
Analysis of Ridepooling Strategies with MATSim

Felix Zwick

Kay W. Axhausen

Conference paper STRC 2020

STRC 

 20th Swiss Transport Research Conference 

Monte Verità / Ascona, May 13 – 15, 2020 



Analysis of Ridepooling Strategies with MATSim

Analysis of Ridepooling Strategies with MATSim

Felix Zwick
MOIA GmbH &
IVT
ETH Zürich
CH-8093 Zurich
felix.zwick@ivt.baug.ethz.ch

Kay W. Axhausen
IVT
ETH Zürich
CH-8093 Zurich

Abstract

Emerging ridepooling services promise to improve existing mobility systems and increase
efficiency in road traffic. Private mobility companies and policymakers strive to find
the right design of such services to meet customer needs and reduce traffic in urban
areas. In order to analyse the effects of ridepooling systems and to predict implications,
the agent-based simulation framework MATSim offers two extensions for the simulation
of on-demand pooling services. Both use dynamic vehicle routing, but the interaction
between service and customers on the one hand, and the pooling strategies on the other
hand, differ. These differences between both extensions, their characteristics and the
effects on service efficiency are pointed out here. The results show the influence of different
pooling strategies on efficiency, mileage, mean travel and waiting times of the system.
While the AMoD system generally leads to better results in high-demand scenarios, the
DRT system has advantages in low-demand scenarios due to a predictive rebalancing
system based on historical demand. The MATSim simulations are derived from demand
data of a ridepooling company in Hamburg, Germany.
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1 Introduction

Several ridepooling services have been introduced world-wide in recent years by private
mobility companies as well as public transport operators and public authorities. Ridepool-
ing is not a new form of transportation as similar transport service complement urban
transportation in many countries, such as for instance the minibus system in South Africa
or the Dolmus system in Turkey (Neumann, 2014). The spread of digital communication
technology however helped to improve the dispatching of customers and vehicles and
lead to the establishment of Transportation Network Companies (TNCs) and app-based
on-demand ridepooling services. Some of the best known TNCs offer pooled services as a
cheaper alternative to their exclusive rides, for instance UberPool (LO and MORSEMAN,
2018), Lyft Shared (Lyft, 2020) or GrabShare (GrabShare, 2020). While those TNCs have
gained large market shares in wide parts of the world, they face strong regulations of their
ride-hailing business in the European and German mobility market. In Germany several
exclusive ridepooling services have been introduced, e.g. CleverShuttle (CleverShuttle,
2020), ioki (ioki, 2020), IsarTiger (Münchner Verkehrsgesellschaft mbH, 2020) or MOIA
(MOIA, 2020). Due to the current COVID-19 pandemic, some of these services are
currently suspended.
Figure 1 shows the ridepooling process for one vehicle and three different customers that
share a similar route to reach their destination. We consider a stop-based service that
requires customers to walk to and from a pre-defined stop to use the service.

Figure 1: Ridepooling process with pre-defined stops
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There has been a great variety of research in the field of (autonomous) shared on-demand
mobility, its impact on the transportation system and the (dis-)advantages for customers.
Many simulation frameworks and operational strategies have been introduced to assess
the effects of (pooled) on-demand mobility, mostly in the context of autonomous mobility
(Bischoff et al., 2017; Hörl, 2017; Ruch et al., 2020; Hyland and Mahmassani, 2018;
Alonso-Mora et al., 2017). As simulations frameworks differ as well as assignment and
pooling strategies, the results of different pooling strategies are difficult to compare. Two
of the frameworks were introduced as extensions of the Multi-Agent Transport Simulation
MATSim (Horni et al., 2016). This facilitates the comparison of them which we will do in
this work. Ruch et al. (2020) implemented different pooling strategies into the Autonomous
Mobility on-Demand (AMoD) extension and found that in urban environments the strategy
of Alonso-Mora et al. (2017) performs best in terms of sharing rate and saved mileage,
which is why we focus on this strategy here. The second pooling strategies, developed by
Bischoff et al. (2017), was introduced as the MATSim extension for demand responsive
transport (DRT). A main difference of the two modules is the assignment or rejection
of requests to vehicles that happens immediately after the submission of a request in
the case of the DRT module, whereas the AMoD module saves all requests for a pre-
defined timeframe and assignment optimisations take place every 30 seconds, including
the possibility of re-assignments.
We compare the two pooling strategies in regards to computation time, efficiency, service
level and (empty) mileage with different fleet sizes using demand data from the ridepooling
service MOIA in Hamburg. Section 2 gives a further explanation of the simulation
framework and the pooling strategies as well as the input data. The results are presented
in section 3 followed by a discussion of the results in section 4.

