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Abstract

This paper studies and quantifies the direct and indirect effects of a disruption in the
public transport network on passengers using agent-based simulation. In particular, we
study the behavior of agents in the network to measure the spatial and temporal extent
of the impacts (delays, disutility) of a disruption. Due to the dynamic nature of public
transport systems, disruption’s impact on a particular part of the public transport network
propagates through the network in both time and space dimensions. Besides, we attempt
to evaluate passengers’ behavior in as realistic as possible scenarios, where information
about the disruption is scarce, or the disruption is even completely unexpected, and
overcome the difficulties of a real-life passenger’ behavior simulation. For such an aim, we
add a new extension to the within-day replanning module in the agent-based simulation for
public transport (MATSim). We apply our agent-based simulation to the case of the public
transport system of Zürich, Switzerland. Our simulation approach quantifies precisely
the number of directly and indirectly affected agents by the disruption, respectively those
passengers who cannot carry their trip as planned because the services are disrupted and
need to reroute their trip in the network; and those passengers whose services are not
disrupted, but experience additional crowding effects due to the rerouted, directly affected,
passengers. For both groups of travelers, we also study the delay that they experience,
and the variation in their utility score of traveling. We prove how those effects relate to
a large spatial and temporal heterogeneity, and moreover, they depend strongly on the
information available, and replanning actions that the agents might undertake
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1 Introduction

In the last years, research on the vulnerability of public transport networks received
growing attention because of the repercussions that disruption can have on the passengers’
satisfaction. In public transport disruptions, the travelers’ choices are restricted to only the
services that the network provides. Previous studies studied how to improve infrastructure,
network, timetable, rolling stock, mode-choice, and capacity, to mitigate the negative
impact of disruptions (Piner and Condry, 2017; Kiefer et al., 2016). A few ones highlight
the effect of the information strategies on passengers’ behavior (Khattak et al., 2008;
Kattan et al., 2013). Informing passengers as a solution for mitigating the downsides of
disruptions in public transport is very attractive, as it does not need massive investments
in the infrastructure, vehicle, or personnel resources. Information alone enables passengers
to have better decision making in disruption cases, and thereby reducing their delays
and inconvenience. One of the aims of this paper is to show to what extent informing
passengers about the disruption can help them, by studying the replanning process of a
daily-plan, based on some information available, to improve their satisfaction and reduce
the delay that they may experience. We assume the satisfaction can be quantified in an
economic term by a utility score. The delay and utility of the passengers vary according
to the time they become aware of the disruption, and by the extent they can replan their
desired trips and activities. The replanning has unavoidable negative effects, as some
transport trips are unavailable due to the disruption itself. Moreover, due to the limited
capacity of vehicles, indirect effects spread throughout the network in time and space,
as the public transport network will experience different flows, triggering capacity limits
at other moments and places. This will result in further cascading crowding, delays and
inconvenience, i.e. indirect negative effects. In a complementary manner, some usual
capacity limits might not be triggered at all, thus leading to limited positive effects for
specific groups of passengers. We use agent-based modeling to study and quantify such
effects. Starting from plans supposed to be optimal (i.e. user equilibrium in an undisrupted
situation), passengers adjust their daily-plans, depending on the time that they receive
information about the disruption. We analyze and compare the behavior of agents
(representing passengers) in eight scenarios, evaluating scores and delays. We determine
how indirect effects are characterized and depend on the information disseminated

The key contributions of this research are:

1. We analyze and compare passengers’ behavior in disruption, referring to a com-
prehensive set of scenarios, including two benchmark scenarios, which represent
ideal equilibrium solutions with, and without the disruption. Besides, we quantify





      

four scenarios under disruption situation, referring to a disposition timetable and
different information strategies. We consider long disruptions, where replanning
is necessary to represent realistic human behavior. Previous research studied the
propagation effect of a disruption on the public transport network in short time
disruption (lasting less than 45 minutes), where the adjustment of daily-plans could
be ignored. For longer disruptions, the operator will implement corrective actions
(disposition timetable), replanning infrastructure, vehicle and crew resources. The
passengers will need to take this into account to adjust their daily-plan according to
their wish to continue traveling with the maximum utility.

2. By using an agent-based simulation, extended by means of a new within-day replan-
ning module for public transport, we quantify the number of involved passengers and
their delay for the cases of directly and indirectly affected passengers and identify
to which extent indirect effects are a heterogeneous combination of positive and
negative aspects. Few studies evaluated such a comprehensive propagation of effects
mediated by the occupancy level on the public transport network, which expands
beyond a single disrupted event (Malandri et al., 2018). To study indirect effects,
the specific capacity of all vehicles, and the flows of all passengers onboard need to
be considered and modelled.

The paper goes as follows. Chapter 2 describes the problem stated in this research.
Chapter 3 consists of the literature review. Chapter 4 introduces our methodology for
simulation, the critical features of disruption, and presents the different scenarios in
relation to different information strategies. Chapter 5 reports on the case study utilized.
Chapter 6 presents the result and quantifies the effects in terms of delays and score,
discussing the heterogeneity in space and time between directly and indirectly affected
passengers. Finally, Chapter 7 presents the conclusion.

2 Problem description

Disruptions cause complex logistical rescheduling problems when they limit the availability
of transport networks. Often disruptions result in the closure of specific links (i.e. due
to accidents, infrastructure collapse, deterioration, . . . ), which requires users to find
an alternative plan to fulfill their desire for mobility. Most commonly, disruptions are
happening on road transport networks, and travelers have an available car, i.e. they can
react by their own choices to the disruption by replanning or rerouting their trip over the





      

infrastructure links still available.

In the case of public transport networks, disruptions have different impacts as a public
transport network provides mobility only at specified times (when a vehicle runs) and
spaces (at stops) thus limiting available choices for replanning. The vehicles resources
are managed by an operator, which might not know or consider the specific wishes of
the travelers. Typically, the operators react by a new plan of operations (a disposition
timetable), canceling some services, possibly running additional services, or modifying the
service in some ways to take into account unavoidable limitations (i.e. some infrastructure
links are unpassable) as well as operational stability (i.e. short turning runs or inserting
bridging services).

All those actions directly affect passengers. They would need to be informed about the
details of the disruption, including the affected locations and lines, and, if possible, the end
time of the disruption. Having available this information, they can look for an alternative
path, compatible with the updated schedule of services in the disposition timetable,
to fulfill their mobility desire. When all those steps are performed quickly, travelers
might experience a minimal delay; but typically, the reaction time by the operators
and the passengers is a slow and delay-prone process. From the passengers’ point of
view, during the disruption, they have choices to determine the best response, find the
shortest alternative public transport lines to their destination, or leave the network in the
disruption. They might change their route choice, mode choice, or adjust their departure
time. In any case, when the disruption occurs, it causes inconvenience to the passengers,
which can be quantified in delays, and a reduced utility score.

The goal of this paper is to analyze such real aspects and quantify the real-life impacts of
disruptions. For analyzing the impact of a disruption, one could experimentally evaluate
an occurred event, by collecting the data through surveying passengers who experienced
it. Such an experimental study has been performed for mode choice analysis of passengers
after a disruption (Currie and Muir, 2017; Murray-Tuite et al., 2014). Their findings
highlight the importance of improved information before the departure, and the fear of
users to be stranded. However, for a reliable and comprehensive analysis of disruptions
on public transport networks, one would need comprehensive coverage in data for all
passengers, those affected, and those potentially affected, even for unexpected events.
Finally, such an approach is limited only to experienced disruptions and not able to
evaluate hypothetical ones.

another goal of this paper is thus to replicate the dynamics of disruptions in a simulation





      

environment and quantify this way, their impacts on passengers. We believe that, to make
the right decisions, as a reaction to a disruption, precise quantification of their effects
is essential. This assessment needs a comprehensive model of the entire transportation
system, in its interconnection within a specific mode, as well as from other modes, and
related to the activities and desires of travelers. We resort to agent-based simulation,
which has been shown to be able to replicate those constraints (Horni et al., 2016), also for
public transport networks (Bouman, 2017). In such simulation environments, travelers are
represented by agents, which interact with each other. In general, one agent’s choice affects
another agent’s choice and, finally, the whole environment. With a comprehensive and
well-calibrated simulation model, one could assess the impacts of any potential disruptions
on all the passengers on the network. To specifically perform such an analysis, we extend
an existing agent-based simulation environment to incorporate the updates of public
transport services as disposition timetables, as a consequence of the disruption; and the
reaction of passengers, also mediated by the different degrees of information they have of
those updates.

We assume a disruption is an event, unexpected or unknown until shortly before, or
even after its occurrence, which prevents some public transport services to be run as
planned. Possible disruptions can be related, for instance, to operational limitations,
failures, accidents, adverse weather conditions, etc. A disruption is typically associated
with serious (multiple lines, multiple stops) and long (multiple hours) times of degraded
service. The impact of disruptions to public transport is large because they affect the
network-wide availability of resources, and limit the capacity of services offered. For
instance, some services cannot run anymore, as the infrastructure, vehicles, or crew
required are not available at the right moment, at the right place; some other services will
be unable to face larger demands.

This causes adjustments to the public transport service, which typically include a lot of
canceled services; moreover can include and adjustment to the operating plan (timetabling),
an updated rolling stock and crew allocation. Moreover, the public transport operator can
activate alternative and bridging lines, increase the transport capacity (longer vehicles,
more runs) of existing lines, which can help bypass the disruptive event. Such efforts
can be all considered included in the concept of a disposition timetable, which differs
from the planned timetable. Determining and effective disposition timetable is a complex
task, to be performed very quickly, and with only approximate understanding on how the
passengers might distribute along with the network, and/or react (Corman et al., 2016).
In any case, the transport performance of the network will be degraded from the planned
one.





