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Abstract

The previous studies have introduced useful methods to control the traffic flow on highways
via actuators such as Ramp Metering (RM) and Variable Speed Limits (VSL). In this
direction, in order to minimize the installation costs, determining the required number of
actuators and their locations is crucial for the network control. With this in mind, In this
paper, by considering a linear dynamics for the highway networks, we utilize structural
controllability techniques to identify a minimal set of controllers which renders the network
controllable. This approach provides a notion of robustness with respect to uncertainties
in different parameters of the system, which can ensure the controllability of the network
even in the lack of an exact dynamics of the highway network.
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1 Introduction

Nowadays, we encounter with increasing demand for transport on metropolitan areas
that consequently increases the congestion level on highway networks. During the past
decades, a surge of interest in freeway traffic has arisen due to its crucial impact on the
safety, the economy, and the environment. There are evidences that one can ameliorate
the traffic congestion by designing and employing an appropriate traffic flow management.
Prior studies have proposed different approaches to improve traffic conditions on highway
networks. Ramp Meterings (RM’s) and Variable Speed Limits (VSL’s) have been widely
considered as two effective actuators to regulate the traffic flow on the highways. The
RM methods provide better traffic conditions through controlling the on-ramp inflow on
the freeway mainstream. Meanwhile, the VSL is another actuator that can provide more
direct and efficient control of traffic flow on the mainline of a freeway compared to an
RM.

In recent decades, a huge number of works in the literature have focused on studying
the controllability of a general network Mousavi et al. (2018, 2021a,b). The network
controllability problem can be defined as finding the minimum number and the locations of
the actuators that can render the whole system controllable. A system is called controllable
if an appropriate input can be designed such that the states of the system can be steered
from any initial states toward any desired ones within a finite time. The controllability
problem of a traffic network can be established to identify the location for the minimum
number of ramp meters such that the whole stretch would be controllable Mousavi and
Kouvelas (2020); Agarwal et al. (2015); Bekiaris-Liberis et al. (2017b,a); Rinaldi (2018).

As a dual problem of the controllability analysis of transportation networks, the observ-
ability problem that can be interpreted as identifying the location of sensors has been
studied in a few work as Castillo et al. (2008, 2010, 2014); Agarwal et al. (2015); Contreras
et al. (2015); Bekiaris-Liberis et al. (2017b,a).

n most of these works, some algebraic rank matrix conditions have been utilized to analyze
the observability of a traffic model.

For example, in Contreras et al. (2015), a lumped parameter-based model for traffic
dynamics on a highway segment is considered. The model is then linearized about the
steady state flows, and then by calculating the observability matrix, the observability of the
system for different locations of sensors is evaluated. We also note that in Contreras et al.
(2015), the fundamental diagrams of the highway segments are assumed to be available,





   

and the value of system parameters that appear in the set of differential equations are
known. This assumption is not necessarily true in practice, since, in many cases, the exact
value of the system parameters is unknown or highly uncertain; moreover, the system
parameters may not be fixed and may vary over time. In addition, for large-scale networks
with a large number of states, checking the algebraic condition through computing the
rank of very large matrices is not numerically feasible.

The above-mentioned reasons motivate us to study the structural controllability of traffic
networks from a merely graphical point of view. In this framework, only the zero-nonzero
pattern of system matrices which describes the wiring diagram or the topology of the
network is of interest. We also note that, in Contreras et al. (2015), to simplify the
computation of the equilibrium points, all the highway segments are assumed to have the
same traffic features, such as fundamental diagrams, free flow speeds, and jam densities.
With such a consideration, the heterogeneity of different segments of a highway or some
traffic events like lane-drop cannot be properly modelled; while in this work, a general
model without any restrictive assumption on the parameter values is studied.

