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Abstract 13 
 14 
Shared micromobility services (e-scooters, bicycles, e-bikes) have rapidly gained popularity in the 15 
past few years, yet little is known about their use. While most previous studies have analysed datasets 16 
from single providers, only few comparative studies between two or more modes exist and none so-17 
far have analysed competition and mode choice at a high spatiotemporal resolution. To this end, we 18 
analysed a large and dense dataset containing ~56M vehicle locations and ~46K trips of 5 different 19 
shared micromobility providers for two weeks in January 2020 in Zurich, Switzerland. Bivariate 20 
relationships and a MNL mode choice model exhibit 3 main results: (1) docked modes (bike and e-21 
bike) exhibit a clear commuting pattern (morning and evening peak), while dockless e-scooters 22 
exhibit the opposite pattern (i.e., morning and evening trough and night peak); (2) dockless e-scooters 23 
are preferred for very short trips, docked bikes for medium trips in even terrain or downhill, and e-24 
bikes for longer uphill trips; (3) choice probability increases with vehicle density and battery charge 25 
particularly for dockless modes, however there is first evidence of a plateau (i.e., decreasing marginal 26 
utility gains up to a level of indifference in choice behaviour). 27 
 28 
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1. Introduction 35 
 36 
Shared micromobility services (dockless e-scooters, dockless and docked bikes and e-bikes) have 37 
rapidly gained popularity in the past few years. Their appearance has been welcomed by many as novel, 38 
fun, spatially efficient and sustainable new additions to the transport landscape. Others take a more 39 
critical stance questioning sustainability, safety and equity (particularly in the case of e-scooters).  40 
 41 
While many speculate about their impact, research to guide policymaking is still in its infancy (cf. recent 42 
Call for Papers, Transportation Research Part D): How are different shared micromobility services 43 
being used? How does usage compare between different micromobility services across space and time? 44 
How do users choose between different (competing) micromobility services, and between them and 45 
other more established means of transport such as public transport and walking? Providing rigorous 46 
answers to these questions can support transport planning and regulation in various ways, such as 47 
clarifying their potential to substitute car trips, alleviate roads during the commute and reduce the 48 
footprint of the transport sector. 49 
 50 
The existing body of knowledge strongly varies by mode. While shared docked bikes have a relatively 51 
long (research) history (at least in comparison with other shared micromobility modes) (e.g., Bachand-52 
Marleau et al., 2012; Fishman et al., 2013; Shaheen et al., 2011), the literature on dockless (e-)bikes is 53 
much younger and already limited in scope (e.g., Campbell et al., 2016; Guidon et al., 2019; He et al., 54 
2019; Shen et al., 2018). Dockless e-scooters are the latest addition to the micromobility mix and only 55 
recently have seen first peer-reviewed publications (e.g., Bai and Jiao, 2020; Mathew et al., 2019; 56 
McKenzie, 2019; Noland, 2019; Younes et al., 2020). Most previous studies employ datasets of a single 57 
shared micromobility service and only few comparative studies exist (e.g., Campbell et al., 2016; 58 
Lazarus et al., 2020; McKenzie, 2019; Younes et al., 2020). In particular, competition and mode choice 59 
between shared micromobility services has not been studies yet, however this is an increasingly relevant 60 
topic with the steady rise of new providers.  61 
 62 
We address this gap by analysing a scraped dataset containing over 56M vehicle locations and over 63 
46K micromobility trips of 5 micromobility providers of docked and dockless e-bikes, bikes and e-64 
scooters for two weeks in January 2020 in Zurich, Switzerland. We describe in detail how to extract 65 
trips from scraped vehicle locations and validate scraped trips against real booking data obtained for 3 66 
of the 5 providers. We proceed by analysing usage and identifying similarities and differences between 67 
the different providers and modes. Finally, we define competition situations by identifying all available 68 
micromobility alternatives for each trip using real-time spatiotemporal vehicle location information and 69 
estimate a multinomial logit model to investigate mode choice. 70 
 71 
Our contributions are twofold. First, we compare micromobility usage patterns using a single large and 72 
dense dataset of quality near to real booking data for five different micromobility providers and modes. 73 
This allows to detect subtle differences in usage that allows comprehensive lessons and might otherwise 74 
be attributed to location biases. Second, we estimate a first mode choice model for micromobility. To 75 
our knowledge, this has not been done before and offers relevant lessons for policy, research and 76 
practice. Policymakers can learn about mode choice at different times of day to adjust regulation on 77 
vehicle licensing and parking in critical infrastructure zones. Researchers can use our results to update 78 
micromobility mode choice in simulations to forecast system effects in cities where micromobility (at 79 
scale) has not been introduced yet. Prospective providers can employ our results to optimize their 80 
repositioning (e.g., by time of day, elevation, battery charge) and evaluate their competitive position in 81 
new micromobility markets.  82 
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The remainder of this article is organized in 5 sections. We first review the literature on micromobility 83 
with a particular focus on usage and mode choice. We then introduce our dataset both conceptually and 84 
descriptively, and introduce the methods used to subsequently analyse bivariate and multivariate 85 
relationships between mode choice and trip / provider attributes. We present and discuss our results, 86 