      

In case of no disruption, a typical way in which passengers distribute along the network
can be computed by assignment procedures. Typical concepts used are referring to a user
equilibrium solution, i.e. a situation in which travelers have available a set of alternative
ways to move in the network, and they choose the one which maximizes a utility or
score, related to their satisfaction. Through a day-to-day process, travelers, for instance,
learn that some lines are slower or faster and that some are close to capacity and the
travelers might get denied boarding, incurring, therefore, longer travel times (typically
a disutility). At the condition called user equilibrium, no traveler can improve their
utility/score by their unilateral choice, without reducing the score of another traveler.
A user equilibrium solution can be approximated by a variety of methods; we consider
the often used day-to-day process by which travelers are assumed to learn the utility
of all their possible choices by trying them and learning from the experienced outcome.
Such a process can be easily implemented in a simulation model by means of an iterative
convergent procedure, where each iteration corresponds to one day.

The concept of user equilibrium is not appropriate to model travelers’ actions under dis-
ruptions (Dobler and Nagel, 2016). Disruption is such large, unexpected and non-recurrent
events that move the system away from the equilibrium condition. In particular, the
travelers can hardly anticipate the effects, i.e. most often, they know a disruption is taking
place after it started, or even later, when it affects their planned trip. In such a case, the
score (i.e. utility for all possible alternative choices available in the undisrupted network)
that travelers might have learned through their past is not applicable to the new situation.
As disruptions are not recurrent, travelers cannot learn from past experiences, and a
day-to-day process looks illogical. As the disruptions are unexpected, travelers cannot
be assumed to find the best alternative choice because they have limited information. In
general, there is no information on the disruption itself, and the adjustments triggered in
the public transport network, before the disruption itself starts. There is moreover no
understanding or information about how all other travelers will react, whether everybody
will try to board some specific line, for instance, triggering capacity limits. Some informa-
tion will be available through time, for instance, disseminated by the operators, after the
disruption started.

In an unexpected disruption, the behavior of the passenger is heavily reliant on the
information they receive, in content and time. We assume at this moment that the
operators are able to compute the disposition timetable that reacts the disruption in
negligible time and focus only on the time at which information about this disposition
timetable reaches the travelers. Having no information, passengers might be stranded
at stops, wait for a public transport service which is not running, or not running on





      

time, resulting in large delays, and related large disutility (score). A disruption might
also result in cancellation of activities due to too late arrival (i.e. arrival at work with
multiple hours of delay). We consider those delays and disutility as direct effects of the
disruption. Having available some information, travelers can react; specifically adjust
their travel plan to the newly implemented disposition timetable, so as to maximize their
utility, notwithstanding the disruption. Having available information very early can be
assumed to result in fewer delays, as the set of alternative choices is larger, and allows for
pro-active actions. Having information very late might result in larger delays, as there
are little actions left to do. Therefore, the time at which travelers receive information
is crucial. We identify a few relevant cases of the timing of information dissemination,
which we will investigate in detail in this paper.

We assume travelers are rational, and as soon as they know about the disruption, they
look for adjusting at best their behavior. After the sensitive analysis it can be seen, that
the differences between the points in time (considering a few time for reaction) are small
and does not affect the result. In general, the earlier the time at which agents would
receive information, the better the reaction will be. In the case of a completely unexpected
disruption, the best situation is to receive information right at the moment the disruption
begins. We assume travelers can react in the following ways:

• They can become aware of the disruption at a specific time, equal for everybody
(i.e. once an announcement is broadcasted to everybody at a given time).

• The time the travelers become aware of the disruption can be different for everybody,
based on their time plan: think about when they finish their workday, they look for
their public transport trip in a routing planner service (in this case, the time would
be different for any different traveler, according to when they would finish work).

• The time the travelers become aware of the disruption can be different for everybody,
based on their location: they can become aware of the disruption for instance, once
they reach a station with a display.

• Special cases also include travelers who experience the disruption onboard a disrupted
vehicle and thus are forced to exit the current trip and find another way of moving
forward

When travelers received the information, we assume they immediately look for the
alternative, which maximizes their utility. The travelers using public transport are not
assumed to be able to promptly change the mode to a private car, as they have no vehicle
available right away. The travelers can instead use the public transport services, which are
running despite the disruption; this might result in longer trips, and/or more transfers,





      

and/or longer waiting times, to reach their destination. Specifically, travelers will use
public transport services, which were not typically using (i.e., compared to the undisrupted
user equilibrium situation). In other words, passengers affected by the disruption, who
cannot take their desire public transport vehicles, have to board to other public transport
vehicles. Therefore, they add to the travel demand of the other vehicle, which on a normal
(undisrupted) day, would experience less travel demand. As a result, due to the increased
demand on the other lines, some passengers are not able to board, and they experience
denied boarded due to the full capacity. We call the “indirect effect of a disruption”
the effects of this different assignment of travelers in the network. Specifically, a public
transport line running with different frequency, vehicle capacity, or being canceled will
alter the occupancy level on the other lines too. This results in unexpected sudden changes
in demand for other lines, which disappear quickly as the disruption ends. As a result,
some passengers (which would be not directly affected by the disruption itself, i.e. their
lines are actually undisrupted) will be denied boarding, due to those disrupted travelers
sharing the same vehicles with them. In general, this effect will cascade to a delay for an
even larger set of passengers further away from the specific disrupted location.

A few studies have investigated this effect on public transport networks (Malandri et al.,
2018; Sun et al., 2016). Such an indirect effect has been studied in (Malandri et al.,
2018) as “propagation effects” for the negative impact of the disruption on the higher
occupancy level in the public transport network. We follow the more general way by which
a disruption on a specific public transport line may change, i.e., increase (negative indirect
effect) but also decrease (i.e., positive indirect effect) the occupancy level on the other lines
in the public transport network too. Those indirect effects are heterogeneous in their sign
(i.e., positive or negative), magnitude (i.e. larger or smaller delays), exposure (i.e., affecting
many or few travelers), space (close to the disruption location, or further away) and time
(happening at the same moment as the disruption, but possibly with various intensity over
time; and persisting also after the disruption ended). This heterogeneity brings about the
complexity that we deal with in this paper, to replicate all those processes in a simulation
environment, which relates the possible ways of disseminating information to travelers, to
the impacts the travelers actually face, in their direct and indirect circumstances.





      

3 Literature review

The literature review on the effects of disruption on public transport networks is here
reported, divided into four major categories. The first category investigates behavioral
aspects of the mode choices of passengers in the case of disruption. Mostly, this is based on
stated preferences to understand the choice of the passengers based on experimental data
collected by surveys. (Currie and Muir, 2017) used a survey to understand passenger’s
perceptions and behavior during disruptions and indicated that informing passengers
before the disruption can lead them to opt not to travel, or choose different daily-plans.
(Murray-Tuite et al., 2014) performed a mode choice analysis after a disruption based
employing a Web-based survey. Its outcomes show that passengers are reluctant to alter
mode or change travel choice in a disruption; women are more likely to make changes after
the disruption rather than men. The limitations of stated preferences are in the realism of
the results; and the limited realistic interactions between travelers and non-performance
of the network that can be reasonably investigated.

The second focus of research studied the management of disruptions from the point of view
of optimizing public transportation capacity. (Kiefer et al., 2016) studied recovery plans
for public transportation in the case of the disruption. Installing bus depots result useful
in providing a timely alternative to the disrupted transit lines, and building additional
rail capacity creates additional routes in case of a disruption. (Cadarso et al., 2013)
investigated the recovery of rapid transit rail networks in the case of disruption. The
authors combined changes in the timetable and the availability of rolling stock to satisfy
passengers’ demand. They run their simulation in GAMS/Cplex 12.1, and they assumed
that passengers keep their path choices, and cannot adjust their plans, even though they
are aware of the disruption. Generally, the inclusion of passenger choices, and their sudden
adaptation when they become aware of the disruption, which in reality might include
forced alighting from a disrupted vehicle, and replan of multiple activities, is modelled
partially or even not at all, due to the high complexity already in the optimization of
operations. The third group quantitatively evaluates the role of information strategies in
the decision making of the passengers, in public transport networks. (Khattak et al., 2008)
showed that the travel information delivery mechanism significantly affects the probability
of passengers’ travel decision adjustment, which could, for example, include changing the
route, time, mode of traveling, or dropping the trip. (Kattan et al., 2013) report how
passengers exhibit flexibility in changing their decision about the trip to adjust to the
network facing some disruption. For the given case, given enough information on the
networks, public transit was found more often the travel mode of choice for the passengers,
and passengers were reported to have different preferences to get updated information.





      

(Piner and Condry, 2017) mentioned that passengers should be kept informed as soon as
information is declared accurate and reliable in the disruption. (Xiong et al., 2017) used
an agent-based model integrated with a simulation-based optimization model to evaluate
the agents’ behavior response to different information strategies under uncertainty on
the transportation network under the equilibrium condition. (Leng and Corman, 2020)
investigated the role of information strategies on the passengers’ utility (score) in a public
transport disruption under the equilibrium and non-equilibrium condition.