2 Simulation Configuration

This section describes the simulation framework MATSim, the implemented pooling
extensions and their functionality and the demand and supply data that serves as input
for the simulation.
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2.1 Simulation Framework MATSim

The multi-agent transport simulation MATSim is capable of modelling large-scale transport
scenarios on a microscopic level Horni et al. (2016). In general, a daily plan with all
activities and trips between the activities of each agent of a synthetic population is
simulated. In an iterative approach, each agent aspires strives to optimise its daily
schedule by reducing travel times and extending the execution of activities.
Despite the possibility to simulate entire populations and different modes, we only focus on
the ridepooling trips of one day and do not make use of the mode choice feature of MATSim,
as information about the whole population of Hamburg is not yet available. Compared to
the simulation of an entire synthetic population, this setup leads to faster computation
times and an easy reproducibility for different spatial environments, since the amount of
required information is greatly reduced. In recent years, different MATSim extensions
have been developed to simulate different types of on-demand mobility (Maciejewski,
2016). In this study, we make use of the ridepooling extensions DRT (Bischoff et al., 2017)
and AMoD (Ruch et al., 2020) extension that are both based on the DVRP extension that
was developed by Maciejewski et al. (2017) and designed to solve the dynamic vehicle
routing problem.

2.2 Pooling Extensions

For the simulation of ridepooling services in MATSim, the minimal requirements are a
street network with traffic flows, a fleet of dynamic vehicles and customer demand. The
dynamic transport system can be integrated into existing MATSim models and interact
with other modes. This allows to benchmark the simulation of vehicle routing against
other modes and for instance analyse and compare efficiencies or external effects.
During the simulation, future requests and future vehicle states are not known in advance,
but are allocated to each other live and dependent on the system state. This ensures, that
the system in the simulation behaves like a real-world system and cannot pool any requests
in advance without a request being submitted. Figure 2 shows the booking processes
for the two MATSim extensions considered. The process within the DRT module is as
follows: Each time a new request is submitted, the system checks if a vehicle can serve
the request within a maximum wait time and considering a maximum detour time of the
uncompleted rides. In this work we analyse scenarios with a maximum wait time of 10
and 15 minutes and a maximum detour of 5minutes + 50% of the direct ride time. If
more than one vehicle can serve the request, the most feasible based on the parameters
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Figure 2: Booking Process in the DRT and the AMoD module

vehicle capacity, vehicle availability, wait time and detour time is elected to serve the
request (Bischoff et al., 2017).
The booking process within the AMoD module does not only consider a request at the
time it is submitted, but optimises the overall system regularly, taking into account all
requests that have not yet been picked up or rejected. The algorithm does not directly
respond to an incoming request, but adds it to a pool of all pending requests and vehicles.
A mathematical assignment optimisation takes place every 30 seconds and takes into
account all vehicles in service and all requests that were not yet served or rejected. The
maximum wait time after the assignment of a vehicle is 5minutes and the maximum delay
due to detours is 10minutes. An optimisation strategy defines the most suitable requests
based on the status of the system and the given constraints, accepts them and assigns
them to the most suitable vehicle. Until the customer is picked up, the assigned vehicle
can be reconsidered in every optimisation step. All requests that cannot be assigned in
an optimisation step remain in the pool of open requests. If requests remain in the pool
for more than 10 or 15 minutes, they are rejected and not considered any further. All
other requests are considered again in the next optimisation step. As Ruch et al. (2020)
have found that in urban environments, the High-Capacity Dispatcher of Alonso-Mora
et al. (2017) performs best in terms of mileage reduction and sharing rate, we focus on
this strategy implemented in the AMoD module.
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Both extensions include a rebalancing strategy to reallocate idle vehicles to areas with a
high expected demand and thus improve the service level. They have been introduced and
described by Bischoff and Maciejewski (2020) and Alonso-Mora et al. (2017). While the
rebalancing strategy of the AMoD module only takes into account the current demand,
the rebalancing strategy of the DRT module takes the demand from previous iterations
into account. Consequently we simulate only one MATSim iteration for the AMoD module
and three MATSim iterations for the DRT module. Since the demand does not vary from
iteration to iteration, the DRT system has better information where to reallocate the
vehicles.