Various methods have been proposed in literature to manipulate RM and VSL. RM
strategies can be categorized as local and coordinated. Local RM regulates the on-ramp
inflow based on its neighbourhood traffic information, in order to ameliorate the local
traffic conditions. ALINEA, presented in Papageorgiou et al. (1991), is one of the most
popular methods in this category, that employs a feedback control method. Although
local ramp metering is well-known and widely used, especially due to its simplicity, it is
easy to show that when looking at a bigger area it is sub-optimal and can be outperformed
by coordinated RM strategies. In practice, local strategies could demonstrate poor
performance, and one of the main reasons is the presence of limited ramp storage space.On
the other hand, Coordinated methods regulate the on-ramps inflows by utilizing system-
wide traffic information, in order to enhance the overall network performance. Various
methods have been presented in the literature for coordinated ramp metering; for instance
Lu et al. (2017) applied a reinforcement learning method to deal with equity issues (i.e.
users from different on-ramps have equal access to the mainline). Moreover, Haj-Salem
et al. (2018) presented a multi-objective nonlinear optimization that includes two cost
functions, for traffic and safety (based on a risk index model). A model predictive
hierarchical control method is developed in Papamichail et al. (2010), where the structure
is composed from an estimation, an optimization, and a direct control layers, with focus
on optimizing the total time spent.
Note that various RM methods have been frequently implemented on motorways around
the world. Nevertheless, the efficiency of these strategies deteriorates when they have to





   

deal with high demands, or in cases of considering the equitable allocation of benefits
among users (see Kotsialos et al. (2001) for more details). Many different methods have
been studied that apply VSL in order to improve freeway traffic conditions. For instance,
Hegyi et al. (2005b) has proposed a model predictive control (MPC) approach. An optimal
control strategy based on minimization of L2 quadratic error to the desired outflow was
developed by Monache et al. (2017). In another work, Khondaker and Kattan (2015)
studied VSL for a case study with connected vehicles, and designed a multi-objective
optimization function to simultaneously optimize mobility, safety and environmental
sustainability.
The integration of RM and VSL methods provides the opportunity to control mainline
traffic flow conditions, while, at the same time, considering the equity and on-ramp queuing
aspects. The study in Zhang and Ioannou (2017) developed a feedback linearization VSL
approach, coordinated with ALINEA/Q as a RM strategy, in order to maximize the
flow rate and manage the on-ramp queues simultaneously. The combination of ALINEA
and HERO as local and coordinated RM, respectively, together with a VSL algorithm is
proposed by Li et al. (2014). Furthermore, the work in Hegyi et al. (2005a) developed
an MPC approach to compute the optimal coordination of RM and VSL. Although
the proposed control methods for the combination of RM and VSL have presented
promising results, this problem still requires more attention. The structure of the model
that is considered in this MPC approach leads to a recursive Mixed Integer Non-Linear
Problem (MINLP) optimization. By increasing the number of variables in MINLP, the
computational time increases with an exponential rate. Consequently, the benchmark
network that has been studied in the aforementioned paper is a simplified network that
consists only of one on-ramp. Chavoshi and Kouvelas (2020) modified the model by using
an approximation method that simplifies the optimization from MINLP to a Non-Linear
Problem (NLP). This simplification accelerates the computational time and make the
NLMPC approach more practical for real world application. Furthermore, in Chavoshi
and Kouvelas (2019) a feedback linearization approach has been proposed that can tackle
the problem efficiently and provide computationally feasible solutions.
The rest of the paper is organized as follow: In section 2, we elaborate on the macroscopic
traffic model that we utilized in this project. Section 3 is dedicated to controllability
analysis. In this section, we first review the controllability notion. Afterwards, we study
the structural controllability for the ring road highway networks. Through the results of
controllability analysis we can find the minimum essential number of actuators (VSL and
RM) and their locations in the network. In this study, the traffic management objective is
to tackle the congestion issue by designing a control method for the coordination of RM
and VSL. The developed coordinated control is presented in section 4. For the evaluation
of the proposed methodology, we simulate the traffic flow in a large network. Antwerp ring





   

Figure 1: The general structure of freeway segment i.
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road is selected as the case study. Section 5 contains the information of the simulation
setup. Finally, the future work is presented in section 6.