The last group studied the network dynamics of public transport disruptions, related to the
delays that the passengers experienced. (Rodriguez-Núñez and García-Palomares, 2014)
did a vulnerability analysis for the public transport network to evaluate the consequence
of the disruption on the travel time of the passengers. (Ghaemi et al., 2018) studied
the impact of the disruption length estimates in railways on the consequent delays of
passengers. A few studies specifically investigate the propagation effect of the disruption
through the public transport network considering the delay caused to the passengers.
(Sun et al., 2016)introduce a mathematical model to consider the propagation of the delay
from a trip to a trip in a network under a disruption. They estimated the changes in
travel time and the delays caused by common disruptions based on the survey result.
Common in their study means that the disruption lasts less than 15 minutes. They
further refer to survey data to understand the implications of the disruption on travel
times and delays. Passengers can be affected by being delayed, missing their transport
means, or facing detours. With a similar goal, (Shelat and Cats, 2017) studied the
distribution of passenger flow over the network under a user equilibrium condition, to
find critical links in the network. Equilibrium simulation might result in incorrect or
unrealistic results, when facing an unexpected event such as a disruption. (Malandri et al.,
2018) used an agent-based public transport simulator called BusMezzo to analyze the
capacity vulnerability of public transport under a disruption, specifically focusing on a
non-equilibrium situation.

The goal of this research is to replicate the impacts and dynamics of a real-life disruption by
simulating appropriate scenarios of information dissemination and passengers’ response. ,
we implement an agent-based simulation. We build on this state of the art, by contributing
to mathematical quantification of effects, interconnected with network propagation and
dynamics. The current work fills the existing scientific gaps, as follows:

• We compare the behavior of the passengers in a comprehensive set of scenarios, which
include non-equilibrium conditions, and compare them to equilibrium conditions, to
highlight the differences. This allows us to perform a rich comparison of passengers’





      

behavior under disruption.
• We consider the realistic case, often neglected in the literature, that passengers

become aware of the disruption onboard vehicles, such that they can (or must) adjust
their daily-plans, leaving the disrupted transport vehicle along a new, adjusted,
daily-plan. Moreover, we consider the capacity of public transport vehicles as a
further determinant of disruption impacts.

• We consider long disruptions, for which the public transport operators will provide
an alternative timetable, and the passengers will realistically update their daily-plans
and replan for their travel. A long disruption also requires differentiating between
information available and replanning at different moments in time, i.e. the beginning,
or during the disruption, and pre-trip or en-route. Most previous research evaluating
passenger delays and network dynamics under disruption (Sun et al., 2016; Malandri
et al., 2018), chose a short (less than 45 minutes) disruption; which does not require
a comprehensive modeling of the replanning process of adjustment of the daily-plans
by the passengers.

4 Methodology

The simulation of the impacts and dynamics of a real-life disruption is performed by
an agent-based simulation. We did a novel development in the within-day replanning
module, which provides us with the possibility of simulating complex scenarios and realistic
situations. This section explains some of the basic concepts of agent-based simulation,
that include iterative replanning and within-day replanning, as well as some background
terminology and concepts.

4.1 Agent-based simulation approach

The agent-based simulation analyzes individual behavior, by modelling each traveler as
an individual agent who makes their own decisions according to predefined rules. Agents
interact with each other in the simulation environment where one agent’s choice affects
another agent’s choice and, finally, the whole environment. An agent-based model is built
from three components:





      

• The agents,
• The simulation environment,
• The rules are defining how agents move and interact with each other and through

the environment.

Agent-based simulation models and techniques can help to formulate and evaluate the
behavior of the agents in public transport research (Bouman, 2017). According to (Russell
and Norvig, 2010), an agent is “anything that can be viewed as perceiving its environment
through sensors and acting upon that environment through actuators.” Specifically for
mobility studies, each traveler/agent makes their own decisions in terms of departure time,
route chosen, according to predefined rules; for public transport, the specific vehicle of
which line to take at which time, along which route to travel, including which transfer,
etc. Performing the activities is the desired result for agents and brings them a positive
benefit. The trip to reach an activity is essential that reduces the time available for the
activity. Thus, the benefit of a trip is negative for the agent: the shorter, the better.

An agent-based simulation has the advantage, which is expandable as required. It supports
a very high level of detail in the modeling. Each agent, for example, can be described
with any number of attributes. They can have attributes such as age, gender, living place,
workplace other something else. Depending on these attributes, the agents will behave
differently. For example, an agent, who owns a car, prefers the car more likely than
someone who does not own a car. It is also possible to modeling traffic with a high level of
detail, and consider every means of transport simultaneously in one scenario. Each means
of transportation is furthermore described with different attributes, also at the level of
individual vehicles. It is also possible to simulate delays or a breakdown of the traffic
system. An agent-based simulation, with suitable amount of agents and size of networks,
and appropriate computation time, allows simulating large scenarios with arbitrary levels
of detail.

Agent-based modeling attracts growing attention in the transport field. (Djavadian and
Chow, 2017) Proposed an agent-based day-to-day modification process model to find
the agent-based stochastic user equilibrium and its effects on operating policies. So far,
several frameworks and simulation programs have been developed for simulating transport:
TRANSIMS (TRansportation ANalysis and SIMulation System) was developed with
the aim of forecasting travel demand (Smith et al., 1995). (Javanmardi et al., 2011)
connected TRANSIMS to ADAPTS (Agent-based Dynamic Activity Planning and Travel
Scheduling) (Auld and Mohammadian, 2009). The present research uses the software
MATSim, described more in detail in what follows, which required specific extensions





      

Figure 1: MATSim framework, including input data, simulation run, and the output data
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to include complex aspects of real-life dynamics and accurate analysis of the behavior
as dependent on the information dissemination, which is so far missing in the literature.
As we want to reflect on the heterogeneity of effects of disruptions, we explicitly look at
the differences between agents. Agents have their daily-plans and their own attributes,
including preferences regarding mobility.

4.2 MATSim

Researchers from ETH Zürich and TU Berlin have been developing MATSim (Charypar
et al., 2016). MATSim uses a microscopic description of demand (level of individuals)
through the daily schedule and the synthetic travelers’ decisions. MATSim is an activity-
based and it enables an agent-based simulation of large-scale scenarios with all means of
transport.

The simulation process of MATSim is an iterative day-to-day procedure to approximate
the user equilibrium solution. Figure 1 illustrates the iterative procedure that primarily
consists of three sections of Execution, Replanning, and Scoring. One loop corresponds to
one day. The replanning step is executed at the beginning of each day. The number of
iterations and thus, the number of simulated days is configurable. The individual elements
are explained below as far as needed to describe the extensions proposed; we refer to
(Horni et al., 2016)for further details.

The demand is characterized by a set of agents, with their initial desires in terms of
activities. Those desired activities could be, for example, stay at home, work, perform
shopping in a specific location, spend the evening at home; each of those activities might





      

result in a positive utility to the agent. Given those desires, people would take some actual
choices, which result in a selection of activities to be performed in sequence, exploiting
trips (which might result in negative utility, given the time lost travelling) to move along
a network when the activities are performed at different places. A daily-plan is the actual
sequence of activities (with location and duration) and trips (with mode chosen, routes,
duration), in the example those allowing an agent to reach work from home; to reach the
shopping location, and finally come back home at the end of the day. A trip is made up of
one or multiple stages (continuous movements with one mode of transport), for instance,
when agents have to transfer between two public transport vehicles. The initial demand
is normally calibrated based on empirical data (Charypar et al., 2016).

As an example, an agent can start in the morning by traveling from Home (Activity1) to
Work (Activity2) by bus (Trip 1). The day continues after work by traveling to Shopping
(Activity3) by train (Trip 2), and, finally, by returning Home (Activity1) by bus (Trip 3).
These concepts are described in Figure 2, along with illustrative time (vertical) and space
(horizontal) axes. For the sake of simplicity, in this example, just one stage per trip is
considered.

The agent-based model executes the daily-plan of the agents, by updating at regular time
location, possible activity being performed, possible trip being performed. The agents
can interact with each other, for resources with limited capacities, for instance traffic
jams might reduce the speed of road transport, crowding in a public transport vehicle
might result in a denied boarding and related delay. For each daily-plan, the score can
be computed at the end of the execution, based on econometric parameters. (Charypar
et al., 2016) developed the scoring function of MATSim, as corresponding to the sum of
the utility of the activities and the travel utility, as in Formula (1) where n is the number
of activities, q is an activity and S corresponds to the utility of activities (Sact,q), trips
(Strav,mode(q)), or daily plans (Splan). The trip Strav,mode(q), is the trip after the activity q.

Splan =
n−1∑
q=0

Sact,q +
n−1∑
q=0

Strav,mode(q) (1)

The daily-plan are changed iteratively by the day-to-day replanning such that the utility,
computed by a score function is maximized, given the choices of the other agents. Namely,
based on the experienced traffic conditions of the current day, alternatives are generated





      

Figure 2: Explanation of traveling in agent based simulation
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for the next day, for instance by rerouting a trip, changing the timeline of activities,
choosing another means of transport, etc. Iteratively, better daily plans are chosen, and
worse daily plans are discarded by the day-to-day iterative process, until an optimum is
reached. When no agent can improve their utility without reducing the utility of another
agent, a user equilibrium is reached.