and close with a summary and discussion of the implications for research, practice and policy. 87 
 88 
2. Literature Review 89 
 90 
The number and variety of shared micromobility services has steadily increased in recent years and now 91 
includes many different modes such as docked bikes / e-bikes, dockless bikes / e-bikes and dockless e-92 
scooters. Research on shared micromobility can be categorized mainly into supply- and demand-side 93 
matters, of which the latter is more relevant to the topic of this paper. Demand-side research on shared 94 
micromobility is usually focused on questions such as how and why specific services are used. Demand-95 
side research can be further categorized by types of factors that influence demand such as internal (i.e., 96 
user socio-demographics), external (e.g., built environment, geography, weather) and trip-related 97 
(destinations, distance, time of day). Again, the latter two are most relevant to the topic of this paper 98 
and thus focus of this literature review.  99 
 100 
Research analysing external and trip-related factors that influence demand for shared micromobility 101 
services began with studies on station-based bikesharing (which we refer to as “docked” in this paper 102 
to contrast the “dockless” alternatives) (e.g., Shaheen et al., 2011). A number of factors have since been 103 
identified to influence demand for shared bikes, such as population density, workplace density, social 104 
and leisure centre density, public transport density, elevation difference and weather (Bachand-Marleau 105 
et al., 2012; Campbell and Brakewood, 2017; Fishman et al., 2013; Fishman et al., 2014; Murphy and 106 
Usher, 2015; Noland et al., 2016; Ricci, 2015; Shaheen et al., 2011). The magnitude of these factors 107 
generally varies with time (time of day, day of week, and month of the year). For example, while the 108 
effect of workplaces is usually found to be positive on weekdays, it is found to be negative during 109 
weekends. In conjunction with often observed morning and evening demand peaks, this suggests that 110 
important driver of demand is the commute (e.g., McKenzie, 2019). Adverse weather (precipitation, 111 
wind) usually has a negative influence on use, while agreeable weather conditions are associated with 112 
higher levels of usage. Finally, while several positive factors have been associated with docked bikes 113 
(e.g., generally more cycling and active travel, health-related benefits, low emissions), they have been 114 
found to primarily substitute walking and public transport trips instead of the private car (Bachand-115 
Marleau et al., 2012; Campbell and Brakewood, 2017; Fishman et al., 2013; Fishman et al., 2014; 116 
Murphy and Usher, 2015; Shaheen et al., 2011). Recently, dockless (e-)bikesharing systems have 117 
gained substantial scholastic attention. While external factors have generally been found to be similar 118 
to docked bikesharing, trips tend to be longer (i.e., between 2 and 3 km) and elevation naturally does 119 
not appear to influence systems with electric support (Campbell et al., 2016; Guidon et al., 2019; Guidon 120 
et al., 2020; He et al., 2019; MacArthur et al., 2014; Shen et al., 2018). 121 
 122 
Shared e-scooters are a relatively recent addition to the shared micromobility mix, thus only few peer-123 
reviewed academic studies have analysed external factors influencing demand yet. Most studies have 124 
been conducted using the publicly available booking datasets from Louisville (KY) (Noland, 2019; 125 
Reck et al., 2020), Austin (TX) (Bai and Jiao, 2020; Caspi et al., 2020; Noland, 2020) or by scraping 126 
the operators’ openly accessible APIs (e.g., Espinoza et al., 2020; Hawa et al., 2020; McKenzie, 2019). 127 
Usual findings include that e-scooters are most frequent near universities, in central business districts 128 
and where the bikeways are available (Bai and Jiao, 2020; Caspi et al., 2020; Hawa et al., 2020; Reck 129 
et al., 2020; Zuniga-Garcia and Machemehl, 2020), trips are relatively short (i.e. for Louisville, the 130 
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median distance is 1.3 km, Reck et al., 2020) thus mostly substitute active modes, and precipitation, 131 
cold temperatures and wind negatively influence usage (Noland, 2020). There seems to be some 132 
uncertainty with regards to usage peaks during the day with some studies finding hints of commuting 133 
peaks (Caspi et al., 2020; McKenzie, 2019), while others find single afternoon peaks (Bai and Jiao, 134 
2020; Mathew et al., 2019; Reck et al., 2020). Most studies seem to follow the latter findings and 135 
conclude that e-scooters are predominantly used for recreational use instead of commuting, though 136 
evidence is slim (McKenzie, 2019; Noland, 2019; Reck et al., 2020). 137 
 138 
While most previous studies employ datasets of a single shared micromobility service, only few 139 
comparative studies exist (e.g., Campbell et al., 2016; Lazarus et al., 2020; McKenzie, 2019; Younes 140 
et al., 2020). Campbell et al. (2016) analysed factors influencing the choice of shared bicycles and 141 
shared e-bikes in Beijing employing a stated preference survey. Demand for shared bikes was strongly 142 
negatively impacted by trip distance, temperature, precipitation and poor air quality. Demand for shared 143 
e-bikes was found to be less sensitive to trip distance, high temperatures and poor air quality, however 144 
user socio-demographics had a substantial impact, indicating that only some members of the society 145 
were leaning towards this scheme. The authors conclude that while both modes are attractive 146 
replacements for other active modes, e-bikes are also an attractive bus replacement while their use for 147 
the first/last mile remains to unclear. McKenzie (2019) later compared the spatiotemporal usage 148 
patterns of dockless e-scooters with docked bikes in Washington, D.C. Using 3½ months of trip data 149 
accessed at a 5-min temporal resolution from the openly accessible API, he found that e-scooter trips 150 