2 Macroscopic traffic model

Many models have been developed to describe traffic flow in the macroscopic level. They
model the traffic flow by formulating the dynamics of fundamental macroscopic traffic
characteristics such as flow, density, and speed. According to the level of partial derivatives
that the models cover, they are categorized as first order, second order and higher order
models. METANET is one of the macroscopic second order traffic flow models, which is
widely used for freeway networks. It represents the dynamics of traffic flow in terms of
density and speed in the discretized time and space domains.Figure 1 shows Supposing
a general segment i (discretized space that includes one on-ramp and one off-ramp) of
a freeway with length ∆i and λi number of lanes at a discrete time step k. We denote
with qi−1(k) the inflow that enters segment i from the upstream segment, and similarly,
qi(k) denotes the outflow of segment i that moves to the downstream segment. The
variables ri(k) and si(k) denote the on-ramp outflow and the off-ramp inflow, respectively.
METANET express the dynamics of the traffic flow in segment i as follows Carlson et al.
(2010):

ρi(k + 1) = ρi(k) +
T

∆iλi

(
qi−1(k)− qi(k) + ri(k)− si(k)

)
, (1)

si(k) = βi(k)qi(k), (2)





   

vi(k + 1) = vi(k) +
T

τ
(V (ρi(k))− vi(k)) +

T

∆i

vi(k)(vi−1(k)− vi(k))− vT

τ∆i

ρi+1(k)− ρi(k)

ρi(k) +K

− δT

∆iλi

ri(k)vi(k)

ρi(k) +K
,

(3)

V (ρi(k)) = vf,i exp

Å−1

ai

Å
ρi(k)

ρcr,i

ãaiã
, (4)

qi(k) = ρi(k)vi(k)λi, (5)

where ρi(k) (veh/km/lane), qi(k) (veh/h) and vi(k) (km/h) denote the traffic density,
flow, and speed, respectively, in segment i at time step k. Based on (1), also known as
conservation equation, the difference between total input flows (i.e. qi−1(k) and ri(k)) and
total amount of output flows (i.e. qi(k) and si(k)) in segment i, results in the change of
density ρi(k). The exiting rate βi(k) denotes the ratio of si(k) to qi−1(k). Equation (3)
corresponds to the dynamics of speed and is composed by four different terms. The first is
the so-called relaxation term, which demonstrates the tendency of vehicles to achieve the
desired speed (i.e. the stationary speed V (ρi(k))). The second and third terms model the
impact of spatial heterogeneity. More precisely, the second term is the so-called convection
term, which expresses the effect of inflow, and the third one the so-called anticipation
term that models the effect of upcoming change in density. The fourth term represents the
speed drop caused by merging phenomena in case of including an on-ramp. The variable T
is the time step (in sec) and τ , v, K, and δ denote model parameters that tune the weight
of these four parts in the speed dynamics. The relationship between stationary speed and
traffic flow is described by the well-known Fundamental Diagram (FD), demonstrated
in equation (18), where vf,i and ρcr,i represent the free flow speed and critical density,
respectively. For a road segment i that does not include an on-ramp, and for the case of
stationary and spatial homogeneity, the maximum observable flow qmax,i (which occurs for
ρcr,i) can be derived from the above equations as follows:

qmax,i = ρcr,ivf,i exp
(−1

ai

)
. (6)

The original METANET model does not represent the effects of applying VSL and RM
on freeway; therefore, we modify the METANET to describe impacts of VSL and RM





   

utilization.

2.1 VSL modification on METANET model

There are different models that express the effects of utilizing VSL on freeways traffic
condition. For instance, Papamichail et al. (2010) models this impact on the FD through
introducing an augmented version of equation (18), where vf,i, ρcr,i, and ai are functions
of the VSL rate. This augmented model succeeds in reporting the impacts of VSL in case
of active VSL functioning in the highway network. Nevertheless, its accuracy deteriorates
when facing situations that the actual speed is less than the speed limit, since this model
applies drastic changes to the FD even for the congested conditions, where VSL does not
impose an active boundary. In order to overcome this problem and make a more realistic
representation of FD, Hegyi et al. in Hegyi et al. (2005a) proposed an extended version of
equation (18) as follows:

V (ρi(k)) = min

Å
(1 + α)vVSL,i(k), vf,i exp

Å−1

ai

Å
ρi(k)

ρcr,i

ãaiãã
(7)

where vVSL,i(k) is the speed limit on segment i. The term (1 + α) denotes the non-
compliance factor that models the disobedience of drivers towards speed limits. According
to the above equation, the desired speed is the minimum between the limited speed caused
by VSL and the desired speed derived from the FD without considering the VSL impact.