4.3 Within-day replanning approach

An iterative (day-to-day) replanning approach is valid as long as the scenario describes a
typical situation or day, where knowledge about the outcomes of choices are applicable and
useful, to take a decision in the next days; for instance, avoiding traffic jams during rush
hours by changing departure times, or using alternative routes. However, if unexpected





      

Figure 3: The Agent-based simulation approach (within-day replanning)
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events happen, that the agents cannot anticipate, (i.e. the disruption investigated) a user
equilibrium (and iterative approach used for a day-to-day process, to find it) is not a
logical choice, as it is far from reality: agents face disruptions only once; and have no
information on beforehand on the alternatives. (Dobler and Nagel, 2016)already reflected
on the problems of illogical agent behavior in unexpected events. For instance, in a
user equilibrium solution found (for instance by an iterative approach) considering the
disruption, agents can start rerouting before the disruption occurs, based on the knowledge
they have (from the previous iterations). However, in reality, in the case of an unexpected
event, passengers do not have prior knowledge about the disruption and, therefore, they
react to the disruption after they know about it. A clear solution to preventing such
problems is using an alternative simulation approach which does not work based on the
iterative optimization process. To this end, within-day replanning approach simulates
only a single iteration, preventing problems resulting from an iterative simulation process
(Dobler and Nagel, 2016; Rodriguez-Núñez and García-Palomares, 2014). Within-day
replanning modifies agents’ daily-plans using a single iteration (see figure 3). Therefore, it
is crucial to incorporate all relevant aspects, including all information available to agents,
in this single iteration. (Dobler and Nagel, 2016) developed the within-day replanning for
road cars/traffic according to two parameters, the elements of the plan (activities and trips)
and the time that those elements are replanned. We similarly propose that for the within-
day replanning, trips can be updated in terms of stages, lines used, mode of transport,
and departure time considered, while considering the same origin and destination of each
trip between two given activities. The updates need to furthermore differentiate between
future activities and trips, and current or past activities and trips, as some of those latter
cannot be adjusted anymore because either already performed; and some can be adjusted
in a limited manner because being performed, or in an immediate future which is actually
unavoidable.





      

Figure 3 shows how such a situation can be simulated. Each agent adjusts their daily-plan
by means of the within-day replanning module, which is called for each agent, at a specific
time, triggered when the agents becomes aware of the disruption (we call Tinfo,a the time
at which agent a becomes aware of the disruption). At that moment, the decision-making
process of an agent is particularly crucial. In an iterative approach, each agent has
complete information and can consequently select the best updates to their daily-plan,
based on a best-response principle. Due to the realistic limitation of available information,
a within-day approach can only refer to a best guess, concerning the future conditions of
the network. Moreover, the time and location in which agents receive the information
affects the possible choices of activities and trips, which can be updated.

The within-day replanning module (WR) receives as input the daily-plan of an agent,
separating between past activities and trips, which already occurred during the day can
cannot be replanned or changed; and those after a certain moment in time (start of
the replanning, Treplan) which can be actually replanned or adjusted. The start of the
replanning is related to a trigger event, which represents the moment Tinfo that agents
become aware of the disruption. A trigger is determined by its time, location and situation
of the agents.

WR works by substituting activities and trips which can be replanned (i.e., after Treplan)
with new ones, based on the available understanding of the status of the network, such
that the total expected utility is maximized. In the first instance, we do not allow to drop
or introduce new activities, but only temporally shifting them. Therefore, the only true
change is regarding trips, which are connecting activities. For those, the shortest path,
based on the services, which are known to be running in the disposition timetable during
the disruption, is used to determine the trip with the maximum utility. For a trip, route,
departure time, mode of transport, origin, and destination can be replanned. The utility
of a trip can only be estimated as the reaction of other agents is unknown (for instance,
many agents can be replanned within-day to a minor road, empty at user equilibrium,
but that will cause large scale congestion in practice). Replanning one single trip might
result in a chain of replan that cascade to later times. The WR continue to replan the
daily-plans of the agents from the specific moment that it is called until the end of the
daily-plan. The WR returns as output a complete daily-plan, in which the part to be
replanned is adjusted. We call this output an adjusted daily plan.

(Leng and Corman, 2020) develop a first within-day replanning module for public trans-
portation users in MATSim. Their model simulates the start time of the disruption as
a trigger to use the within-day replanning module for agents. Their model identified





      

two extreme information strategy scenarios: (1) all agents do not become aware of the
disruption until the disruption is over (2) all agents become aware of the disruption at
the start of the disruption. Moreover an ideal unrealistic benchmark was identified as
(3) all agents are aware of the disruption, and they identify their best response in a user
equilibrium case. Their model ignores capacity of public transport vehicles and therefore
is unable to quantify the indirect effects of disruptions, which are the goal of this paper.

4.4 Information strategy

During a disruption, information about the details of the disruption and the possibility
of alternative plans is essential for agents since the adjustment of their daily-plans is
highly dependent on the information they have available. (Bouman, 2017; Kattan et al.,
2013; Khattak et al., 2008; Piner and Condry, 2017) stress the importance of the pre-trip
information dissemination in case of disruptions, to make passengers more likely to take
the alternative trips’ plans. We call information strategy the way by which each agent
has information and the possibility to adjust their behavior, i.e. their daily-plan. The
availability of information about alternative routes and the duration of the disruption
plays a significant role in determining the consequences of public transport disruptions.
This research study agents’ behavior in eight scenarios, schematically reported in Figure
4, further divided into 4 information strategies scenarios, and 4 reference scenarios (for
comparison purposes; two of them are based on equilibrium assumption). These scenarios
are:

1. No-Information (NI). Agents do not have any information about the disruption,
specifically on its location, affected lines, and the start and end time of the disruption.
Their reaction consists of waiting at the train station until arrival of the next vehicle,
of the public transport line they intended to take.

2. Start of the morning (SM). Agents know about the disruption in the morning of the
day, before they start their traveling. In this case, the disruption is not completely
unexpected. Their reaction consists of replanning the entire daily-plan with the
highest possible degree of freedom, even though they cannot anticipate the reactions
of the other users.

3. Start of the disruption (SD). Agents become aware of the disruption exactly when
disruption starts, no matter where they are already in their traveling, or in their
activity location. At that time, they ask for a replanning.

4. Start of the trip (ST). Agents become aware of the disruption at different times, in





      

relation to the time they intend to perform their trip, which is actually disrupted.
Specifically, agents affected by the disruption have by definition one or more trips
in their daily-plan which cannot be performed. When the first disrupted trip is
attempted to be performed, the agent becomes aware of the disruption, and asks for
a replanning.

To be able to evaluate the absolute variations in score of the adjusted daily-plan of the
agents in those scenarios, and relate to the delay that they experience, we simulate four
other scenarios as reference cases, as follows.

5. Equilibrium without disruption (EOD). This scenario is a normal day (basic scenario)
without any disruption. This corresponds to a normal daily routine for the passengers.
This is the base behavior, the EOD for the agent that is approximated through the
iterative process of day-to-day replanning in the agent-based simulation.

6. Equilibrium with disruption (EWD). This scenario has a disrupted timetable as the
input data and runs through the iterative process. In this scenario, the agents are
supposed to know the disruption, and discover by a day-to-day iterative approach
the reaction of the other agents to the disruption. This results in a different user
equilibrium, adapted to the disrupted situations.

7. Replan When Boarding Denied. This scenario is a normal day (basic scenario)
without any disruption, but specifically quantifying the effects of public transport
vehicle capacities and crowding into the choices of agents. In this scenario, agents
who are denied boarding due to the full capacity, in an undisrupted day, will go
through the within-day replanning module to receive a new plan for the traveling.

8. Base Plan. This is the desired plan described determined by the input data, and
used a starting solution for the iterative day-to-day process. This scenario is used
for quantifying the delay experienced by the agents.

4.5 Within-day replanning methodology and approach

In this research, to be able to simulate direct and indirect effects of a disruption, we
develop a methodology for within-day replanning, and consequently extend the MATSim
environment. The functional goals of the methodology and the newly proposed within-day
replanning module are:





      

Figure 4: Description of the scenarios considered
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1. to consider an entire multimodal network as solution space for the adjusted daily
plans, and an equilibrium solution proving starting daily plans;

2. to refer to a utility function of the users, which is to be maximized by the choices
made available by the information;

3. to be able to disseminate information to agents (that is, determining Tinfo) by (3A)
broadcasting methods, by which all agents have the same information at the same
time (think about radio, or news); but also by individual communication, at a
specified time (3B) or place (3C);

4. to be able to adjust the daily-plan starting from a specific time Treplan, in general
related to the Tinfo.

5. to include effects of limited capacity of public transport vehicles, and therefore
include the realistic reaction of people who are denied boarding.

6. To cascade the adjustment of daily-plans (replan of activities and trips) as far as
those cannot take place as originally planned.

Figure 5 reports graphically the flowchart of the methodology used. We now explain how
the four functional goals above categorize the chosen information strategies scenarios.
Moreover, other possible choices of information strategies can be implemented, given the





      

generality of the methodology. Functional goals 1 and 2 are respectively addressed by
the comprehensive agent based simulation used, and the within-day replanning module
as explained above. In scenarios SM and SD broadcasting (3A) is used to distribute
information. In other words, all agents have the same Tinfo. The passengers can know
about the disruption before they begin the trip, therefore avoiding starting a trip or a
stage which ultimately will lead them to be waiting at a stop, where a disrupted service
should have run. In general, the earlier Tinfo, the better the alternatives which could be
chosen. The scenario SD has been already identified (but neglecting vehicle capacity and
indirect effects) in (Leng and Corman, 2020).

If agents become aware of the disruption when they attempt to take a disrupted line, such
as in the ST scenario, each agent knows about the disruption at different times, based
on the effective time at which agents attempt to board their planned public transport
line, and the specific stop where boarding is attempted. Such a situation is commonly
determined by the available information systems at stations, stops, or other locations.
The usual information systems at stations are speaker announcements, departure boards
directly at the tracks and general departure and arrival displays, which are abundant in
the Zürich network, and actually used to disseminate information in case of disruptions.
Such a situation is covered by functional goal 3C above.