exhibit a mid-day peak and a (slight) morning peak and thus are more similar to casual docked bike 151 
trips than member trips, which exhibit a clearer commuting pattern with morning and evening peaks. 152 
He further analysed trip starts by land use type finding that e-scooter trips mostly originated and 153 
terminated in public/recreation areas, whereas bike trips were predominantly home-based commutes. 154 
Lazarus et al. (2020) compared docked bike and dockless e-bike usage in San Francisco (CA), using 155 
datasets from 02/2018 for one provider each (Ford GoBike and JUMP, respectively). They found that 156 
dockless e-bike trips were ~1/3 longer in distance and ~2x longer in duration than docked bike trips. E-157 
Bike trips were further far less sensitive to total elevation gain. Estimating a destination choice model, 158 
the authors further found that dockless e-bike trips tended to end in low density areas (suggesting usage 159 
for leisure purposes) while docked bike trips tended to end in dense employment areas (suggesting 160 
usage for the commute). Finally, Younes et al. (2020) compared the determinants of shared dockless e-161 
scooter and shared docked bike trips (both member and non-member) in Washington, D.C. Using data 162 
from the providers’ publicly accessible APIs between 12/2018 and 06/2019, they estimate and 163 
compared hourly number of trips and hourly median duration of trips. While members of the analysed 164 
docked bike scheme showed clear weekday morning and evening commute peaks, casual users of 165 
docked bikes and e-scooter users only showed a weekday evening peak. Docked bike trips were ~0.5 166 
km longer than e-scooter trips and weather was less of a disutility for dockless e-scooter users than for 167 
docked bike users, which the authors hypothesize to be due to the egress walk often necessary from a 168 
docking station. The authors further conducted an initial investigation into the interaction between the 169 
two modes by measuring the impact of docked bike trips on dockless e-scooter trips. As expected, the 170 
authors found that casual usage had a negative and significant coefficient (implying some possible 171 
competition) while membership usage had a positive and significant coefficient (implying some 172 
possible complementarity). This analysis, however, is spatially and temporally aggregated and thus it 173 
remains uncertain how users decided when facing the choice between two different micromobility 174 
providers and modes. 175 
 176 
This gap precisely motivates our study. By employing a dataset that comprises trip-level data for 177 
multiple shared micromobility providers, we can analyse competition and mode choice between 178 
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multiple shared micromobility providers at the highest possible spatiotemporal granularity. This has not 179 
been studied yet, however becomes an increasingly relevant topic with the steady rise of new providers. 180 
 181 
3. Data 182 
 183 
3.1. Preparation 184 
 185 
We collect our data in Zurich, Switzerland. Zurich is the largest Swiss city with 434K inhabitants (1.5M 186 
in the metropolitan area). Zurich is one of Switzerland’s economic centres and situated near the Alps. 187 
It exhibits elevation differences of up to 480m within the municipal area. Public transport service quality 188 
can be considered very high with a stop every 300m in the city by regulation. Thus, it comes as no 189 
surprise that the overall modal split of public transport was 41% (walk: 26%, car: 25%, (e-)bike: 8%) 190 
in the last Swiss mobility census (2015). 191 
 192 
Several micromobility providers operate in Zurich. The most established one is Publibike, which offers 193 
docked bikes and e-bikes at ~160 stations. Bond (formerly Smide) offer high quality dockless e-bikes 194 
that can travel up to a speed of 45 km/h. Several dockless e-scooter providers have appeared in 2019, 195 
among them Lime, Bird, Tier, Voi and Circ. 196 
 197 
Our raw dataset consists of scraped vehicle location data from 8 shared micromobility providers1 in 198 
Zurich, Switzerland. Between 8 January and 23 January, we queried each micromobility providers’ API 199 
every ~60s for all available vehicles, thus collecting over 56M observations. Each observation contains 200 
information on a vehicle’s location (GPS lon/lat), its type and model, an ID, a timestamp, the provider 201 
and, for most providers, the battery level. 202 
 203 
Naturally, a vehicle only appears as an observation in our dataset when available to be booked. 204 
Conversely, we define a “disappearance” as a trip when, additionally, the following circumstances are 205 
given: the time gap has to be at least 2 min long and the (haversine) distance between the origin and the 206 
destination has to be at least 200 m (these filters are necessary to prevent GPS inaccuracies falsely being 207 
identified as trips). We further filter trips by duration (max 60 min), distance (max 15 km) and speed 208 
(max 45 km/h) as faster trips are likely due to GPS inaccuracies and thus non-informative, and longer 209 
trips likely to be round trips, thus non-informative as well. As a result, we obtain a total of 48’231 210 
micromobility trips during our 15 days (~3’200 trips per day). 211 
 212 
3.2. Validation 213 
 214 
We validate the scraped trip data against real booking data which we obtained for 3 of the 8 providers 215 
(docked e-bikes, docked bikes, dockless e-bikes) with satisfactory results (see Figure 1). Overall, we 216 
correctly identified ~95% of all trips in terms of weekday, time of day and duration. The only bias in 217 
our scraped data we were able to detect is fewer short rides for docked e-bikes and bikes (5-12 min) 218 
and slightly more longer trips (17+ min), which may be due to “trip chaining” (i.e., if a bike is both 219 
returned and rented out again between two queries, the successive rides are identified as one). This 220 
hypothesis is confirmed by the observation that the scraped data contains ~5% less trips than the 221 
booking data for these two modes. 222 
 223 

