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Abstract

Increasing environmental concerns direct people to more sustainable solutions in all fields.
In transportation, one of those solutions is vehicle sharing systems. Although these systems
are convenient for the users, it creates many operational challenges, such as imbalance of the
vehicles throughout the service area. Usually, staff-based rebalancing operations are conducted
to maintain the balance, thus to provide higher level of service. These operations become
difficult to solve with the increasing number of stations. Therefore, some heuristic approaches
such as clustering are used to split the problem into smaller sub problems. This paper focuses
on bike sharing systems with static rebalancing operations. Two multi-objective mathematical
models are specifically crafted for the rebalancing-oriented clustering problem. These models
and two agglomerative hierarchical clustering approaches are compared with respect to resulting
cost of rebalancing operations.
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1 Introduction

The increasing environmental concerns triggered the sectors to seek more environmentally
friendly options. According to Pachauri et al. (2014), the transportation sector is responsible for
the 14% of the global greenhouse gas emissions. Therefore, we see that the experts have directed
towards more sustainable solutions such as carbon neutral fuel and electric cars. Ride-sharing
and vehicle sharing systems (VSSs) are also other solutions due to reduced car ownership.

A VSS offers short-term vehicle rental to its users. The users can unlock the vehicles using an
RFID card or a mobile application. The trip length and duration are the main factors that affect
the price of the trip. Additional to the environmental benefits that VSSs bring, it also offers
financial advantages and convenience since the maintenance and insurance costs are covered by
the VSS operator.

The first example of VSSs, that was initiated in Zurich, date back to 1940s. A car sharing system
(CSS), Selbstfahrergemeinschaft, was used starting from 1948 (Shaheen et al., 1998). In 1965,
in the Netherlands, an organization named Provo introduced the first bike sharing system (BSS).
However, since this initiative was not profit oriented and the bikes were not locked, the system
was abused and the bikes were stolen (Shaheen et al., 2010). Thanks to the improvements in
technology and also the opportunity of making business, the number of bike sharing systems
considerably increased from 13 in 2004, to 855 in 2014 (Fishman, 2016). An analysis on the
five different stages of the evolution of bike sharing systems can be found in Midgley (2011).

On the other hand, a VSS operator faces some challenges to provide satisfactory service to its
users. These include imbalance of vehicles, management of vehicles and parking spots, demand
forecasting and pricing strategies. The better these are addressed, the better pricing and service
the users get from the system. This also increases the revenue and level of service.

Although the vehicle types used in VSSs may differ, the VSS configurations can be analyzed in
the same way. The trip type can be either return trip or one-way. The former requires that the
vehicle is dropped to the same station that it was picked up. The latter is more flexible and allows
a user to park the vehicle anywhere designed in the city, regardless of the pick up station. This
brings up the problem of imbalance of vehicles throughout the service area. To overcome it and
provide a higher level of service, the operators use rebalancing operations to relocate vehicles
from overcrowded stations to those with a lack of vehicles. These operations can be user-based,
static staff-based, or dynamic staff-based. The static staff-based rebalancing takes place when
the system is closed or low in service, generally during the night, every day. The dynamic





          

rebalancing is continuously conducted during the system operation. The pricing can be done in
two different ways: fixed and dynamic. In fixed pricing, the trip duration and/or length are the
factors determining the price. In dynamic pricing, other factors such as origin, destination, and
time of the day, affect the price. Dynamic pricing is generally used for user-based rebalancing
operations by encouraging them to do unpopular trips. Finally, the parking organization in
VSSs can be analyzed under two: station-based and free-floating. In station-based systems
the users are required to park at some designated parking areas determined by the operator.
The free-floating systems are more flexible since the pick-up and drop-off locations can be any
parking spot in the service area.

In our previous work (Ataç et al., 2020), we deal with a one-way station-based BSS. In this
system static staff-based rebalancing operations are performed and fixed pricing is assumed. We
compare two extreme scenarios, one with known demand and the other with unknown, to find
the value of demand forecasting. The former assumes the Origin-Destination (OD) information
is perfectly known, whilst the latter does not have any information on OD-trips. We improve an
existing mathematical model for the rebalancing optimization from the literature and introduce
a discrete event simulator to assess the value of demand forecasting.