In scenario SM, the within-day replanning module adjusts the daily-plan starting from a
Treplan equal to the end time of the first activity, which is by default is staying at home
overnight. In scenario SD, the within-day replanning module considers a Treplan equal to
the start time of the disruption, regardless of the state or location of the agents. At that
time, two possibilities are given: agents can be performing an activity; or performing a
stage of a trip. In both cases, Treplan corresponds to the earliest possible time, after the
ending of the current activity, or ending of the current stage of the trip. This relates to
the functional goal 4. In scenario ST, Treplan is actually coinciding with Tinfo, i.e. the
within-day replanning can adjust any further activity or trip, from the very moment they
arrive at the stop where they attempt to board. Therefore, Treplan in ST is time and space
based.

In both SD and ST, there is the possibility that some agents are already on board on a
disrupted public transport vehicle when they know about the disruption (shown in purple
color in figure 5) through call announcements and a display. This case corresponds to the
functional goal 3B. In such a case, all passengers onboard will receive the information that
their trip cannot be performed as planned, when the vehicle actually becomes disrupted
(Tinfo). The agents will need to disembark and replan; in such case, Treplan is also the same





      

Figure 5: Flowchart of the proposed methodology
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The last trigger for calling the within-day replanning is the moment when agents are
denied boarding due to a full capacity of a vehicle (identified by the functional goal
5, and shown in yellow color in figure 5). In such a situation, there is no concept of
Tinfo, but Treplan corresponds to the moment of being denied boarding. The within-day
replanning determines an adjusted daily-plan from the time and location in which they are
denied boarding. Finally, the daily-plans of the agents are first adjusted from Treplan until
the next activity in their daily-plans that does not require adjustment. In fact, a delay
from the first disrupted trip might propagate through the entire daily-plan. Moreover,
a traveler might face multiple times replanning over a daily plan, especially in case of
denied boarding. This relates to the functional goal (6).





      

5 Case study

To test our methodology and evaluate the direct and indirect effects of a disruption on
a large multimodal network, we chose on the entire transport demand in Zürich, and
its public transportation system. However, the proposed methodology is not limited to
any particular geographical situation, and can be applied universally. We represent the
population of Zürich by means of agents, at 1 %-symbol sampling rate, that is, each
agent represent 100 persons in real life; capacities of road links and vehicles are scaled
accordingly. This results in 15’286 agents. We refer to a disruption affecting the core of the
public transport network, namely affecting Zürich HB, which is the central rail station in
Zürich, and Zürich Oerlikon, the second-largest nodal point. Between those two stations,
three alternative rail infrastructure connections are running via Zürich Hardbrücke, via
Zürich Wipkingen and via the Zürich cross-city link (DML) tunnel. Services at Zürich
Hardbrücke station are operated by six train lines: S15, S9, S16, S6, S7, and S21. Services
at Zürich Wipkingen station are also operated by six train lines: S24, RE, IC4, IR75, IR37,
and IR70. The tunnel line (undisrupted) is used by eight train lines: S2, S8, S19, S14,
IR36, IC8, IC5, and IC1. There are moreover a series of trams and buses, which with or
without a transfer allow for a connection between those two major stations. A schematic
view of the disrupted lines and stations is illustrated in Figure 6. The disruptions are
confined to geographical and time dimensions. The dotted lines in Figure 6 represent the
disrupted sections of the rail lines, while the solid lines are those sections of the rail lines,
which are always available for trains to run. All other public transport, based on tram
or buses or other vehicles, is not affected by the disruption, as well as all road transport.
We assume that on a normal working day, a disruption occurs on both rail infrastructure
connections between Zürich HB and Zürich Oerlikon via Zürich Hardbrücke and Zürich
Wipkingen.

During the afternoon peak hours (between 16:00 and 19:00), no train can run on the
disrupted lines. The feasible disposition timetable is assumed to operate during the
Disruption Time, which is from 16:00 to 19:00:

• For the lines via Zürich Hardbrücke and Zürich Wipkingen, all the train scheduled
are canceled between Zürich HB and Zürich Oerlikon. For the line, IC4, since it does
not have any stop between Zürich Oerlikon and Zürich Wipkingen, the cancellation
is extended until/from Schaffhausen. The same is true for lines IR75 and IR37,
being canceled until/from Zürich Flughafen.

• Between 16:00 and 19:00, the original train schedules beyond either Zürich HB or





      

Figure 6: Details of rail elements in Zürich scenario for the considered example
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Zürich Oerlikon (apart for the exceptions just introduced for IC4, IR75 and IR37)
are maintained.

• Before 16:00 and after 19:00, the original train schedules are not affected.
• Some terms used in the upcoming section are defined here:
• The Disruption Time is the time between disruption start (16:00), and disruption

end (19:00).
• The Disrupted Line is a line for which not all its services are able to run due to the

disruption. A list of these disrupted lines is shown in Figure 6.
• A Disrupted Vehicle is a vehicle used by a service, which is not able to run due to

the disruption.
• The Disrupted Stations consist of the two central locations which delimit the
disruption (Zürich HB and Zürich Oerlikon) and the stations along the disrupted
lines (Zürich Hardbrücke and Zürich Wipkingen). In addition, for lines IC4, IR75,
and IR37, which do not have any intermediate stop, the extended Disrupted Stations
are Schaffhausen and Zürich Flughafen.

Referring to this disruption, we identify agents affected by the disruption as those running





      

at the disrupted time, on a disrupted vehicle, between the disrupted stations, in the
EOD scenario. In other words, the agents daily-plan under scenario EOD would use
any Disrupted Lines (S15, S9, S16, S6, S7, S21, S24, RE, IC4, IR75, IR37, and IR70),
during the Disruption Time, to travel between the Disrupted Stations (Zürich Hardbrücke,
Zürich Wipkingen, Zürich HB, and Zürich Oerlikon - for IC4 Schaffhausen and finally
Zürich Flughafen for lines IR75 and IR37), or travelling further, but requiring to pass over
the disrupted lines. In the simulated test case, 140 agents (therefore corresponding to
1400 people in real life) cannot perform their usual trip. These agents are called “directly
affected agents” and we analyze their behavior and utility in detail. We later study in
sections 6.3 and 6.4 the indirect effects of the disruption on the “indirectly affected agents”,
who face denied boarding due to the replanned directly affected agents

6 Results

6.1 Delay Analysis, directly affected agents

In this section, we quantify the effects of the different information strategies on arrival
time of the directly affected agents only, to evaluate the role that information strategies
have on mitigating the Plan-delay and Activity-delay of the agents directly affected by
the disruption.

We start by considering the Plan-delay. This is the difference between the time that
agents arrive at the location of their activities, and the time that agents wished to arrive
as in input data, or Base Plan scenario. We compute a scenario-wide Plan-delay quantity
by summing up, for each scenario, the Plan-delay for all directly affected agents, for
all activities taking place after the disruption begins. In fact, on a normal day without
disruption, agents may experience anyway a delay (schedule delay in transport economics),
that they accept as minimal disutility, thereby arriving possibly slightly late at work or
the activities of their choice. In other terms, the Plan-delay is the delay on a normal
day, which will be increased by the delays caused by the disruption, when a disrupted
scenarios is considered. The cumulative distribution of Plan-delay (i.e. delay compared to
desired time in the Base Plan) under different scenarios are shown in Figure 7. X-Axis
shows the delay, in minutes, Y-axis the cumulative probability, varying from 0 to 1; the





      

Figure 7: Cumulative distribution of Plan-delay for directly affected agents
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scenarios are represented in the legend with specific colors; the same color scheme is used
throughout the paper.

Figure 7 demonstrates how EOD scenario (green) corresponds to the least plan-delay (i.e.,
the one at the left-most side of the Figure), and a slightly worse solution (i.e. slightly larger
delays, for all agents) is reported by EWD (blue). After these two (ideal) equilibrium
scenarios, the rank of scenarios in terms of increasing delays is SM (black), SD (purple),
with comparable values; further, ST (yellow), and NI (red), with the largest Plan-delay.
These results are in agreement with our understanding.

The delays of the agents are due to the disrupted trips; and the propagation of delays
towards later activities and trips. Moreover, some agents may experience denied boarding
due to full capacity and, therefore, even longer waiting times. The statistics for the
Plan-delay which happens after the disruption, i.e. for all the activities that have been
done after the begin of the disruption at 16:00, is reported in table 1.

The detailed numerical results of Plan-delay are reported in Table 1, as scenarios (columns).
In general, the lower, the better; but a very negative plan-delay corresponds to a negative
schedule delay, which might be again resulting in disutility. All numbers are in minutes
unless otherwise reported. The rows report the data as follows. Regarding the mean and
its normalized value wrt to EOD, the rank of the scenarios follows the order identified
already in the previous diagrams. The overall impact of the disruption can be already
estimated by the 62% more delays experienced in the EWD. In other terms, even in





      

Table 1: Agents’ Plan-delay in each scenario

EOD EWD SM SD ST NI

Mean 4.0 6.0 12.4 17.0 23.4 74.2

% of EOD 100 150 310 425 586 1858

Minimum -118.2 -134.7 -118.2 -118.2 -113.5 -32.7

25 perc -6.9 -9.5 -0.7 -0.8 -1.2 18.9

50 perc 4.7 5.0 10.7 11.3 15.1 64.4

75 perc 17.7 16.9 26.0 28.0 33.9 110.2

90 perc 31.9 34.5 42.7 41.3 62.0 161.6

Maximum 65.8 209.8 131.2 314.8 331.9 331.9

Agents 140 140 140 140 140 114

presence of perfect information and optimal response, the disruption results in some
unavoidable delay. When no equilibrium is considered, but the disruption is still known
well in advance, i.e. scenario SM, the delay is three times as in EOD, and twice as in
EWD. This last gap between EWD and SM reports the significant degree by which agents
interact with each other, possibly changing mode, and causing unexpected congestion. The
best non-anticipatory scenario, i.e. SD, assumes all agents are able to adjust their daily
plan as soon as the disruption starts, and is resulting in almost twice as large delays as
the SM. The ST scenario has further 25% more delay. No information (NI) unsurprisingly
results in by far the worse delay, almost 20 times more than EOD. The spread between
the lower percentile and the higher percentile is relatively constant (24 to 28 minutes for
the interquartile range is about for all approaches, apart from ST = 35 minutes, and NI,
90 minutes). In other terms, having information not only reduces delay, but reduces the
amount by which different agents experience delay, reducing especially the large delays.
This effect is also evident between SM and SD, which differ mostly on the very high
percentile, i.e. the very delayed agents, while most other figures are in good agreement.
In other terms, knowing about the disruption earlier helps the most those people who will
suffer the largest delay. The minimum delay for NI is largely positive at 18 minutes, while
all other replanning approaches can guarantee that at least somebody arrives early, due
to some replanning. The maximum delay is very large for all non-anticipative scenarios,
i.e. SD ST and NI, which hints at the fact that despite replanning, some agents are still
experiencing a very large delay. In fact, some services canceled during the disruption have
no alternative available in the multimodal public transport network of Zürich.