 
1 The 8 shared micromobility providers divide into 5 dockless e-scooter providers, 1 dockless e-bike provider, 1 
docked e-bike provider and 1 docked bike provider.  
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Fig. 1. Validation of scraped trip data vs. real booking data. 257 
 258 
3.3. Descriptive analysis 259 
 260 
The 48’231 scraped micromobility trips are split between the 8 operators and modes as follows: 17’751 261 
docked e-bike trips, 7’295 docked bike trips, 4’766 dockless e-bike trips and 18’419 dockless e-scooter 262 
trips. The dockless e-scooter trips are split into 4 providers: 9’399 provider #1, 8’251 provider #2, 609 263 
provider #3, 160 provider #4. For the subsequent analyses, we exclude dockless e-scooter providers #3 264 
and #4 as they exhibit too few observations. 265 
 266 
Figure 2 plots descriptive statistics for all remaining 5 providers (all curves are plotted relative to total 267 
number of trips per provider). The plot by time of day shows that shared bikes in general (i.e., dockless 268 
e-bike, docked e-bike, docked bike) are used most during the morning and evening peaks. E-scooters 269 
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on the other hand do not exhibit the morning peak but show a peak at mid-day, in the evening and at 270 
night (i.e., between 8 p.m. and 5 a.m.). 271 
 272 
The plot by distance shows that e-scooters are mostly used for very short trips (median: 721m) while 273 
bikes (median: 1’312m) and e-bikes (median: 1’574m) are used for substantially longer trips. The plot 274 
by elevation difference further reveals that docked bikes and e-scooters are mostly used in even terrain 275 
(median difference in elevation for bikes: -.46m, sd: 19.7; median difference in elevation for e-scooters: 276 
0.20m, sd:16.7), while e-bikes show a much larger spread in both directions (up-hill and down-hill) 277 
(median: -0.16m, sd: 38.8). 278 
 279 
The plot by duration is similar to the plot by distance (i.e., shorter durations for e-scooters, longer 280 
durations for bikes). The plot by battery level reveals that very few e-scooters and dockless e-bikes 281 
show low battery levels (i.e., below 20%) while e-scooters seem to be recharged more often, leading to 282 
higher general battery levels and expected “peaks” at 100%. E-Scooter provider #2 exhibits further 283 
peaks at 60% and 80%, which we assume to be due to programming of e-scooters’ battery information 284 
or charging cycles. 285 
  286 
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Fig. 2. Exemplary descriptive statistics for shared micromobility providers in Zurich. 290 
 291 
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4. Methods 293 
 294 
We identify “competition situations” as follows. For each trip, we consider the departure location 295 
(“origin”) and identify all vehicles available within a 5 min walking distance (417 m at 5 km/h walking 296 
speed) and within 5 min to departure time. Figure 3 visualizes this approach. 297 
 298 
 299 
 300 
 301 
 302 
 303 
 304 
 305 
 306 
 307 
 308 
 309 
 310 
 311 
 312 
Fig. 3. Identifying competing vehicles. 313 
 314 
Using this method, we were able to identify competing available providers for 46’436 trips (~97.8%). 315 
Each of those trips can thus be interpreted as a choice situation, where one provider was chosen while 316 
others were available. Each choice set is composed of a number of available providers and attributes 317 
that differentiate each provider, such as the number of available vehicles per provider (“vehicle 318 
density”) within 5 min walking distance of the origin of the recorded trip, the battery level of the closest 319 
vehicle and whether the provider was chosen to conduct the trip, and of attributes that characterize the 320 
trip (time of day, elevation difference between origin and destination, distance). Table 1 summarizes 321 
all attributes used to define the choice set. 322 
 323 
Table 1 324 
Attributes used to define choice sets (excluding time of day). 325 
 326 