2.2 RM modification on METANET model

The inflow of the non-equipped on-ramps is derived by considering three terms. The first
term is Q0 and denotes the on-ramp flow capacity due to the physical characteristics of
the infrastructure (i.e. number of lanes). The second term, also called supply of space,
represents the effect of the mainline congestion. Finally, the third term, also known as
demand for space, represents the actual demand flow and is composed by the new arrivals
di(k) (veh/h) and the vehicles already waiting in the ramp queue wi(k) (veh). According
to equation (8), for the RM equipped on-ramps, the inflow to the mainline is a portion of
outflow in absence of RM. That is formulated as:

ri(k) = ci(k)×min
(
Q0, Q0

ρmax,i − ρi(k)

ρmax,i − ρcr,i
, di(k) +

wi(k)

T

)
, (8)





   

wi(k + 1) = wi(k) + T (di(k)− ri(k)), (9)

where ci(k) is the metering rate that is bounded by ci(k) ∈ [cmin, 1], with cmin denoting
the minimum admissible value. Finally, the dynamics of the on-ramp queue length wi(k)

are presented in equation (9), where di(k) denotes the on-ramp demand flow (veh/h).

2.3 Dynamical System Definition

We summarize the METANET model described above with the form of a dynamical
system as follows:

X(k + 1) = f(X(k), U(k), D(k)) (10)

Y (k) = h(X(k)) (11)

∀i, 1 ≤ i ≤ N (12)

X(k) = [ρi(k), vi(k), wi(k)]T (13)

U(k) = [vV SL,i(k), ci(k)]T (14)

D(k) = [di(k), βi(k)]T (15)

Y (k) = [ρi(k), vi(k)]T (16)





   

where, N is the number of segments; X(k) is the system’s state vector which consists of
the densities, mean speeds, and queue lengths of all freeway segments; U(k) is the vector
with the input (control) signals, which contains speed limits and metering rates of the
whole network. Note that the on-ramp demands and off-ramp exiting rates are considered
disturbances and are denoted with the vector D(k). Finally, Y (k) is the output vector
that is assumed the same as the state vector. Based on the presented METANET model
f(·) is a nonlinear vector function with a high order of complexity.

3 Controllability analysis

The controllability analysis help us determining the minimum required number of actuators
and their exact locations to dominate traffic flow on highway networks. In particular,
controllability analysis is more beneficial for large networks. Since the large number
of optimization’s variables and thereby, the high computational cost has been always a
barrier to apply on-line optimization methods for large networks. Employing the results
of controllability analysis simplifies the optimization problem and enables us to deal with
large networks in real time.
Although METANET is an accurate macroscopic traffic flow model, it is a nonlinear
model with the high level of complexity that consequently requires cumbersome analysis
for controllability and observability studies.
In order to facilitate these studies, we consider a simplified model for traffic flow. The new
model which is defined based on the Lighthill-Whitman-Richards (LWR) model, describes
the density’s dynamics with the conservation law as follows:

ρi(k + 1) = ρi(k) +
T

∆iλi

(
qi−1(k)− qi(k) + ri(k)− si(k)

)
, (17)

where the the relationship between macroscopic variables, i.e., density ρi, flow qi, and
speed vi can be represented by fundamental diagrams. In the simplified model, we ignore
the speed dynamics, and we only define the average traffic speed as

vi(ρi(k)) = vf,i exp

Å−1

ai

Å
ρi(k)

ρcr,i

ãaiã
, (18)





   

Then, based on the equation qi(k) = ρi(k)vi(k)λi, the flow qi can be written as a nonlinear
function of the density as:

qi(k) = h(ρi(k)) = vf,iρi(k)λi exp

Å−1

ai

Å
ρi(k)

