (MPC)
satisfies the kinematic constraints.

3 Proposed Method

Humans have a clear understanding of the domain-knowledge while driving e.g., where the drivable
and non-drivable areas are. Moreover, they learn specific aspects of driving by experience e.g.,
interacting with other agents. However, benefiting from the domain-knowledge and learning from
experience simultaneously is challenging. We address the problem by proposing a Realistic Residual
Block (RRB). RRB finds data-driven residuals conditioned on the knowledge-aware prediction. The
output is a physically-constrained Inverse-Variance Weighted IVW) sum of the knowledge-driven
(KD) trajectory with the residuals. Finally, Model Predictive Control (MPC) is incorporated to satisfy
kinematic constraints. Figure [2] shows a high level picture of our proposed model. We will explain
each part of the model in the following subsections.

3.1 Problem Formulation

The goal of our model is to predict future positions of a vehicle given its history and surroundings.
Therefore, the state of the scene input to the model at time ¢, .S¢, consists of an image of the scene and
histories of ego-vehicle and other vehicles in the scene. By ego-vehicle, we refer to the vehicle whose
future is predicted. The observation vectors for ego-vehicle and other vehicles’ history comprises of
T, observed 2D coordinates of them in the world space. Without loss of generality, each time, one of
the agents in the scene is taken as the ego-vehicle. At time ¢, the model predicts y:ef for the next 7},
prediction frames as a Gaussian distribution with mean p and variance o as:
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Note that we indicate the sequence of values in a bold text. We omit the index ¢ in the rest of the
paper for simplicity.

3.2 Knowledge-aware Prediction

Our proposed method is flexible in the choice of the knowledge-aware model. Hence, any off-the-
shelf knowledge-driven prediction model can be employed to create the KD trajectory. In section[4.5]
we show the robustness of our RRB to different knowledge-driven models. In this work, we make the
KD trajectory by utilizing the scene knowledge, the most influential domain-knowledge in vehicle
prediction task. Inspired by [60], we use the lanes of the road to form the scene-compliant trajectory
y*?. To have a probabilistic framework, we take KD trajectory as the mean of a Gaussian distribution
with fixed variances which are approximated by the statistics of the training data.

3.3 Realistic Residual Block

While KD trajectory reflects average behaviors with respect to the scene, our proposed data-driven
Realistic Residual Block learns the missing complex interactions. The architecture of RRB is depicted
in Figure[3| The learned residuals are first confined and then merged with the KD prediction by the
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Figure 3: The "Residual estimator’ block inside our RRB. Three encoders are employed to embed

the history, the interactions and the KD trajectory. The residual decoder integrates the features

and estimates the residual distribution. The mean of the distribution is confined to C, a real-word

extracted parameter.

IVW-addition block. This will lead to feasible and confident predictions. Both Residual estimator
and integration mechanism are explained in the following subsections.

3.3.1 Residual Estimator

Our Residual estimator’s structure is shown in Figure 3] The inputs are the KD trajectory and .S,
consisting of the image of the scene and history of agents in coordinate format. The history of
ego-vehicle is processed by the history encoder to find the driver’s intention leading to the feature
e!’’st_ We model the interaction among agents in a simple yet effective approach. Inspired by how
vehicles interact in the real-word, our preprocessing eliminates non-interacting agents in the scene.
In contrast with most previous works [[1,150] which consider surrounding agents, it excludes all the
agents behind the vehicle as usually, vehicles interact with the agents in front. Moreover, as only the
closest vehicles can impact the driver’s behavior, it only preserves a set of closest vehicles and passes
them to the interaction encoder model to get the interaction features e/™. Our experiments show the
effectiveness of the model in learning interactions between agents. The KD trajectory y*¢, is encoded
into the vector €*? by the KD encoder network. All the encoders are feed-forward networks with
ReLU non-linearities. Finally, the residual decoder estimates the residuals given the concatenated
features as:
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where ("%, 0"¢%) are parameters of the Gaussian distribution y"** and MLP is a multilayer per-
ceptron network parameterized by W"¢°. Note that we bound the range of /i"¢° to (—1, 1) by using
tanh activation function in the last layer. "¢* is the scaled version of 4"¢® by C' to adjust the max
feasible deviation from the center of the road. C' is a real-word extracted parameter which can be
adapted to each scene. In our experiments, we chose C' equal to the half of the minimum width of the
road in each scene.