      

Figure 8: Cumulative distribution of Activity-delay (delay wrt EOD) for directly affected
agents
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We now investigate the Activity-delay. This is the difference between the arrival time
at activities in the EOD scenario and the arrival time at activities, in each disrupted
scenario, for all directly affected agents. In general, the lower, the better; again a very
negative Activity-delay corresponds to a negative schedule delay, which might be resulting
in disutility. The cumulative distribution of Activity-delay under different scenarios is
shown in Figure 8, and the detailed statistics about the Activity-delay in Figure 8 and
Table 2. The layout and conventions are the same as the previous Figure and Table.

Table 2: Activity-delay (delay wrt EOD), in each scenario

EWD SM SD ST NI

Mean 2.1 8.5 13.1 19.4 67.1

Minimum -54.26 0 0 0 0

25 perc -1.51 0.02 0.02 0.02 15

50 perc 0 1.5 2.59 4.75 59.7

75 perc 6.11 7.6 10.09 15.3 104.5

90 perc 14.75 20.4 23.5 41.8 147.8

Maximum 201.65 141.2 267.8 321.3 321.3

Agents 140 140 140 140 114

Figure 8 reports the Activity-delay wrt to the EOD (therefore, EOD is not shown, and
would correspond to a 0 Activity-delay). Three main patterns are evident: EWD results





      

in positive and negative delays at the same time, with a 50 percentile actually equal to the
EOD. The NI results in large Activity-delay, ranging from 0 till well above 300 minutes.
The other approaches exhibit limited difference, but a clear rank is evident, with SM
performing better than SD performing better than ST. The gaps between those three
approaches are all in the order of 5 minutes. It can be seen in Figure 8 that some agents
experience a negative activity-delay in the EWD compared to EOD, corresponding to an
earlier arrival. On the other hand, some other agents experience a positive Activity-delay.
In fact, the iterative day-to-day approach seeks for a different equilibrium, where agents
collectively change their plans, and as a result might have a different timing of activities
and trips, and even changing transport mode. Overall, the net effect is still a delay, albeit
a minor one, quantifiable in 2.5 minutes extra. From Table 2 it is also evident how EWD
requires changing the plans to many agents, with a 90-percentile value of Activity-delay
actually higher than SM and SD. In other terms, the larger the degrees of freedom that
a population of agents has, to deal with a disruption, the larger the changes that the
agents will experience, some in positive, some in negative. Figure 8 clearly highlights the
large variability of EWD, but its low mean. All within-day replanning have a positive
Activity-delay. The maximum delay is 321, which is more than 5 hours; this might be
related again to possibly stranded passengers. We also remark how NI results in less
agents considered in the figure, as 26 agents (corresponding to 18% of the 140 directly
affected agent) cannot perform any activity after the disruption.

Overall, Table 2 shows that the Activity-delay has a similar rank and behavior as the
Plan-delay, but different absolute values. Based on this, we will later focus the discussion
of the indirectly affected agents on the Activity-delay only.

6.2 Score Analysis for directly affected agents

In this section, we discuss the results in terms of utility score, rather than delay. Similarly
to the previous sections, we discuss the results in terms of a cumulative distribution plots,
which highlights the heterogeneity of effects towards the affected agents, and numerical
details in a table. Those are Figure 9 and Table 3 respectively. The same conventions as
for the previous Figures and Tables apply. Contrary to delay (a lower delay is better), a
higher score is better. Considering this, Figure 9 is mostly specular compared to Figures
7 and 8, with different concavity, and reversed horizontal positioning of the best/worst
conditions.





      

Figure 9: Cumulative distribution of the utility score for the 140 directly affected agents
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Overall, the rank (best to worst) of the scenarios follows mostly the previously identified
dynamics, i.e. EOD better than EWD, SM, SD, ST and NI. The directly affected agents
by definition have a user equilibrium daily plan where public transport is used (otherwise,
they would not be disrupted). In case they cannot perform their desired trip as in the
user equilibrium, they will experience a negative utility. In the specific case, they mostly
resort in changing mode of transportation, which avoids the disruption, but results in less
utility, given the used score function. Moreover, we remark that we report in Figure 9
only the directly affected agents; already from the previous two sections, it was evident
how the EWD in fact, changes activities, routes, trips for many agents. In the specific
case, the global mean score (i.e. of all 15286 agents, not just those 140 directly affected
by the disruption) in EWD decreases by 0.02774 (0.8% decrease) from the EOD solution,
this latter being evaluated at -3.25886. For the directly affected agents only, it decreases
more, a 17% reduction (Table 3). In other terms, there are other agents, which, in the
newly found user equilibrium with disruption, actually benefit from the corresponding
reduction of utility that the directly affected agents incur. This heterogeneity of effects
that a large-scale change of conditions brings was already discussed, for the smaller group
of directly affected agents. Summarizing this effect, changing much in the daily-plan
of the agents, a globally better solution can be found, but some agents might actually
experience lower disutility than in other cases.

Looking at the within-day replanning scenarios, the gap between SM, SD and ST is
rather limited to within 10% of the EOD; the minimum, 75 percentile and maximum are
relatively equivalent. In other terms, the difference lies mostly in a lot of agents within the
lower half of the score, which experience a further decrease in score, the later information
is shared and replanning can be performed. The maximum score is anyway positive, i.e.





      

Table 3: Agents’ Score, in each scenario

EOD EWD SM SD ST NI

Mean -6.3 -7.4 -7.7 -9.0 -9.6 -14.7

% of EOD 100 117 122 142 152 233

Minimum -42.8 -55.2 -43.1 -59.0 -49.3 -51.6

25 perc -9.1 -10.3 -10.4 -11.6 -13.5 -19.5

50 perc -5.7 -6.6 -6.4 -6.9 -7.4 -13.2

75 perc -2.1 -3.1 -2.8 -3.0 -2.9 -7.4

90 perc 0.7 -0.5 0.5 0.0 0.0 -2.5

Maximum 8.9 7.6 7.6 7.6 7.6 7.6

Agents 140 140 140 140 140 140

some agent surprisingly improves utility in the wake of the disruption. Similar effects,
affecting a negligibly small amount of agents, were reported also in (Leng and Corman
2020) and are to be imputed to outliers in the large data analyzed, and the approximations
in the functioning of the agent-based simulation.

The gap between the SM and SD scenario, quantifiable in 8% relates to the benefit of
knowing the disruption beforehand, and having a larger set of possible choices to choose
for replanning. The slightly larger difference between SD and ST shows how a later
information time decreases the utility even further. Both those effects are stronger for
the lower percentiles of scores, i.e. those agents experiencing the highest disutility. In
any case, the gap with NI is very large, delivering almost twice as large disutility as the
second-worst. NI is also reporting a distinctively large spread of score between min and
max, and also interquartile range, i.e. the stranded passenger who are not able to replan
experience a very large disutility (which is a parallel to the delay discussed in the previous
sections).

As a conclusion, in unexpected disruptions agents cannot react by shifting their activity
to a moment earlier in time, and cannot drop activities to improve their score. Therefore,
we see the value computed for the score largely equivalent to delays, for what concerns a
discussion of the effects of information strategies towards network performance by means
of within-day replanning. For this reason, we will focus only on Activity-delay in the next
sections.





      

6.3 Indirectly affected agents

We so far investigated the agents who are not able to perform their trip as it was planned,
because of a disrupted public transport vehicle, i.e. the directly affected agents. However,
when considering the vehicle capacity, the disruption has an indirect effect on other users
of the public transport network as well. This indirect effect is firstly quantified here, as
variations (increase/ decrease) in the occupancy level on the other lines, due to a disruption
happening somewhere in the network. Practically, this results in lines, which bypass the
disruption, being more loaded, and therefore resulting more often in denied boarding to
anybody willing to take them. Overall, the former phenomena will lead to delay for a
broader geographical and time dimension, with more agents than the directly affected
ones, actually experiencing a disutility related to the disruption (negatively indirectly
affected agents, experiencing a positive delay).

It can also happen that the disruption results in less loads in specific lines, for instance
those where people on the disrupted vehicles would normally transfer to; this results in
less load on vehicles somewhere in the network, and possibly more utility for a restricted
set of passengers (positively indirectly affected agents, experiencing a negative delay, i.e.
an early arrival). This chapter investigates in detail and quantifies those two effects.