2.3 Input Data

The input data is obtained from the German ridepooling service MOIA (2020) that
operates in Hamburg since April 2019. We take 12,427 requests that MOIA had on a
particular day during the ongoing ramp-up phase and serve it with different fleet sizes
from 50 to 300. It should be expected that modal choice decisions specifically affected
from the current COVID-19 pandemic will change in regards to shared mobility systems.
We only consider single bookings instead of group bookings and therefore define the size
of the vehicles to have 4 seats although MOIA operates with 6-seaters in Hamburg.
Figure 3 shows the service area of the ridepooling service by the time the study took place
and the used street network taken from OpenStreetMap (OpenStreetMap Contributors,
2020). The area covers an area of roughly 200 km2 and covers the most densely populated
areas of Hamburg. The highest demand occurs in the central parts of Hamburg around
the lakes Inner and Outer Alster and at the airport. After matching all virtual stops of
MOIA with the MATSim street network, roughly 7,000 MATSim stops remain. In general,
customers reach a stop within 250 metres of their location. The time to pick up and drop
off customers is defined to be 30 seconds.

3 Results

The ridepooling strategies are compared in terms of experienced service levels for the
customers, produced mileage and occupancy of the fleet. We consider five different
scenarios: The DRT strategy without rebalancing strategy and a maximum wait time of

5



Analysis of Ridepooling Strategies with MATSim

Figure 3: Overview of Service Area and Stop Network

10 minutes, the DRT strategy with rebalancing strategy and a maximum wait time of 10
and 15 minutes and the AMoD strategy with pending requests remaining in the request
pool for 10 and 15 minutes.
The computation time for both strategies is shown in a plot in Figure 4. The DRT
system without rebalancing only requires one iteration, which only takes four minutes
in all scenarios. To make use of the rebalancing strategy, we simulate three iterations
which increases the total computation to 10 to 18 minutes. The used "High Capacity
Dispatching" strategy of the AMoD module requires much longer computation times
between 78 and 118 minutes. If pending requests are saved for a longer time, computation
increases even further because the optimisation problem becomes more complex.
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3.1 Service Level

We measure the service level of the ridepooling service through the share of requests that
could be served and the experienced wait and travel time. Figure 4 shows the mean wait
time, mean travel time, the share of served requests and the computation time for each
scenario. All pooling strategies can provide shorter wait times with a bigger fleet size,

Figure 4: Service Level Results and Compuation Time for different Fleet Sizes and Pooling
Strategies

which has been expected as vehicles are better distributed throughout the city, especially
in areas with high demand, and customers may be reached faster. Without rebalancing,
the mean wait time does not decrease a lot with a larger fleet because the distribution
effect is smaller and badly located vehicles remain where they are until they are assigned
to a new request. Customers face slightly higher wait times in the AMoD system than in
the DRT system.
The travel times show a similar pattern and generally decreases with larger fleet sizes as
more vehicles are availabe for the same amount of requests and consequently less detouring
takes place. The effect is again smaller for the scenario without rebalancing and travel
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times are slightly higher in the AMoD system than in the DRT system.
The share of served requests increases as expected with an increasing number of vehicles.
The effect is smallest for the scenario without rebalancing strategy and the share of served
requests remains below 50%. All other strategies are able to serve more than 80% of
the requests with fleet sizes above 200 vehicles. The AMoD system is able to serve more
customers than the DRT system in all scenarios with less than 200 vehicles whereas with
high fleet sizes both strategies serve a similar amount of customers.
Overall, the strategies offer a similar service level to the customer. The low amount of
shared rides in a system without rebalancing shows the importance of such feature.