As the introduced mathematical model in Ataç et al. (2020) is intractable for large instances,
the analysis of the value of demand cannot be conducted in bigger systems. To overcome
this issue, we decide to disaggregate the system into smaller sub systems to enable solution
of the rebalancing optimization problem. Although this problem is studied in the literature
using traditional clustering methods, we could not find any works that investigate clustering
approaches with multiple objectives in this context. Therefore, in this paper, we develop two
multi-objective mathematical models for clustering BSS stations, and we utilize two clustering
methods from the literature, to compare and select the most proper clustering method.

The rest of the paper is organized as follows: Section 2 presents the literature review on
rebalancing operations and clustering approaches in BSSs. Afterwards, we introduce the
mathematical models for both rebalancing operations and the clustering in Section 3. The
experimental results done on two BSSs, namely nextbike Sarajevo, Bosnia and Herzergovina
and nextbike Berlin, Germany, are discussed in Section 4. Finally, in Section 5, we conclude the
paper and suggest possible future research directions.





          

2 State of the art

In this section, we briefly discuss the literature on rebalancing operations and station clustering.
We focus our review on the station-based BSSs. The reader may refer to Ataç et al. (2021) and
Laporte et al. (2018) for more thorough literature surveys in the VSSs.

The rebalancing operations in VSSs are proposed as a solution to balance the number of vehicles
throughout the service area according to the demand structure. The staff-based rebalancing
operations can be conducted at night or when the demand is low, i.e., static rebalancing (Raviv
et al., 2013, Dell’Amico et al., 2014, Schuijbroek et al., 2017, Pal and Zhang, 2017, Erdogan
et al., 2014), or during the system operation, i.e., dynamic rebalancing, (Pfrommer et al., 2014,

Boyaci et al., 2017). Some hybrid approaches also exist. For example, Nair and Miller-Hooks
(2011) present a methodology for static rebalancing, but they apply it four times a day to obtain
a closer application to dynamic rebalancing.

Raviv et al. (2013) consider a BSS with capacitated stations. The two mixed integer linear
programming (MILP) formulations, that solve the rebalancing optimization, are based on one-
commodity pick-up and delivery traveling salesman problem (1-PDTSP). Dell’Amico et al.

(2014) work on the same problem and propose four MILPs. Both works minimize the operating
costs and use valid inequalities to reduce the computation time. Raviv et al. (2013) also take
the user satisfaction, loading and unloading times into account. Ho and Szeto (2017) utilize
the arc-indexed formulation of Raviv et al. (2013) and revise it by adding station characteristic
constraints. Erdogan et al. (2014) introduce flexibility in the model by introducing demand
intervals. This way, they observe less computational complexity than 1-PDTSP. Shu et al. (2013)
use a network flow model for the BSSs with proportionality constraints to obtain the number of
trips supported, the initial allocation of bicycles at each station, the flow of bicycles, and the
bicycle utilization rate at each time period. This framework allows them to test the value of
rebalancing operations in the case study adapted from Singapore.

Heuristics are used for large size instances. These include tailor-made branch and cut algorithms
(Dell’Amico et al., 2014, Erdogan et al., 2014, Chemla et al., 2013b), Benders decomposition
(Erdogan et al., 2014), neighborhood search (Ho and Szeto, 2017, Cruz et al., 2017), and
clustering based approaches (Schuijbroek et al., 2017, Liu et al., 2016, Boyaci et al., 2017, Feng
et al., 2017, Ma et al., 2019, Lahoorpoor et al., 2019). For instance, Cruz et al. (2017) propose a
hybrid iterated local search based heuristic combined with randomized variable neighborhood
descent. They show that their approach outperforms the previous methods by Chemla et al.

(2013b) and Erdogan et al. (2014).