Attribute Unit Provider Min. 1st Qu. Med. Mean 3rd Qu. Max. 

Vehicle 
density 

Count 

Dockless E-Scooter #1  0.0 4.0 9.0 13.1 20.0 61.0 

Dockless E-Scooter #2 0.0 4.0 8.0 9.3 13.0 40.0 

Dockless E-Bike  0.0 1.0 2.0 2.9 4.0 21.0 

Docked Bike 0.0 0.0 5.0 13.1 20.0 140.0 

Docked E-Bike 0.0 3.0 9.0 14.7 21.0 111.0 

Battery 
level % 

Dockless E-Scooter #1  0.0 59.0 75.0 73.4 88.0 100.0 

Dockless E-Scooter #2 16.0 52.0 71.0 69.2 89.0 100.0 

Dockless E-Bike  10.0 44.0 67.0 65.1 89.0 100.0 

Elevation  Metres   -213.9 -8.2 0.1 0.4 8.6 214.1 

Distance Kilometres  0.2 0.7 1.1 1.4 1.9 9.8 

Origin Destination

5 min
walking 
distance

Competing available vehicles 
from different providers
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When analysing the resulting competition situations, striking differences in availabilities and choice 327 
probability appear (Table 2) which motivate the remainder of this paper. While dockless e-scooter 328 
providers are available in 43-44% of all choice situations, they are only chosen in 18-21% of all cases 329 
when available (i.e., they are not chosen in 79-82% of all cases when available). This rate is even lower 330 
for dockless e-bikes, which are only chosen in 11% of all cases when available, while it is substantially 331 
higher for docked bikes (27%) and highest for docked e-bikes (47%). What are the causes behind these 332 
differences in choice probability? 333 
 334 
Table 2 335 
Availabilities and choice probabilities for each provider. 336 
 337 

Provider Available Chosen 

  Yes No 

Dockless E-Scooter #1  44 % 21 % 79 % 

Dockless E-Scooter #2 43 % 18 % 82 % 

Dockless E-Bike  34 % 11 % 89 % 

Docked Bike 29 % 27 % 73 % 

Docked E-Bike 51 % 47 % 53 % 
 338 
In the following, we analyse the causes behind the different choice probabilities. We begin by exploring 339 
bivariate relationships between our choice attributes (cf. Table 1) and the choice probabilities (cf. Table 340 
2) for each provider and mode. Subsequently, we estimate a multinomial logit model (McFadden, 1974) 341 
to explore their joint effect on mode choice using the R package “mixl” (Molloy et al., 2019). We 342 
specify the utility functions using the attributes presented above and the following abbreviations: 343 
 344 
Modes          Attributes 345 
ES1  Dockless E-Scooter Provider #1      EL Elevation difference (Destination – Origin) 346 
ES2   Dockless E-Scooter Provider #2      MO Morning peak (binary) 347 
ES  Dockless E-Scooter Providers (both)     NI Night (binary) 348 
DLEB Dockless E-Bike       DE Vehicle density 349 
DEB Docked E-Bike        DI Distance 350 
DBB  Docked Bike        BA Battery level 351 
 352 
Utility functions 353 
𝑈"#$ = 𝐴𝑆𝐶"#$ +	𝛽",-. ∗ EL + 𝛽23-.4 ∗ MO + 𝛽78-.4 ∗ NI + 𝛽;"-.4 ∗ log(DEAB$) + 𝛽;8-. ∗ DI354 