Figure 10 shows a map of the negative and positive indirectly affected agents overlaid on
the disruption area, that is Zürich area, in the SM, ST, SD, and NI scenarios respectively,
i.e. all those with within-day replanning. The red color of the bubbles shows the negative,
and the blue shows the positive indirectly affected agents. The bigger the size of the bubble
represents a larger number of agents affected for that specific location. The two largest
bubbles are the focal points at Zürich HB (middle, bottom half) and Zürich Oerlikon
(middle, center).

As can be seen, the number of agents who are negatively indirectly affected (overall
amount of red) is highest in SD scenario, and the second-highest in the SM scenarios, both
larger than the NI scenario. This result comes from the fact that agents in NI scenario
will have no within-day replanning, therefore not changing the occupancy level of the
other parts the public transport network. Their adjustment will result in travelling later
when the disruption finished, which is a large peak of people, but that would mean to
move after 19.00, that it after peak hour, therefore resulting in less crowding experienced
or caused. The two scenarios, SD and SM, have instead an explicit adjustment by the
within-day replanning module. As a consequence, they are able to avoid the disrupted area,





      

Figure 10: Location and amount of agents negatively and positively indirectly affected by
the disruption. Map size is about 15 km. (scenarios A: SM, B: ST, C: SD, D: NI)
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but increase the occupancy level of the other public transport lines (not affected by the
disruption). As those lines might be crowded, more agents will experience denied boarding
and therefore be indirectly negatively affected by the disruption. The smallest amount
of negatively indirectly affected agents occurs in scenario ST, in which directly affected
agents become aware of the disruption exactly the time they attempt to board their
planned (disrupted) public transport vehicle. As they become aware the last, compared
to the other scenarios, they will resort less to use other lines of the network, therefore
spreading less the negative indirect effects throughout the network. They also avoid to
move all together when the disruption ends, i.e. what happens in NI scenario.

Thus, we see a tradeoff between reducing delays for the directly affected agents (SM, ST),
and increasing spread of the delays in the network (more negatively indirectly affected
agents), aiming for generalized small delays throughout the network. On the other hand,
NI has the largest heterogeneity in effects. The directly affected agents suffer large delays,
but not do not spread the disruption to other travelers, resulting in the solution with the





      

highest heterogeneity of results for the agents. The best solution in those reported is SM,
which nevertheless exploits information before the disruption takes place. Figure 10 also
illustrates that in the NI scenario, the negatively and positively indirectly affected agents
are localized at the disrupted places. In scenarios which include replanning, like SM,
agents are affected in a broader geographical dimension, effectively making the disruption
impact a much larger area.

Figure 11 shows the negatively and positively indirectly affected agents, based on the time
at which their delay occurs. The same scenarios as in the previous Figure are reported,
the bubble size refers again to the amount of agents affected, the color refers instead to
a timeline after the disruption begins (respectively starting later than 16 and before 17,
later than 17 and before 18, . . . ): earlier times are in darker color, later times in lighter
colors. The Figures have the same scale.

The negative indirect effects are limited between 16.00 and 20.00 in SM, ST and SD
scenarios while lasting to 21.00 in NI scenario. The positively affected agents are present
until 21.00 in SM, SD and ST scenarios, and until to 22.00 in the NI scenario. This
is again consequence of their replanning, which happens only as a shift in time (they
postpone their trip until the disruption is over), which keeps lighter loads in other parts of
the public transport network for a longer time. In general, positive indirect effects happen
later than the negative indirect effects, i.e. it takes time for an unexpected load increase
to propagate in the network. This also hints at the complexity of the dynamics of the
indirect effects, which have been quantified here.

The largest indirect effects of the disruption are well identified close to Oerlikon, in the
first moments of disruption (16.00-18.00) which shows the vulnerability of this central
station, for the considered disruption. The affected stations have the largest share of
negative affected agents, with Zürich main station having no positively affected agent.
This hints at the interconnection of the network and the availability of sufficient capacity
in the vehicles departing.

We finally discuss the positive delay and negative activity-delay (earlier arrival) for the
indirectly affected agents in each scenario. Figure 12 illustrates the data for negatively
(left) and positively (right) indirectly affected agents, as a bar chart. The amount of
agents affected is reported at the bottom of the plot.





      

Figure 11: Time and amount of agents negatively and positively indirectly affected agents
by the disruptions, Map size is around 15 km. (Scenarios A: SM, B: ST, C: SD, D: NI)
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Figure 12: Activity-delay for activities after disruption time for negatively(left) and
positively(right) indirectly affected agents
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The EWD shows already a large variation with roughly the same amount of agents
experiencing a negative effect (24 minutes on average) and positive effect (10 minutes
on average). In other terms, the search for a new equilibrium shakes the planning of
many agents, which are affected in very heterogeneous manner. This was already evident
from our analysis on the directly affected agents. The NI scenario results in negative
and positive indirect effects, which are both very small on average. ST has the smallest
amount of negatively affected agents, as well as the smallest amount of positively affected
agents, and moreover the smallest magnitude of delays for both cases. Being ST the closest
scenario to common situations, one can understand that the improvement in disruption
management (for instance if the situation becomes closer to SD, or even SM) might
actually bring much more indirect effects than currently experienced in real life networks.
The large variability in extreme cases for EWD is to be traced to the equilibrium process
and its approximation process. Almost all scenarios have higher absolute improvement
for positive effects than negative effects, though the amount of positive affected agents
is roughly half than those negatively affected. In absolute terms, the amount of agents
indirectly affected is comparable with 20% of the directly affected agents.

Table 4 (respectively Table 5) presents a numerical overview of activity-delay, i.e. wrt
to the EOD solution; the style is the same as for previous Tables. Please note that
the amount of agents experiencing negative, i.e. delays (respectively, positive, i.e. early
arrival) indirect effects is variable, with EWD having the highest. In terms of magnitude,
the largest deviation is for the NI scenario, and the positive indirect effect. EWD again
results the largest number of indirectly affected agents, and the largest magnitude for the
negative, and a magnitude comparable to the largest, for the positive effects. The lowest
amount comes to the ST, also less than SD.

6.4 Comparing the direct and indirect effects

We finally review together direct and indirect effects to further appreciate the heterogeneity
of the different information strategies and scenarios. We expand the study to include all
scenarios introduced; in fact in the EOD, EWD and NI there is no reaction to denied
boarding; or no replanning at all. We thus compare directly EWD and NI to the EOD
scenario. We moreover introduce a specific EOD+Replan denied boarding (EOD+RDB
in short), which allows a direct fair comparison when within-day replanning is included





      

Table 4: Activity-delay for activities after disruption time, for negatively indirectly affected
agents

EWD SM SD ST NI

Mean 19.4 6.4 5.9 4.9 4.2

Minimum -7 0 0 0 0

25 perc 5 0 0 0 0

50 perc 16.8 0 0 0 0

75 perc 30 7.6 6.2 2.8 7.3

90 perc 42.5 27.8 15.5 14.5 13.5

Maximum 84.6 67 67 52 30

Agents 119 68 71 52 57

Table 5: Earlier arrival time (negative Activity-delay) for activities after disruption time,
for positively indirectly affected agents

EWD SM SD ST NI

Mean -16.3 -12.1 -13.5 -11 -14.6

Minimum -94.5 -60 -60 -60 -120

25 perc -26.2 -11 -13.5 -11.2 -15.5

50 perc -12.4 -7.5 -8 -7.5 -7.5

75 perc -5.7 -3.2 -3.7 -3.4 -3.5

90 perc -0.7 -1.8 -2 -1.8 -2.1

Maximum 39.2 4.2 -1.6 -1.6 -1.6

Agents 92 23 23 20 34

(i.e. EOD+Replan denied boarding is compared to SM, SD, ST). Even in the ideal EOD
situation, 635 agents are denied boarding due to full capacity of some vehicle. The user
equilibrium solution includes this delay and discomfort, though agents are not able to
avoid to take a crowded vehicle, or the effects of interaction of the agents is within the
approximation of the final user equilibrium. In the EOD+RDB Scenario, the number
of agents who are denied boarding due to the full capacity during an undisrupted day
is reduced to 629 agents. In other terms about 1% of the agents (6 out of 635) is able
to react to a denied boarding, taking other lines which happen to be uncrowded, and
avoiding own disutility, but also avoiding insisting in boarding a crowded line. This hints
how the capacity effects are present even in the user equilibrium though in a minor form,





      

and are greatly amplified by the disruptive event.

The grand total of the amount of agents directly and indirectly, positively and negatively
affected is reported in Table 6. The overall conclusions are that the equilibrium scenario
EWD results in positive and negative effects spread over the largest amount of agents,
and the lowest total delay. In this case, the direct effect is actually much smaller than
the indirect effects. The second smallest grand total is computed by the SM scenario,
which is also an anticipative idealization of a possible reaction in a disruption. In this
case, the indirect effects are almost one order of magnitude smaller in total, as result of a
comparable magnitude of effect, but affecting a much smaller amount of agents. Instead
the direct effects are much larger, almost four-fold. Those direct effects are actually
experienced by the same amount of people, which therefore are much more delayed than
in the EWD. SD is the lower bound in case of unexpected disruptions, and increases
mostly only in terms of direct effects, while indirect effects are comparable to SM. ST
further reports higher direct effects, and lower indirect effects, for a grand total delay
which is roughly double than SM. Finally, NI has a tremendously high direct effect, and
the smallest amount of indirect effects. EWD manages to reach a very small average delay,
of less than 4 minutes when the absolute magnitude of effects is divided by the very large
amount of agents affected (351 in the test case). Instead, the later the information is
disseminated to agents and the smaller the effect of their within-day replanning is, the
more the average effect increases, and the amount of agents affected decrease. Therefore,
a solution changing the activity plan of many agents results finally the best. From a
practical point of view, it highlights the need to mobilize more people than the directly
affected agents, in order to decrease the effect of the disruption.