          

Schuijbroek et al. (2017) develop a mixed integer programming (MIP) and a constraint pro-
gramming (CP) approach for the whole BSS to solve the rebalancing optimization. Then, they
propose another MIP to cluster the stations and a heuristic that solves the rebalancing MIP for
each cluster. The proposed MIP for clustering aims at minimizing the makespan of rebalancing
operations. By using a Maximum Spanning Star approximation, they can solve the clustering
problem in real time. Among the three methodologies, they see that the clustering based heuristic
outperforms the other two. Liu et al. (2016) cluster the stations by selecting K stations as cluster
centers and assign each station to the closest center. Then, the solution is modified by taking
into account the rebalancing vehicle capacity. The routing is then solved for each cluster by
the proposed mixed integer non linear programming (MINLP) model. Boyaci et al. (2017)
introduces a clustering algorithm that is similar to k-medoid since they aim to minimize the
dissimilarities within clusters.

In Feng et al. (2017), the authors examine both k-means and hierarchical clustering in order
to analyze the BSS stations of Vélib’ system in Paris. They conclude that there exists four
main station clusters, which they name as employment, residential, starving, and overfed. Ma
et al. (2019) and Lahoorpoor et al. (2019) cluster the BSS stations by their spatial and temporal
characteristics. Among hierarchical clustering, expectation maximization clustering, and K-
means clustering, Ma et al. (2019) observe that the latter shows the best performance for the case
of Ningbo, China. They claim that the resulting seven clusters show different characteristics in
terms of people’s travel habits and land use around the stations. Lahoorpoor et al. (2019) build a
similarity matrix based on the number of trips between each station. This information helps to
identify the correlated stations by agglomerative hierarchical clustering using Ward linkage.

All in all, optimization models are a strong tool to solve the rebalancing problems. Regarding
the large size instances, we see that decomposition methods, heuristics, and clustering based
approaches are used.

3 Methodology

In previous work, we propose a methodological framework to assess the value of demand
forecasting (Ataç et al., 2020). The two main modules, namely simulation and optimization,
help us to compare two extreme scenarios, the optimization of rebalancing operations with and
without the knowledge of the future demand. However, with the increasing problem size, this
rebalancing optimization becomes intractable in real time. Clustering of VSS stations is one of
the methods used in the literature to reduce the computational complexity by splitting the main





          

Table 1: Notation for the model given by (F1M)

Sets and indices
N number of stations (i, j ∈{1,...,N})
V set of stations from 0 to N, where 0 is the depot
Parameters
m the number of relocation vehicles available
Q the capacity of each relocation vehicle
ci j the cost of traveling from i to j, where i, j ∈N
qi the demand at each station, where i ∈V
qCount number of stations involved in the optimization problem
Decision variables
xi j 1 if arc (i, j) is used by a relocation vehicle, 0 otherwise, where i, j ∈ V

θ j the load of a vehicle after it leaves node j, where j ∈ V

ui auxiliary decision variable for the MTZ constraints

problem into smaller sub problems. Subsequently, the rebalancing problem is solved separately
in each station cluster. Therefore, this work addresses two agglomerative hierarchical methods
and two multi objective clustering approaches, that cluster the BSS stations.

This section presents the two sub modules that we use in this paper, i.e., rebalancing optimization
(Section 3.1) and clustering (Section 3.2). The rebalancing optimization module determines the
routing for the rebalancing vehicles whilst the clustering module deals with station clustering.
These two modules are used together to compare the results of different clustering approaches.

3.1 Rebalancing optimization

As discussed in Section 2, the optimization programs are widely used to find the routing for
rebalancing operations in BSSs. As this paper considers a one-way station-based BSS that
adopts static rebalancing, we decide to use and improve one of the MILP formulations from
Dell’Amico et al. (2014). The original model (F1) can be found in Appendix A.