+ 𝛽DE-.4 ∗ BA 355 
𝑈"#H = 𝐴𝑆𝐶"#H +	𝛽",-. ∗ EL + 𝛽23-.I ∗ MO + 𝛽78-.I ∗ NI + 𝛽;"-.I ∗ DEABH + 𝛽;8-. ∗ DI + 𝛽DE-.I356 

∗ log	(BA) 357 
𝑈;,"D = 𝐴𝑆𝐶;,"D +	𝛽",JK-L ∗ abs(EL) + 𝛽;"JK-L ∗ DEPQAR + 𝛽;8JK-L ∗ DI + 𝛽DEJK-L ∗ log	(BA) 358 
𝑈;"D = 𝛽",J-L ∗ abs(EL) + 𝛽23J-L ∗ MO + 𝛽78J-L ∗ NI + 𝛽;"J-L ∗ log	(DEPAR) + 𝛽;8J-L359 

∗ log	(DI) 360 
𝑈;DD = 𝐴𝑆𝐶;DD + 𝛽",JLL ∗ EL + 𝛽23JLL ∗ MO + 𝛽78JLL ∗ NI + 𝛽;"JLL ∗ DEPRR + 𝛽;8JLL361 

∗ log	(DI) 362 
 363 
 364 
 365 
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5. Results 366 
 367 
5.1. Bivariate relationships 368 
 369 
Figure 4 shows plots of bivariate relationships between the choice probability for each provider and 370 
mode, and time of day, distance, elevation, vehicle density and battery level. The plot by time of day 371 
shows a particularly strong pattern. While docked e-bikes and docked bikes are chosen most during the 372 
morning and evening commuting peaks (i.e., between 6 and 9 a.m. and 4 and 7 p.m.), e-scooters show 373 
the opposite pattern. They are chosen least during these times and most at night (i.e., between 9 p.m. 374 
and 5 a.m.). Dockless e-bikes are chosen most during the morning commuting peak while their choice 375 
probability remains fairly stable for the rest of the day with a slight dip at night. 376 
 377 
The plot by distance shows that as trips get longer, the probability of choosing an e-bike (docked / 378 
dockless) sharply rises while simultaneously the probability of choosing an e-scooter drops. Docked 379 
bikes show a bell curve with choice probability peaking at ~2’100m and then falling with further 380 
distance. The e-scooter and docked e-bike curves cross at a distance of ~650m, which can be interpreted 381 
as a competitive advantage of / general preference for docked e-bikes for distances greater than 650m 382 
when compared to e-scooters (without considering further factors or interaction effects). Dockless e-383 
bikes and e-scooters cross at a greater distance of ~1’500m. 384 
 385 
The plot by elevation shows that the choice probability for e-bikes (docked and dockless) is greater 386 
with increasing absolute elevation difference, while the choice probability for docked bikes peaks at the 387 
highest possible negative elevation difference (i.e., down-hill) and gradually decreases as elevation rises 388 
(up-hill). E-scooters choice probability is highest in flat terrain (i.e., 0 elevation difference). 389 
 390 
Vehicle density is measured by number of available vehicles of each provider within 5 min walking 391 
distance of observed trip origin. The plot shows an increasing choice probability with increasing vehicle 392 
density for all providers as one would expect. Interestingly, however, both the rate (i.e., marginal utility 393 
gain) and the intercept differ by mode. Particularly dockless providers (both e-scooters and e-bikes) 394 
seem to gain most choice probability from a higher vehicle density. Interestingly, there appears to be a 395 
“plateau”, where the maximal choice probability is reached (i.e., where more vehicles on the road do 396 
not increase choice probability). For dockless e-scooters, this plateau appears to begin between 15 and 397 
30 e-scooters within 5 min walking distance (i.e., a circle of 417m radius at 5 km/h walking speed). For 398 
dockless e-bikes, this plateau seems to begin already at ~10 e-bikes within 5 min walking distance. 399 
Docked e-bikes and bikes show higher choice probabilities at lower density levels as well as lower 400 
marginal gains from additional vehicles. This could indicate differences in the choice process for 401 
docked and dockless micromobility variants. Potential users might decide to take a dockless e-scooter 402 
/ e-bike only as they see it, while the decision to take a docked bike / e-bike might be decoupled from 403 
visual stimuli. 404 
 405 
Finally, we explore the impact of the battery level on choice probability. As expected, a higher battery 406 
level at departure is related to a higher choice probability. As for vehicle density, there seems to be a 407 
plateau at which users are (almost) indifferent to a higher battery charge. For dockless e-bikes, this 408 
plateau appears to begin at ~40% battery charge, while for one dockless e-scooter provider it appears 409 
to begin at ~50% battery charge. For the other, we observe a stronger, almost linear effect with outliers 410 
of much increased choice probability at ~60%, ~80% and 100%. While there is no behavioural 411 
explanation for different effects between two e-scooter companies offering the same product, we 412 
speculate the effect to be due to rebalancing in high frequency areas after recharging. 413 
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 415 