ρcr,i

ãaiã
. (19)

Moreover, the dynamics of the density in on/off-ramps can be written as:

ρri(k + 1) = ρri(k) +
T

∆ri

(
qinri (k)− ri(k)

)
,

ρsi(k + 1) = ρsi(k) +
T

∆si

(
si(k)− qoutsi

(k)
)
,

(20)

where qinri and q
out
si

denote, respectively, the on-ramp inflow and off-ramp out-flow. Further,
we have ri = hri(ρri), and qoutsi

= hri(ρsi). In addition one can define si = βiqi, where βi is
the exit split ratio of cell i.

Now, to derive the overal dynamics of the system, let us define the aggregated vector of den-
sity of the cells as the system state. Thus, we have x = (ρ1, . . . , ρn, ρr1 , . . . , ρrn , ρs1 , . . . , ρsn)T ,
and the dynamics of the system can be written as:

ρ1(k + 1) = ρ1(k) +
T

∆1λ1

(
hn(ρn(k))− h1(ρ1(k)) + hr1(ρr1(k))− β1h1(ρ1(k))

)
,

ρ2(k + 1) = ρ2(k) +
T

∆2λ2

(
h1(ρn(k))− h2(ρ1(k)) + hr2(ρr2(k))− β2h2(ρ2(k))

)
,

...

ρn(k + 1) = ρn(k) +
T

∆nλn

(
hn−1(ρn−1(k))− h2(ρn(k)) + hrn(ρrn(k))− βnhn(ρn(k))

)
,

ρr1(k + 1) = ρr1(k) +
T

∆r1

(
qinr1(k)− hr1(ρr1(k))

)
,

...

ρrn(k + 1) = ρrn(k) +
T

∆rn

(
qinrn(k)− hrn(ρrn(k))

)
,

ρs1(k + 1) = ρs1(k) +
T

∆s1

(
β1h1(ρ1(k))− hs1(ρs1(k))

)
,

...

ρsn(k + 1) = ρsn(k) +
T

∆sn

(
βnhn(ρn(k))− hsn(ρsn(k))

)
,

(21)

In order to investigate the controllabity of the system (21), that is a nonlinear dynamics,





   

we aim to consider its linearized form around the steady state, and then use the methods
for the controllability analysis of linear systems.

For x ∈ Rn, assume that f : Rn → Rn is a nonlinear function of x, and then consider
the nonlinear system described as ẋ = f(x). An equilibrium point xeq is a state at which
f(xeq) = 0. The linearized system is described as ẋ = Ax, where A is the Jacobian matrix
of f(·), computed at xeq.

In this paper, we aim to study the structural controllablity of the system. In the structural
controllability framework, the exact value of the enries of the system matrices as matrix
A are not of interest; rather, only the zero-nonzoro pattern of these matrices is important.
In fact, since Aij = ∂fi

∂xj
, we have Aij 6≡ 0 if xj appears in the xi’s differential equation.

We also not that the traffic density dynamics (21) is a self-damped dynamics, in the sense
that for every 1 ≤ i ≤ n, xi appears in its own dynamics.

Now, let us define a graph G = (V,E) associated with the system matrix A in ẋ = Ax.
The sets V = {1, . . . , n} and E ⊂ V × V are, respectively, the node and the edge set of
the graph. If (i, j) ∈ E, the node j (resp., i) is an out-neighbor (resp., in-neighbor) of i
(resp., j). Any edge (i, i) ∈ E, 1 ≤ i ≤ n, is a self-loop on node i. A simple graph is a
graph that has no self-loop.

The graph G associated with the matrix A is a graph G = (V,E), where (i, j) ∈ E if and
only if Aji 6= 0. Since the network (21) is self-damped, we represent it by a simple graph.
As an example, consider the traffic densities on a motorway ring road with the dynamics

Figure 2: (a) Model of a motorway ring road; (b) corresponding graph of the network.

1

2

3

45

6

7

8
1

5

37

2

46

8

s3

r3

s5

r7

(a) (b)





   

described in (21), that is shown in Fig. 2(a). The graph associated with this system is
shown in Fig. 2(b).