We give the modified model as (F1M) and the related notation in Table 1. The ci j corresponds
to the length of the shortest path between station i and station j. The cost from the depot to
and from any station is assumed to be zero. qi can take any integer value. Since the model is





          

solved for the subset of stations that show non zero demand as in Liu et al. (2016), we introduce
another parameter qCount, that gives the number of stations with non zero demand.

As (F1) includes exponential number of subtour elimination constraints (SECs), we propose
a modification to this formulation by replacing the classical SECs by Miller-Tucker-Zemlin
(MTZ, Miller et al. (1960)) constraints, i.e., (6) and (7) in Ataç et al. (2020). Constraints (8)
are also added to prevent the subtours to the same station. Also the valid inequalities ((13) and
(14)) proposed by Dell’Amico et al. (2014) are added to the model. These inequalities cut the
solutions where a rebalancing truck going through three nodes which have a total supply/demand
larger than the capacity of the vehicle, where

S (i, j) = {h ∈ V \ {0}, h , i, h , j : |qi + q j + qh| > Q}.

Given these, (F1M) finds the routing plan for the relocation vehicles.

(F1M) min
∑
i∈V

∑
j∈V

ci jxi j (1)

s.to
∑
i∈V

xi j = 1 ∀ j ∈ V \ {0} (2)∑
i∈V

x ji = 1 ∀ j ∈ V \ {0} (3)∑
j∈V

x0 j ≤ m (4)∑
j∈V\{0}

x0 j −
∑

j∈V\{0}

x j0 = 0 (5)

ui − u j + N ∗ xi j ≤ N − 1 ∀i, j ∈ V \ {0} (6)

1 ≤ ui ≤ N − qCount ∀i ∈ V (7)

xii = 0 ∀i ∈ V (8)

θ j ≥ max{0, q j} ∀ j ∈ V (9)

θ j ≤ min{Q,Q + q j} ∀ j ∈ V (10)

θ j − θi + M(1 − xi j) ≥ q j ∀i ∈ V, j ∈ V \ {0} (11)

θi − θ j + M(1 − xi j) ≥ q j ∀i ∈ V \ {0}, j ∈ V (12)

xi j +
∑

h∈S (i, j)

x jh ≤ 1 ∀i, j ∈ V \ {0}, h ∈ S (i, j) (13)∑
h∈S (i, j)

xhi + xi j ≤ 1 ∀i, j ∈ V \ {0}, h ∈ S (i, j) (14)

θ0 = 0 (15)

xi j ∈ {0, 1} ∀i, j ∈ V (16)





          

3.2 Clustering

Clustering based approaches are used to split a problem into smaller sub problems to reduce
the computational complexity. We consider and compare different clustering approaches, i.e.,
agglomerative hierarchical clustering (AHC) with Ward linkage and proximity of stations
as a similarity matrix, AHC with Ward linkage and number of trips between stations as a
similarity matrix adapted from Lahoorpoor et al. (2019) (Section 3.2.1), and two multi-objective
mathematical models (Section 3.2.2).

To select the best clustering approach, we set our performance measures, which will later define
the objective function components for the mathematical models, as follows:

• (P1) the total in-cluster Manhattan distance, that shows the compactness of the cluster,
• (P2) the deviation of the total in-cluster demand from zero, that shows whether the clusters

are self-sufficient, and
• (P3) the deviation of number of stations per cluster from the average number of stations

per cluster, that shows whether the number of stations visited by a rebalancing vehicle is
balanced among clusters.

Next, we present these four clustering methods.

3.2.1 Agglomerative hierarchical clustering (AHC) with Ward linkage

In AHC, each element is treated as a singleton cluster at the beginning of the algorithm. This
bottom-up approach connects a pair of clusters that are the most similar to produce a bigger
cluster. The algorithm halts as soon as all the elements are in one cluster.

The data is used to compute the similarity (dissimilarity) matrix between each pair of elements
in the data set. According to a linkage function, the closest elements (or clusters) are grouped
together at one higher level in the hierarchy, which forms the dendrogram. Then, the decision
maker determines a convenient level to cut the dendrogram, which also corresponds to the
number of clusters.