3.3.2 IVW-addition

The merged trajectory y"*/ can be achieved by simply adding residual Gaussians to the KD Gaussian
prediction, referred to "A-RRB" baseline in Section @ However, adding uncertain residuals to the
KD trajectory can impair the KD predictions. To mitigate that, we utilize Inverse-Variance Weighting
(IVW) [8]] to scale residuals according to their uncertainties which results in the most certain output
(in terms of output variance) among all weighted averages [21]]. Hence, our goal is to find the weights
w, w such that each point on the merged trajectory shown in Equation has the minimum variance.

yref _ wykd + ﬂ)“(ykd + yres). (3)

Let’s represent y*? -+ y"¢* by y®¢ for brevity. The points on each trajectory are assumed temporally-
independent. Weight matrices have the form of w = diag(wy,ws), w = diag(w,, W) where w;, W;



are scalar values. Note that y*? is a prior for y"** and hence they are not independent. The problem
formulation is as follows:
argmin(oy;”, o557),
w,w

subject to: oo = wokwT + woa” + 2wo
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where o%¢, 7%? are the covariance matrices and o is the cross-covariance matrix. Solving the
constraint problem using Lagrangian multipliers leads to the following solution:
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3.4 Multimodal Prediction and Loss Function

Our approach can easily be extended to a multimodal predictor using Winner-Takes-All (WTA) loss
(also known as oracle loss) approach [46]. To do so, the knowledge-aware model should generate
multiple plausible future trajectories. RRB takes the KD predictions and finds the associated required
residuals. Finally, the loss will be calculated, considering the closest mode to the ground truth.
Minimizing the log-likelihood will lead to the following loss function:
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where N and M are number of samples and modes respectively, 1 is the indicator function, and m*
is the closest output to the ground truth in terms of /5 distance. Note that for the single modal case,
the equation holds with M = 1.

3.5 Model Predictive Control

To add kinematic feasibility, in contrast with the previous works [12} 38]] which utilize a kinematic
layer after computing control commands, we employ Model Predictive Control (MPC). This gives
the model the flexibility to estimate the positions instead of finding the control commands which
is beneficial in adding the domain-knowledge. MPC minimizes its cost function subject to a set
of constraints. The state parameters for agent ¢ in time ¢ is sy = [2¢, Y¢, ¢+, v¢] Which consists of
coordinates, orientation and speed. We denote control parameters acceleration and the steering angle
by u; = [at, ;). The dynamics of the system is formulated using bicycle model Fy;. [30] which is
shown to be sufficient for normal manoeuvres [31]. Then, the MPC solves the following optimization
problem:

T,
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subject to: s¢11 = Fpic(5t,Ut), S0 = Sinit, Umin < Ut < Umaz,

where yref is the reference trajectory, A is a hyper-parameter and w5, Umq, are minimum and
maximum feasible control values respectively.

4 [Experiments

We evaluate our RRB against other baselines to test the following hypotheses: (1) RRB brings
the advantages of both knowledge-driven and data-driven models thus, outperforms both types of
models, (2) RRB structure merges knowledge-driven and data-driven models better than other fusion
techniques, (3) adding MPC makes outputs more realistic by satisfying kinematic constraints, (4) our
trained RRB can improve performance of different knowledge-driven models without the need for
fine-tuning, (5) IVW-addition and residual confinement are essential parts for more realistic outputs.