 416 
Fig. 4. Bivariate relationships between variables and choice probability. 417 
 418 
 419 
 420 
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Docked E-Bike

Docked Bike
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5.2. Multinomial logit model 421 
 422 
We proceed by reporting the results of our mode choice analysis using a multinomial logit model. The 423 
overall model has a high McFadden pseudo ρ2 value of 0.24 using variations of just five trip- and 424 
alternative-specific attributes (vehicle density, elevation, time of day, distance and battery level) and no 425 
person-specific attributes. We combined the two e-scooter providers where sensible given the bivariate 426 
relationships to create the most parsimonious model possible. We further applied transformations where 427 
sensible (i.e., where the bivariate plots suggest a logarithmic or absolute-value relationship). 428 
 429 
Table 3 displays the results. All coefficients are highly significant and show the expected signs. The 430 
Alternative Specific Constants suggest that docked e-bikes have the highest default utility (competitive 431 
advantage), followed by docked bikes (-0.259), dockless e-scooters (-1.885 and -2.350) and dockless 432 
e-bikes (-3.526). 433 
 434 
Dockless e-bikes seem to have the highest marginal gain in vehicle density which could be due to the 435 
fact that the operator only has few dockless e-bikes deployed (250 for all of Zurich) in comparison to 436 
other operators and modes. Docked alternatives gain least from increased vehicle density, which again 437 
suggests differences in the decision process (see above). 438 
 439 
Both elevation and distance have the strongest and most positive effect for e-bikes. Elevation has a 440 
negative effect for docked bikes, which is intuitive as cycling up-hill takes time and energy, and only 441 
seems to have a slight effect on e-scooters. Distance, in turn, has a strong and negative influence on e-442 
scooter mode choice.  443 
 444 
The morning peak strongly and positively influences mode choice for docked micromobility (e-bikes 445 
and bikes) and equally strongly but negatively for dockless e-scooters. At night, this effect reverses 446 
itself (i.e., strong and positive effect on dockless e-scooters and strong and negative effect on docked 447 
(e-)bikes. Finally, battery charge positively influences mode choice for all alternatives. 448 
  449 
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Table 3 450 
Estimation results for the multinomial logit model. 451 
 452 

Parameter Provider 
Trans-

formation Coef. Std. 

ASC 

Dockless E-Scooter #1   -2.350 *** 

Dockless E-Scooter #2  -1.885 *** 

Dockless E-Bike   -3.526 *** 

Docked Bike  -0.259 *** 

Vehicle density 

Dockless E-Scooter #1  log 0.035 *** 

Dockless E-Scooter #2  0.058 *** 

Dockless E-Bike   0.167 *** 

Docked Bike  0.017 *** 

Docked E-Bike log 0.025 *** 

Elevation 

Dockless E-Scooter  -0.002 ** 

Dockless E-Bike  abs 0.026 *** 

Docked Bike  -0.010 *** 

Docked E-Bike abs 0.014 *** 

Morning peak  
(6 a.m. – 9 a.m.) 

Dockless E-Scooter #1   -0.377 *** 

Dockless E-Scooter #2  -0.212 *** 

Docked Bike  0.170 *** 

Docked E-Bike  0.131 *** 

Night 
(9 p.m. – 5 a.m.) 