There are several linkage functions introduced in the literature such as single, complete, group
average, and Ward. This paper considers Ward linkage, which aims to minimize total within-
cluster variance. This linkage is chosen since different similarity measures can be used.





          

Proximity as a similarity matrix This method uses the proximity of two stations, which
corresponds to the physical distance between a pair of stations, as a similarity matrix. The
advantage of this method is that it produces geographically convenient clusters, helping to
improve (P1). On the other hand, it does not pay regard to the performance measures (P2) and
(P3).

Number of trips as a similarity matrix Different similarity matrices may also be used.
Lahoorpoor et al. (2019) introduce a methodology for clustering BSS stations using the number
of trips from one station to the other as a similarity matrix. This matrix is created using the
origin-destination trip information. This way, they claim that they can discover the groups of
stations which interact the most. In other words, the constructed clusters are more likely to be
self-sufficient, which implies better performance in (P2).

3.2.2 Multi-objective mathematical model approach

Although AHC is convenient in terms of computation time, it does not take multiple objectives
into account. Therefore, we develop two multi-objective mathematical models, that consider all
the three performance measures, i.e., (P1), (P2), and (P3).

MINLP The first mathematical model, given by (C3N), is a mixed integer non linear model.
The corresponding notation is given in Table 2. The objective function components, i.e.,
(17), (18), and (19), consider all the three performance measures, i.e., (P1), (P2), and (P3),
respectively.

The objective function (17) minimizes the in-cluster distance, which is a sum of all the L1

distances between each station. The second objective (18) aims to minimize the positive and
negative total deviation from the zero total demand within a cluster. Lastly, the third objective
(19) minimizes the deviation of number of stations across the clusters. The objective weights,
i.e., α, β, and γ, help to obtain a single objective. One should note that the problem can also be
solved using lexicographic approach, without the use of weights.

Eq. (20) enforces that all stations, that have non zero demand, are assigned to one and only one
cluster. Eq. (21) ensures that the distance between each pair of stations in a cluster is determined
as in-cluster distance. Eq. (22) determines the positive and negative deviation from the zero
total demand within a cluster, whichever is applicable. Similarly, Eq. (23) detects the positive





          

Table 2: Notation for the model given by (C3N)

Parameters
N number of stations (i, j ∈ {1, ...,N})
C number of clusters (c ∈ {1, ...,C})
loni, lati the longitude and latitude of station i, i ∈ N, respectively
di j the distance from station i to station j, i, j ∈ N

qi the demand at each station, i ∈ N

α, β, γ weight of 1st, 2nd and 3rd objective function, respectively
Decision variable
sic 1 if station i is assigned to cluster c, 0 otherwise, i ∈ N, c ∈ C

Auxiliary decision variables
inClusterDistc the total Manhattan distance between each pair of stations in

cluster c, c ∈ C

mi jc 1 if both i and j are in cluster c, 0 otherwise, i, j ∈ N, c ∈ C

and negative deviation of number of stations across the clusters. Finally, (24)-(27) ensure that
the domain constraints of the decision variables are satisfied.





          

(C3N) min
∑
c∈C

α·inClusterDistc (17)

+
∑
c∈C

β·(devD+
c + devD−c ) (18)

+
∑
c∈C

γ·(devS N+
c + devS N−c ) (19)

s.to
∑

c∈C:qi,0

sic = 1 ∀i ∈ N (20)∑
i, j∈N: j≥i

sic · s jc · di j = inClusterDistc ∀i, j ∈ N,∀c ∈ C (21)∑
i∈N

sic · qi = devD+
c − devD−c ∀c ∈ C (22)

∑
i∈N

sic =
N
C

+ devS N+
c − devS N−c ∀c ∈ C (23)

sic ∈ {0, 1} ∀i ∈ N, c ∈ C (24)

devS N+
c , devS N−c ≥ 0 ∀c ∈ C (25)

devD+
c , devD−c ≥ 0 ∀c ∈ C (26)

inClusterDistc ≥ 0 ∀c ∈ C (27)