4.1 Dataset

We evaluate the proposed method on Interaction dataset [58]]. It is a large-scale real-world dataset
which consists of top-down scenes from intersections, highways, and roundabouts. The data is
collected from three different continents (North America, Asia and Europe). It includes locations of
dynamic agents such as vehicles and pedestrians for each frame of the 10 Hz downsampled video. The
dataset also provides the static context of the scene. Interaction dataset is challenging as it includes
interactions between vehicles, different environments, and potentially multiple plausible predictions.
We used the same settings as [38]]. The observation and prediction lengths indicate the number of
frames used to represent the past states and to be predicted, respectively. We have set observation
lengths equal to 5 frames (2.5 s) and and prediction length as 10 frames (5 s). The dataset includes
scenes with different numbers of samples. Hence, in order not to be overwhelmed by scenes with
large number of samples, we report the average of performance of a model on the three categories
regardless of the number of samples in each category. Moreover, to study the model’s generalization
power, we consider two scenarios: the first scenario is scene-overfitting, in which all scenes exist in
the training set, but 20% of data is kept for the test set. In this scenario the model should be able to
overfit on the scene and generalize on the interactions. We argue that to assess model generalization
in terms of scene perception, another scenario named scene-generalization is required. In this
scenario, the three following scenes, "’DR_USA_Intersection_MA’, ’DR_USA_Roundabout_SR’,
"DR_CHN_Merging_ZS’ are kept for the test set and the rest scenes are used in training. This
challenging scenario reveals the performance of the models in a new environment.

4.2 TImplementation Details

The models are trained for 50 epochs with batch size of 32. We employed Adam optimizer [29]]
with the initial learning rate of 0.001, which is decreased by half every 10 epochs. The model is
implemented using PyTorch [43]. Network’s building blocks are MLP networks with the following
hidden layers: History and interaction encoders have (32,32,64), KD encoder has (32,64) and the
decoder has (256,128,128,64) hidden layers.

4.3 Metrics and Baselines
The following metrics were used for the evaluation:

1. Average/final displacement error (ADE/FDE). Average displacement error (ADE) and Final
displacement error (FDE) are adopted as two common evaluation metrics. In the multimodal case,
similar to the previous works [20, 37], the closest mode to the ground truth is chosen.

2. Road violation (RV). Inspired by [42], we define this metric as the percentage of average number
of points predicted in the off-road area. For the multimodal case, we average RVs for the modes
weighted by their probability. RV measures the feasibility of predictions concerning the scene.

3. Cross track (CT). Cross track is the distance between the actual destination and the final point
on the retimed predicted sequence by the ground truth speed profile [19]. In other words, cross
track is the distance between the actual destination and the final point on the retimed predicted
sequence. Cross track metric is able to express the spatial effectiveness of the model, excluding
temporal aspects.

To demonstrate the effectiveness of RRB, we compare the results with the following baselines:

Naive baselines: We used Kalman filter as a linear prediction (Lin). We also report Constant velocity
(CV) [48]] as another naive baseline.

Knowledge-driven baselines: In order to form the KD trajectory explained in section we utilize
different strategies to predict vehicle velocity. We name Constant velocity strategy [48] as KD1, and
Leader follower [52]] which tackles interaction between agents as KD2.

Data-driven baselines: For the data-driven models that address agent-agent interactions, we report
Social LSTM (S-LSTM) [1] , Social Attention (S-ATT) [53] (numbers reported from [39]), and
Social GAN (S-GAN_M) [20]. We report Social WaGDAT (S-WaGDAT_M) [39] (numbers reported
from their paper) as a state-of-the-art work that models both scene and interactions. We also report the
performance of our encoder-decoder neural network (EDN) similar to Figure 3| trained with equation



Table 1: Quantitative results of baselines in scene-generalization scenario. ADE/FDE and CT are
reported in meters. The lower the better for all metrics.

Models | Scene-generalization

| ADE/FDE RV~ CT
Naive Lin 413/877 34 3.6
CV [48] 3.12/7.34 24 3.19
Knowledge- KDI [48,60] 292/662 0  1.87
driven KD2 [52.60] 285/655 0 174
S-LSTM [] 285/7.17 72 426
Data-driven S-GAN_M [20] 234/582 52 571
EDN 278167 1 34
VIl 252/627 3 29
Mixed VI2 262/638 2 232
. Zache RL [42] 256/640 9  3.15
Ppr S RRB 244/604 0 198
RRB_M 2.15/508 0  1.81
RRB_M+MPC 213/502 0 181