Dockless E-Scooter #1   0.829 *** 

Dockless E-Scooter #2  0.517 *** 

Docked Bike  -0.293 *** 

Docked E-Bike  -0.284 *** 

Distance 

Dockless E-Scooter  -0.304 *** 

Dockless E-Bike   0.774 *** 

Docked Bike log 1.331 *** 

Docked E-Bike log 1.344 *** 

Battery level 

Dockless E-Scooter #1   0.026 *** 

Dockless E-Scooter #2 log 0.309 *** 

Dockless E-Bike log 0.134 *** 

McFadden pseudo ρ2   0.24  

AIC   99’552  

n   46’436  

*** : p < 0.01, ** : p < 0.05, * : p < 0.1 
 453 
 454 
 455 
  456 
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6. Concluding discussion 457 
 458 
As the number of micromobility services continues to grow, an increasing number of users in many 459 
cities can choose between several micromobility modes and providers. This raises a number of 460 
questions: How does the usage between different modes and providers differ? Which factors influence 461 
the choice of a specific mode and provider over others, and how? 462 
 463 
Most previous studies have analysed datasets from single providers, thus drawing lessons on the 464 
isolated usage of each mode. Only few comparative studies between two modes exist and none so-far 465 
have analysed competition and mode choice at a high spatiotemporal resolution. To this end, we 466 
analysed a large dataset containing trips of 5 different shared micromobility providers and observations 467 
for all available vehicles at high spatiotemporal resolution over several weeks, both descriptively and 468 
by estimating a mode choice model. 469 
 470 
Our results show that users choose docked e-bikes and docked bikes mostly during peak hours while e-471 
scooters peak during off-peak hours. This indicates that docked modes are preferred for commuting, as 472 
commuting trips are a major contributor to traffic in peak hours. A primary reason for this tendency 473 
may be the fact that for docked services, uncertainty about the spatiotemporal availability of bikes at 474 
the trip origin is lower. This may reinforce habit formation with respect to mode choice for the 475 
commute. 476 
 477 
The choice probability for e-bikes (docked and dockless) tends to increase with distance, while the 478 
probability of choosing an e-scooter decreases. This can be readily explained by the advantage of e-479 
bikes in terms of comfort and lower physical exertion for longer trips. Bicycles generally tend to be 480 
more comfortable for longer trips than e-scooters, but e-bikes keep this advantage also for very long 481 
trips, as aerobic endurance is less important due to the electric motorization. Elevation patterns support 482 
this explanation: e-bikes tend to be preferred for uphill trips. 483 
 484 
The bivariate relationships show a pronounced effect of vehicle density on the choice of dockless e-485 
bikes and e-scooters. This is an indication that availability tends to be a limiting factor for these modes. 486 
Interestingly, there appears to be a “plateau”, where the maximal choice probability is reached (i.e., 487 
where more vehicles on the road do not increase choice probability, or the “marginal utility gain” is 488 
close to 0). For dockless e-scooters, this plateau appears to begin between 15 and 30 e-scooters within 489 
5 min walking distance, while for dockless e-bikes, this plateau seems to begin already at ~10 e-bikes. 490 
Docked e-bikes and bikes show higher choice probabilities at lower density levels as well as lower 491 
marginal gains from additional vehicles. These findings could indicate differences in the choice process 492 
for docked and dockless micromobility variants. Potential users might decide to take a dockless e-493 
scooter / e-bike only as they see it, while the decision to take a docked bike / e-bike might be decoupled 494 
from visual stimuli. 495 
 496 
The battery level has a strong effect on the choice of e-scooters, while it does not seem to strongly affect 497 
the choice of e-bikes. A potential explanation may be that a low battery level of e-scooters has a more 498 
immediate effect on the potential range and speed, and that batteries of e-bikes used in Zurich’s high-499 
end e-bikes have a much higher maximum charge than batteries of e-scooters. As for vehicle density, 500 
there seems to be a plateau at which users are (almost) indifferent to a higher battery charge. For 501 
dockless e-bikes, this plateau appears to begin at ~40% battery charge, while for one dockless e-scooter 502 
provider it appears to begin at ~50% battery charge. 503 
 504 
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We plan several next steps to expand this research. First, we plan to include other factors such as price, 505 
weather and interaction effects between our current factors (e.g., elevation and distance). Second, we 506 
plan to explore different functional forms for our variables and estimated a nested logit model to test 507 
different, multi-level structures of potential decision-making processes (e.g., docked vs dockless choice 508 
before mode and provider choice; mode choice before provider choice). Third, we plan to expand the 509 
scope of our analysis temporally by including several more weeks of Zurich data, and geographically, 510 
by adding Basel as a second Swiss city to contextualize results. 511 
 512 
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