This non linear model is linearized by introducing an auxiliary variable, mi jc, that represents the
multiplication of sic and s jc. With this, (21) is replaced by (28)-(32), which are given below:

mi jc ≤ sic ∀i, j ∈ N,∀c ∈ C (28)

mi jc ≤ s jc ∀i, j ∈ N,∀c ∈ C (29)

mi jc ≥ sic + s jc − 1 ∀i, j ∈ N,∀c ∈ C (30)∑
i, j∈N: j≥i

mi jc · di j = inClusterDistc ∀i, j ∈ N,∀c ∈ C (31)

mi jc ∈ {0, 1} ∀i, j ∈ N,∀c ∈ C (32)

We call the linearized model as (C3). The complexity of (C3) is given by O(N2 · C). As the
number of clusters indirectly depend on the number of stations, i.e., a function of number of
stations, the complexity can be identified as O(N3).

MILP Given the complexity of the (C3), we develop another model to solve the clustering
problem. In addition to the ones in (C3), we introduce two other decision variables. These
determine the cluster center and the in-cluster distance is calculated by summing the distance to





          

Table 3: Additional notation for the model given by (C4)

Parameters
M big-M value
Decision variables
lonCc, lonCc the longitude and latitude of cluster c, c ∈ C, respectively
Auxiliary decision variables
devS N+

c , devS N−c the positive and negative deviation of number of stations in cluster c

from the average number of stations per cluster, c ∈ C, respectively
devD+

c , devD−c the positive and negative deviation of total demand from 0 in cluster
c, c ∈ C, respectively

di f f Lonic the distance in longitude between station i and cluster c, i ∈ N, c ∈ C

di f f Latic the distance in latitude between station i and cluster c, i ∈ N, c ∈ C

mdic the Manhattan distance between station i and cluster c, i ∈ N, c ∈ C

these centers from all the elements in that cluster. Some additional decision variables help us to
calculate the in-cluster distance. The additional notation is given in Table 3 and the developed
model is presented as (C4).

(C4) min (17) + (18) + (19)

s.to (20)

loni − lonCc ≤ di f f Lonic ∀i ∈ N,∀c ∈ C (33)

lonCc − loni ≤ di f f Lonic ∀i ∈ N,∀c ∈ C (34)

lati − latCc ≤ di f f Latic ∀i ∈ N,∀c ∈ C (35)

latCc − lati ≤ di f f Latic ∀i ∈ N,∀c ∈ C (36)

di f f Lonic + di f f Latic ≤ mdic + M · (1 − sic) ∀i ∈ N,∀c ∈ C (37)∑
i∈N

mdic ≤ inClusterDistc ∀c ∈ C (38)

(22), (23), (24)

di f f Lonic, di f f Latic,mdic ≥ 0 ∀i ∈ N, c ∈ C (39)

lonCc, latCc ≥ 0 ∀c ∈ C (40)

(25), (26), (27)





          

The constraints (33)-(36) calculate the absolute distance between each cluster center and station.
Then, these are used to calculate the manhattan distance (Eq. (37)), which helps us to determine
the total in cluster distance (Eq. (38)). Note that, this value is different than the value obtained
in (C3). The Big-M value is set to the maximum possible distance between two stations, i.e.,
(max loni −min loni) + (max lati −min lati). Eqs. (39) and (40) ensure the domain constraints
are satisfied.

The complexity of this model is given by O(N · C). Although it does not express exponential
complexity at a first glance, the number of clusters being a function of number of stations makes
the complexity of the (C4) O(N2). Therefore, we can conclude that (C4) is expected to perform
better than (C3).

4 Computational experiments

To evaluate the methodology two case studies are selected, i.e., nextbike Sarajevo, Bosnia
and Herzergovina and nextbike Berlin, Germany. The main motivation of choosing these two
systems is to evaluate demand forecast in different scenarios represented by system size, geo
location, landscape, economic strength, etc.