Table 2: Quantitative results of baselines in scene-overfitting scenario. ADE/FDE are in meters.
Models | ADE/FDE
CV [48] 2.80/6.59

KD1 [48|160] 2.59/6.00
KD2 [52,160] 2.53/5.83

S-LSTM [1]] 2.33/4.52
EDN 1.81/4.05
S-ATT [53]] 2.29/4.25

S-GAN_M [20] 2.12/4.20
S-WaGDAT_M [39] | 1.62/3.35
RRB_M 1.49/3.68

[6] as the loss function. We replaced the knowledge-driven model in Figure [3] with a convolutional
neural network to represent a fully data-driven model. Note that the multimodal baselines’ names
end with ’_M’.

Mixed baselines: We implemented the road loss (RL) [42] to impose the scene constraint to the
model. It adds the road loss to the NN model to help it learn the drivable and non-drivable regions. We
also consider two alternatives to the RRB model. The first one is to use a Variance-based Integration
(VI1) between the KD1 and data-driven prediction EDN by employing IVW method [§]]. Note that
this is equivalent to using Bayes rule while KD output is taken as the prior and EDN as the likelihood.
The second approach is to replace the KD variance in VI1 by a fixed hyperparameter (VI2).

Our proposed solution is RRB model (RRB) explained in section which uses KD1 method.
We express the effectiveness of our method on other KD predictions in the ablation study. We
also demonstrate the performance of our model in the multimodal case (RRB_M) with 2 modes
and when constrained by the MPC (RRB_M+MPC). Moreover, in the ablation study, we report
the performance of RRB while IVW-addition is replaced by simple addition (A-RRB) and also a
non-confined RRB model (NC-RRB).

4.4 Results

Table[T| provides the results in scene-generalization scenario. Knowledge-driven models outperform
other models in terms of RV and CT metrics since they can perceive scene well and also generalize to
new environment. The data-driven approaches have better ADE/FDE as they can learn interactions
from data. Although EDN performs well in scene-overfiting scenario (shown in Table [2)), it fails
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Figure 4: Qualitative results of different baselines. Given the scene and history (Hist), the models
predict the future positions. The ground truth (GT) is shown in black. The encoder-decoder neural
network (EDN) captures the interactions while is prone to create unrealistic outputs shown in first
row. Knowledge-driven (KD) model has realistic predictions as it uses the scene knowledge but
cannot reason about the interactions among vehicles as shown in the second row. Our proposed RRB
predicts realistic and interaction-aware outputs.

in generalizing to the new environment leading to high RV and CT values. The large gap between
the performance of data-driven methods in scene-overfitting and the scene-generalization scenarios
reveals the limited generalization power of solely data-driven approaches, which can be mitigated by
leveraging domain-knowledge. The proposed RRB model outperforms knowledge-driven models
as it learns vehicle-vehicle interactions from data and goes beyond average behavior. Compared to
the data-driven models, RRB can better generalize to new environments due to utilization of the
scene knowledge. Compared with the mixed approaches,RRB outperforms both VI1 and VI2 because
as opposed to them that merge two independent models, RRB generates residuals conditioned on
KD output. Our method has zero RV because of the realistic residual scale which prevents off-road
predictions. Note that RL could not improve EDM performance as it is very sensitive to the choice of
hyperparameters and has many local minima.

The possibility of having multiple outputs is investigated by increasing the number of modes of RRB
model to 2. The results approve that RRB_M is able to successfully capture multiple modes while it
provides the required residuals for each mode individually leading to a multimodal knowledge-aware
model. MPC is employed in RRB_M+MPC in order to ensure the kinematic-feasibility of the outputs.
The results show that kinematic constraints are satisfied without loss of performance. Hence, the
model better approximates human behavior.

The results of previous works in scene-overfitting scenario are reported in Table 2} Our RRB_M
model outperforms previous works and especially the recent S-WaGDAT_M [39] model which
expresses the ability of the model to learn from data. Note that RRB_M could successfully improve
performance of KD1 by adding the residuals.