3.2 Mileage

Produced overall and empty mileage are important indicators for the effect on traffic
load and congestion and should be as low as possible. Figure 5 shows the overall mileage
and the mileage divided by the number of served rides for each pooling strategy. The

Figure 5: Mileage results for different Fleet Sizes and Pooling Strategies

produced mileage is lowest for the strategy without rebalancing since less rides are served
and many vehicles stay parked for a long time of the day. The other strategies show a
similar pattern but with higher fleet sizes, the AMoD system produces more mileage. As
the mileage depends on the number of served rides, we also consider the produced mileage
per ride. The average direct distance of all rides is approximately 7 km. Major differences
may be observed between the two systems. While the mileage per ride in the DRT system
constantly decreases with higher fleet sizes, it remains stable for the AMoD system. The
configuration of each strategy, i.e. different waiting/queuing times, does not have a high
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Figure 6: Vehicle occupancy over the course of the day for the AMoD (left) and DRT
(right) system with a fleet of 50 vehicles

impact on the pattern. Nevertheless, different configurations of the pooling algorithms
could lead to an acceptance of rather short or long trips which affects the result as long
as not all requests are served. Both pooling strategies can be adapted in this regard.
The share of empty mileage is between 21 and 26% in the AMoD and DRT scenario with
rebalancing, without major differences between the two systems. Without rebalancing the
share of empty mileage is only 15% for all fleet sizes as the empty reallocation drives are
not conducted.

3.3 Occupancy

The vehicle occupancy is an important indication how many rides are pooled and whether
the vehicle size is appropriate. This analysis shows at which times the fleet operates at its
capacity limit with the both pooling strategies. Figure 6 shows the fleet occupancy over
the course of the day with 50 vehicles with a requests saved for up to 15 minutes in the
AMoD case and a maximum waiting time of 15 minutes in the DRT case. The colours
show how many vehicles transport a certain amount of different bookings at the same
time. If vehicles have the status Stay they park and await the next request and if the
status is 0 they are either rebalancing or on their way to a customer. The fleet is busy
throughout the day in both cases. In the AMoD scenario, more vehicles transport 2, 3
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Figure 7: Vehicle occupancy over the course of the day for the AMoD (left) and DRT
(right) system with a fleet of 300 vehicles

or 4 different bookings simultaneously than in the DRT system in which vehicles rarely
transport more than 2 bookings at the same time. This is also reflected in the higher
share of served rides of the AMoD strategy, shown in Figure 4. This result indicates that
the AMoD algorithm perform more efficiently in scenarios with very high demand and
low supply.
Figure 7 shows the fleet occupancy when the service operates with 300 vehicles. A small
peak in demand can be observed in the morning with almost 200 busy vehicles, and a
large peak in demand occurs between 5 and 10 pm when almost all vehicles are busy. In
the DRT system, a small share of vehicles is always staying and waiting for an order. In
the evening peak, the occupancy of the AMoD fleet increases and almost 100 vehicles
transport 2 or more bookings at the same time whereas only about 50 vehicles of the
DRT fleet do so. In contrast, the DRT system seems to have higher occupancy rates
than the AMoD system at times with little demand and many idle vehicles. This may
be a consequence of the demand information from the first iterations that are taken into
account when vehicles are rebalanced.
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4 Conclusion

In this work two state of the art pooling strategies, implemented in the simulation
framework MATSim, are compared based on demand data of the ridepooling company
MOIA in Hamburg. Overall, both strategies lead to similar results in terms of travel and
waiting times, but the service efficiency differs for different demand and supply situations.
In high demand situations the AMoD systems is able to pool more requests than the DRT
system and rejects less passengers. This leads to higher customer satisfaction and revenue
for the operator. In low demand situations with many idle vehicles, the DRT system
transports more customers. This might be a consequence of the rebalancing system that
takes into account historical demand from previous iterations and therefore allocates idle
vehicles optimally. The results of the system without a rebalancing strategy show the
high importance of such policy that should be fed with historical demand data. The
mileage analysis shows a clear trend that with an increasing fleet size, the DRT system is
able to transport the same amount of requests with less kilometres travelled. This trend
will be further analysed with larger fleet sizes and different demand scenarios. The high
computation time is a downside of the AMoD environment and it would be necessary to
adjust the algorithm to simulate larger scenarios.
Further studies will evaluate the system behaviour in different demand and supply
scenarios. We also consider to implement the functionality into existing MATSim models
and evaluate the interaction with other transport modes and the mode choice behaviour
of the customers.
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