4.1 Data and analysis

The network of the nextbike Sarajevo and nextbike Berlin BSS stations can be seen in Figure 1.
nextbike Sarajevo BSS has 21 stations with approximately 120 bikes operating, whilst nextbike
Berlin BSS operates with around 3000 bikes in 298 stations.

In Sarajevo, we see that the network is divided into two main station clusters. This is due to the
existence of a small hill in between the two sub networks. On the other hand, in Berlin we do
not see any accummulation of stations at some specific parts of the city. This is expected since
the city is mostly flat, which makes it easy to access any part of it by bike.

In Figure 3, we see the time series plot of number of pick-ups (blue straight line) and drop-offs
(red dashed line), where each row corresponds to a weekday. The data for the presented graphs
date from April 5, 2021 Monday to April 11, 2021 Sunday. The first row shows the plot for
Monday, the second for Tuesday, so on and so forth. As it is conducted in the literature, the trips
that have unreasonable trip length and duration are cleaned from the data sets.





          

Figure 1: nextbike BSS stations

(a) Sarajevo

(b) Berlin





          

Figure 3: Number of pick-ups and drop-offs over a week

(a) Sarajevo (b) Berlin

The unexpected behavior in Sarajevo on April 7, 2021, Wednesday can be explained by the
snowfall that occured during the previous night. In Berlin, we see that the demand increases on
average on the weekends. Furthermore, the trips are longer on the weekends whereas people
prefer shorter trips on the weekdays. This can be explained by the fact that people tend to use
the BSS more for leisure during the weekend compared to the weekdays. The same applies to
Sarajevo case study as well.





          

Figure 5: Sarajevo - 2 Clusters

(a) Clustering with (C1) (b) Clustering with (C2)

(c) Clustering with (C4DD) (d) Clustering with (C4ICD)

4.2 Results and discussion

The optimization models are implemented on a computer with 8 GB RAM and 2.3 GHz Intel
Core i5 processor in python and python API for CPLEX 12.10.

We give the resulting clusters with the four different clustering methods for Sarajevo and Berlin,
in Figure 5 and Figure 7, respectively. Here, (C1) and (C2) correspond to AHC with similarity
matrix as proximity matrix and OD-trips matrix, respectively. (C4DD) solves (C4) where the
minimizing the deviation of demand is the most important objective, i.e., β > α > γ, whilst
for (C4ICD) solves (C4) where the objective function coefficient favor minimizing the in-cluster
distance, , i.e., α > β > γ. Note that (C3) is not included here because it is intractable to solve it
in real time.





          

Figure 7: Berlin - 10 Clusters

(a) Clustering with (C1) (b) Clustering with (C2)

(c) Clustering with (C4DD) (d) Clustering with (C4ICD)

Given that the units of the three objective functions are different than each other, we first try
lexicographic method. However, this method is not able to produce any solutions in real time.
Therefore, we assign extreme values as the objective weights, to approximate the lexicographic
method.

As expected, (C1) creates geographically convenient clusters. Although for Berlin, the number
of stations per cluster does not differ among different clusters, this is not true for Sarajevo case
study. Here, we see the influence of city structure. The Sarajevo case study results confirm that
the number of stations per cluster is not considered by (C1).

We observe that the clusters that (C2) has resulted in are unbalanced in terms of number of
stations for the Berlin data set. Specifically, among ten clusters, three of them have 9, 52, and
225 stations, whilst the remaining seven clusters have at most three stations.

With (C4DD), we see that the most of the clusters span the whole service area. This is due to the





          

Table 4: Rebalancing cost for all the clustering methods

Dataset # of clusters (C1) (C2) (C4DD) (C4ICD)

Sarajevo 2 9.728 15.591 12.709 12.627

10 75.351 372.332 139.880 126.983
Berlin 15 83.393 103.923 163.261 173.630

20 90.471 120.289 159.271 197.483

fact that the second objective, i.e., minimizing the deviation from zero total demand, is the most
important objective. On the other hand, the results of (C4ICD) show more collective clusters
compared to (C4DD). This is expected since the first objective, i.e., minimizing the in-cluster
distance, is more important than the other two objectives. However, it should be noted that the
results of both (C4DD) and (C4ICD) are found with a large optimality gap. This indicates that the
found solutions might be far from the optimal.