We visualize the outputs of different models in Figure @ The first row images visualize the cases
where KD prediction is not accurate because of the missing interactions. RRB complements KD
trajectory by accounting for interactions in the residuals. The second row images emphasize on
realisticity of the predictions. Although EDN can reason about interactions, it can have unrealistic
predictions with respect to the scene especially in a new environment. However, the realistic elements
of RRB preserve the feasibility of the final output as shown in all images.



Table 3: Results of the two ablation studies on robustness and realistic elements of the proposed RRB

(a) Assessing the robustness of RRB with respect

to different knowledge-driven models. RRB is not (b) Ablation study on the two realistic elements
trained in this experiment but we used the fixed of the proposed RRB, residual confinement and
model in Table IVW-addition block.
Models Scene-generalization Models Scene-generalization
ADE/FDE RV CT ADE/FDE RV CT
Lin 4.13/877 34 3.6 NC-RRB 228/5.59 10 194
Lin+RRB  3.11/7.50 2 3.59 A-RRB  247/6.08 3 2.07
KD2 2.85/655 0 1.74 RRB 244/6.04 0 1.98

KD2+RRB 2.49/6.14 0 2.04

4.5 Ablation Study

In this section, a set of ablation studies are performed to shed light on the effectiveness of different
parts of the model. First, we want to study the robustness of RRB concerning the different knowledge-
driven models. We report two knowledge-driven methods in Table|l|and report the RRB performance
while KD1 was employed. Without retraining the model, we replaced KD1 with Lin (Lin+RRB)
and KD2 (KD2+RRB) models. The results are expressed in Table where the performance of
the knowledge-driven model is reminded in the parenthesis. It shows that RRB could successfully
improve the performance of the models in all metrics. This experiment shows the robustness and
effectiveness of the proposed RRB for different KD trajectories.

The second ablation study aims at assessing realistic elements of RRB which are the realistic
parameter ¢ and IVW-addition. We trained the model without the limitation on the range of RRB
as non-confined RRB (NC-RRB). In addition, IVW-addition can be replaced with simply adding
the residuals to the KD prediction which is reported as A-RRB. This is equivalent to setting w =
diag(0,0),w = diag(1,1) in Equation[3] The results are expressed in Table[3b] Non-confined model
has more freedom in improving the KD trajectory hence achieves a better ADE/FDE. But it is prone
to unrealistic predictions with large RV error. Also, neglecting uncertainties in A-RRB will increase
RV and CT as the network utilized uncertain residuals. These experiments approve that the added
elements play important roles in having realistic predictions.

5 Conclusions and Future Work

In this paper, we addressed the safety-critical task of vehicle trajectory prediction (also known as
microscopic traffic modeling). We argue that neither solely knowledge-driven nor purely data-driven
models can provide generalizable and accurate predictions. Given a set of experiments on a real-world
dataset, our experiments demonstrate that knowledge-driven models have inferior performance but
can generalize to new scenes. On the other hand, although data-driven models provide more accurate
predictions, they tend to have unrealistic predictions in new scenes. Our proposed solution, named
RRB, effectively merges knowledge-driven with data-driven models by finding residuals required
to be added to the knowledge-driven prediction in order to model human stochastic behavior. It
leverages physically-constrained Inverse-variance weighting approach to build realistic and confident
residuals. To further make the predictions realistic, we employed a Model Predictive Control (MPC)
to bring kinematic constraints to the final output. RRB outperforms all other counterparts in accuracy
and generalizability. As future work, we will study the effectiveness of RRB when employing more
complex knowledge-driven methods on a variety of agents, including pedestrians. Pedestrians are not
constrained to the roads but respect specific social rules. We can take the existing knowledge-driven
models such as “Social force” [22]] as prior predictions and learn residuals required to better capture
pedestrians dynamics. Moreover, our approach can help in complex multi-agent environments where
there exist vehicles, pedestrians and cyclists each one with its own constraints and dynamics. In such
scenarios, RRB can benefit from using strong knowledge-driven priors for each category and provide
safe and accurate data-driven residuals. We hope that our work will pave the way to more methods
combining the best of knowledge and data driven approaches.
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