7 Conclusion

In a public transport disruption, due to the dynamic nature of the public transport
system, passenger flows and capacity limitations, disruptions effects are not confined to
the disrupted area and time, but the consequences of the disruption are spreading in a
broader geographical and time dimension. We consider different information dissemination
strategies and the resulting trips and activities of passengers when facing a disruption,
including equilibrium and non-equilibrium situations. We use the microscopic agent based
simulation tool MATSim, for which we develop extensions to the within-day replanning
module to include specifically the influence of vehicle capacity, and the replanning process





      

Table 6: Summary of direct and indirect effects

Quantification EWD SM SD ST NI

Direct Effect (Activity-delay),
avg minutes 2.1 8.51 13.08 19.36 67.11

number of agents affected 140 140 140 140 140

Agents minutes 294.15 1192.08 1831.71 2709.82 7650.39

Negative Indirect Effect (Activity-delay),
avg minutes 19.45 6.38 5.94 4.86 4.22

number of agents affected 119 68 71 52 57

Agents minutes 2314.54 433.82 421.61 252.68 240.39

Positive Indirect Effect (Early Arrival),
avg minutes -16.3 -12.11 -13.52 -10.96 -14.58

number of agents affected 92 23 23 20 34

Agents minutes -1499.94 -278.42 -310.96 -219.25 -495.63

Grand total delay,
agents minutes 1108.75 1347.48 1942.36 2743.25 7395.15

Grand total, agents affected 351 231 234 212 231

as mediated by the information about the disruptions that the passengers might have
available.

We quantify the direct (i.e. those people who cannot proceed their wished trips as the
line is disrupted) and indirect effects (i.e. further cascade of crowding effects when people
replan their trips to avoid the disrupted lines) of a disruption in a public transport network.
We show that different information dissemination strategies have large impact on the
direct effects, and even more on the indirect effects, in terms of their occurred delay and
utility; indirect effects can further be negative (i.e. crowding, delay) or positive (less
crowding, early arrival).

Our results demonstrate the large impact of information on passenger flow, and the
impact they experience. When the information reaches the travelers at the latest moment
(scenarios ST and NI), the most significant indirect impacts of the disruption are observed
at the disrupted stations, in terms of number of directly affected agents and the delay
they experience. Those scenarios have the least significant negative indirect impact of





      

the disruption. When instead more information would be available, even in an ideal case
that a disruption is known beforehand (scenarios SM and SD), the indirect effects are
not anymore localized at the disrupted stations, but throughout the entire network. The
earlier availability of information can significantly reduce the delay that directly affected
agents experience, but causes larger amount of indirectly affected agents, who experience
relatively small delays.

In other terms, by disseminating increasing information, disruptions effects gets milder,
but larger in space, and more varied in positive and negative aspects. The scenarios with
least information instead are very strongly affecting few passengers, with no perceivable
impact for the rest of the network.

To the best of our knowledge, this is the first time that the direct, negative, and positive
indirect effects of a public transport disruption have been quantified in a public transport
disruption. The present study is valuable for further understanding of passenger flow
evolution after public transport disruptions, and to understand the risks and opportunities
for development measures improving system performance in planning, operations, and
real-time management of public transport networks.

Further research might consider including a more detailed quantification, and identifying
the essential network elements whose disruptions would cause the worst consequences in
magnitude, or in exposure, or further in variation of effects (i.e. some lines face strong
performance reduction, while other face a performance improvement). The design of a
timetable and vehicle scheduling considering risk of disruptions may decrease the likelihood
of disruption and exposure; and the online computation of different disposition timetables
and their impacts (See (Corman et al., 2016). The proposed approach improves the
estimation of both aspects. The possible situations of information dissemination are in
reality almost endless, based on their location, time, medium, moreover multiplied by the
degree by which travelers include information in their decision process, and the delay with
which they might react. We expect that travelers might have similar choices process, for
instance forming clusters based on age, gender, job, etc., as well as affinity with the public
transport network. It would be worthwhile to include those factors while replanning, for
instance, assuming that old travelers may prefer to have a direct, but longer, trip, or will
have more trouble in getting access to online route information and guidance typically
available on mobile devices.





      

8 Acknowledgment

We gratefully appreciate the support from Beda Büchel.

9 References

Auld, J. and A. Mohammadian (2009) Framework for the development of the agent-based
dynamic activity planning and travel scheduling (adapts) model, Transportation Letters,
1 (3) 245–255, ISSN 1942-7867.

Bouman, P. (2017) Passengers, crowding and complexity - models for passenger oriented
public transport, Thesis.

Cadarso, L., Marín and G. Maróti (2013) Recovery of disruptions in rapid transit networks,
Transportation Research Part E: Logistics and Transportation Review, 53, 15–33, ISSN
13665545.

Charypar, D., A. Horni, B. Kickhöfer and K. Nagel (2016) A Closer Look at Scoring,
London: Ubiquity Press.

Corman, F., A. D’Ariano, A. Marra, D. Pacciarelli and M. Samà (2016) Integrating train
scheduling and delay management in real-time railway traffic control, Transportation
Research Part E: Logistics and Transportation Review.

Currie, G. and C. Muir (2017) Understanding passenger perceptions and behaviors during
unplanned rail disruptions, Transportation Research Procedia, 25, 4392–4402, ISSN
2352-1465.

Djavadian, S. and J. Y. J. Chow (2017) Agent-based day-to-day adjustment process to
evaluate dynamic flexible transport service policies, Transportmetrica B: Transport
Dynamics, 5 (3) 281–306, ISSN 2168-0566.

Dobler, C. and K. Nagel (2016) Within-Day Replanning, 187–200., London: Ubiquity
Press.

Ghaemi, N., O. Cats and R. M. P. Goverde (2018) Macroscopic multiple-station short-





      

turning model in case of complete railway blockages, Transportation Research Part C:
Emerging Technologies, 89, 113–132, ISSN 0968090X.

Horni, A., K. Nagel and K. W. Axhausen (2016) The Multi-Agent Transport Simulation
MATSim, Ubiquity Press, London, ISBN 978-1-909188-75-4 978-1-909188-76-1 978-1-
909188-77-8 978-1-909188-78-5.

Javanmardi, M., J. Auld and A. van Mohammadian (2011) Integration of transims with
the adapts activity-based model, 4th Transportation Research Board Conference on
Innovations in Travel Modeling (ITM).

Kattan, L., A. G. d. Barros and H. Saleemi (2013) Travel behavior changes and responses
to advanced traveler information in prolonged and large-scale network disruptions: A
case study of west lrt line construction in the city of calgary, Transportation Research
Part F: Traffic Psychology and Behaviour, 21, 90–102, ISSN 13698478.

Khattak, A. J., X. Pan, B. Williams, N. Rouphail and Y. Fan (2008) Traveler information
delivery mechanisms: Impact on consumer behavior, Transportation Research Record,
2069 (1) 77–84, ISSN 0361-1981.

Kiefer, A., S. Kritzinger and K. F. Doerner (2016) Disruption management for the viennese
public transport provider, Public Transport, 8 (2) 161–183.

Leng, N. and F. Corman (2020) The role of information availability to passengers in public
transport disruptions: an agent-based simulation approach, Transportation Research
Part A: Policy and Practice.

Malandri, C., A. Fonzone and O. Cats (2018) Recovery time and propagation effects of
passenger transport disruptions, Physica A: Statistical Mechanics and its Applications,
505, 7–17, ISSN 03784371.

Murray-Tuite, P., K. Wernstedt and W. Yin (2014) Behavioral shifts after a fatal rapid
transit accident: A multinomial logit model, Transportation Research Part F: Traffic
Psychology and Behaviour, 24, 218–230, ISSN 13698478.

Piner, D. and B. Condry (2017) International best practices in managing unplanned
disruption to suburban rail services, Transportation Research Procedia, 25, 4403–4410.

Rodriguez-Núñez, E. and J. C. García-Palomares (2014) Measuring the vulnerability of
public transport networks, Journal of Transport Geography, 35, 50–63.





      

Russell, S. J. and P. Norvig (2010) Artificial Intelligence A Modern Approach.

Shelat, S. and O. Cats (2017) Measuring spill-over effects of disruptions in public transport
networks, paper presented at the 2017 5th IEEE International Conference on Models
and Technologies for Intelligent Transportation Systems (MT-ITS), 756–761.

Smith, L., R. Beckman and K. Baggerly (1995) Transims: Transportation analysis and
simulation system". united states.

Sun, H., J. Wu, L. Wu, X. y. Yan and Z. Gao (2016) Estimating the influence of common
disruptions on urban rail transit networks, Transportation Research Part A: Policy and
Practice, 94, 62–75, ISSN 09658564.

Xiong, C., Z. Zhu, X. Chen and L. Zhang (2017) Optimal travel information provision
strategies: an agent-based approach under uncertainty, Transportmetrica B: Transport
Dynamics, 6 (2) 129–150, ISSN 2168-0566 2168-0582.




	Introduction
	Problem description
	Literature review
	Methodology
	Agent-based simulation approach
	MATSim
	Within-day replanning approach
	Information strategy
	Within-day replanning methodology and approach

	Case study
	Results
	Delay Analysis, directly affected agents
	Score Analysis for directly affected agents
	Indirectly affected agents
	Comparing the direct and indirect effects

	Conclusion
	Acknowledgment
	References