The costs resulted from application of (C2) increase as well compared to (C1). The accummu-
lation in few stations would explain this increase. The resulting solutions of the rebalancing
optimization with different clustering methods are given in Table 4. Note that these values
represent the total kilometers driven by the trucks, which linearly determines the rebalancing
cost. Compared to (C1), both (C4DD) and (C4ICD) produce more scattered clusters. The increase
in kilometers traveled by the trucks can be explained by this fact. We see that, the additional
demand-based objective does not work well, i.e., results in increase in rebalancing costs.

5 Conclusion and future work

The rebalancing operations in VSSs are one of the mostly used approaches to keep the balance
of the vehicles according to the trip demand to increase the level of service. When large systems
are in consideration, the rebalancing optimization problem becomes hard to solve. Therefore,
heuristic approaches such as branch-and-bound and station clustering, are used to divide the
problem into sub problems. In this study, we utilize several clustering methods to test their
effects on the rebalancing optimization. Among four clustering approaches considered, two of
them are standard hierarchical clustering algorithms, while the remaining are specifically crafted
for the original problem at stake, i.e., to take into account the rebalancing-related objectives.





          

We perform computational experiments on two BSSs, nextbike Sarajevo, Bosnia and Herze-
govina, and nextbike Berlin, Germany. The results show that with AHC using proximity as a
similarity measure, we obtain geographically collective clusters. When the similarity measure
is changed to number of trips between stations, some clusters become extra big whereas the
rest remains very small, i.e., at most three stations per cluster. With the proposed mathematical
models, this problem is overcome. However, the clusters tend to spread throughout the service
area especially when the zero total demand is considered as the most important objective. In
other words, the areas spanned by each cluster tend to overlap some other clusters. Conse-
quently, larger distances are driven by rebalancing trucks within clusters. This results in higher
rebalancing costs although the areas are self-sufficient, that means no inter-cluster rebalancing is
required.

Since we were able to solve the mathematical models with a large optimallity gap, the future
work includes a heuristic approach for multi-objective station clustering. Other data sets might
be considered to derive conclusions about the relation between the city and demand structure,
and the clustering and rebalancing optimization results.
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A Formulation (F1) from Dell’Amico et al. (2014)

(F1) min
∑
i∈V

∑
j∈V

ci jxi j (41)

s.to
∑
i∈V

xi j = 1 ∀ j ∈ V \ {0} (42)∑
i∈V

x ji = 1 ∀ j ∈ V \ {0} (43)∑
j∈V

x0 j ≤ m (44)∑
j∈V\{0}

x0 j −
∑

j∈V\{0}

x j0 = 0 (45)∑
i∈S

∑
j∈S

xi j ≤ |S | − 1 ∀S ⊆ V \ {0}, S , ∅ (46)

θ j ≥ max{0, q j} ∀ j ∈ V (47)

θ j ≤ min{Q,Q + q j} ∀ j ∈ V (48)

θ j − θi + M(1 − xi j) ≥ q j ∀i ∈ V, j ∈ V \ {0} (49)

θi − θ j + M(1 − xi j) ≥ q j ∀i ∈ V \ {0}, j ∈ V (50)

xi j ∈ {0, 1} ∀i, j ∈ V (51)

The objective function (41) minimizes the cost. (42) and (43) make sure that every node except
the depot is served exactly once. Following two sets of constraints, (44) and (45), assure that no
more than m vehicles are used and all used vehicles return to the depot at the end of their route.
The constraint set (46) is a typical cutset constraint which is used for subtour elimination. (47)
and (48) defines the upper bound on the load of a vehicle. The flow conservation is achieved by
(49) and (50). Last constraint set (51) imposes binary restrictions on decision variables xi j’s.
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