Now, let us consider a linear time invariant (LTI) system with the following dynamics

x(k + 1) = Ax(k) +Bu(k) (22)

where x(t) = [x1(t), . . . , xn(t)]T is the vector of states of all nodes, and u(t) = [u1(t), . . . , um(t)]T

is the vector of control inputs. The time-invariant matrix A ∈ Rn×n is the state matrix,
and G is a graph associated with A. Moreover, B ∈ Rn×m is the time invariant input
matrix, defined as B = [ek1 , . . . , ekm ]. For i = 1, . . . ,m, the node ki into which the input
signal i is directly injected is called a control node. Similarly, we define the set of control
nodes as VC = {k1, . . . , km}. We define the set of control nodes as VC = {k1, . . . , km}.

In the next parts, we determine a minimum set of control nodes VC such that traffic
density dynamics on a ring road network is weakly or strongly structurally controllable.

3.1 Weak structural controllability

Definition 1 A network with dynamics (22) and a set of control nodes VC is weakly
structurally controllable if there exists at least one matrix A associated with the graph G
for which the system is controllable.

Based on this definition, the notion of weak structural controllability provides a necessary
condition for the controllability of any network with the same structure. It has been
shown that if a network is weakly structurally controllable, it would be controllable for
almost all matrices A with the same zero-nonzero pattern (except for some pathological
cases) Liu et al. (2011).

In order to provide an analysis for the weak structural controllability of the traffic network
described in (21), some notions are defined in the following.

Definition 2 A directed path is a sequence of nodes, e.g. (i1, i2, . . . , ip−1, ip), where for
all 1 ≤ j ≤ p− 1, (ij, ij+1) ∈ E.





   

Definition 3 A matching in a graph is a set of edges that share no start or end nodes.
A maximum matching is a matching of the largest cardinality. A node is referred to as a
matched node if it is the end node of an edge in the maximum matching; otherwise, it is
called an unmatched node.

The weak structural controllability of a network can map into an equivalent geometrical
problem as follows.

Theorem 1 (Liu et al. (2011)) A network with graph G is weakly structurally control-
lable if and only if VC includes any unmatched node in a maximum matching of G, and
there exist directed paths from nodes of VC to any node of G.

Now, we aim to find the minimum number of control nodes for a ring road network, which
can render it controllable. Then next result is an extension of the result of Mousavi and
Kouvelas (2020) for the controllability analysis of highway networks.

Theorem 2 Consider a highway network with dynamics (21), defined on a ring road.
This network can be weakly structurally controllable by measuring only the density of one
cell, and the single actuator can be placed at any cell that is not an off-ramp.

Proof: Since this network is self-damped, there are self-loops on all of the nodes of the
corresponding graph. Now, defineM as the set of self-loops of all nodes. Since any two
self-loops share no start or end nodes, from Definition 3, M is a maximum matching
that has no unmatched node in the graph. Based on Theorem 1, it now suffices to find
a set of nodes VC from which there exist a directed path to every node of the graph.
Considering the structure of a ring road (e.g., see graph in Fig. 2(b)), one can see that
nodes corresponding to off-ramps have only one incoming edge. Thus, from these nodes,
there exist no directed path to other nodes. However, by choosing any other node of the
graph, one can reach to all other nodes via a directed path; this completes the proof.

3.2 Strong structural controllability

Definition 4 A network with dynamics (22) and a set of control nodes VC is strongly
structurally controllable if for all matrices A associated with the same graph G the system





   

is controllable.

Thus, the notion of strong structural controllability ensures the controllability for all
nonzero weights of connections; and by considering a fixed graph for the network, it
provides a notion of robustness with respect to variations in the weights of the links.

Now, let us review some results regarding the strong structural controllability and its
relation to the notion of zero forcing sets.

Consider a graph G = (V,E) whose nodes are colored either black or white. The color of
the nodes can be changed according to the coloring rule.

Definition 5 If a black node v ∈ V has only one white out-neighbor u ∈ V , it forces this
node to become black; we designate this by v → u. This rule is called a coloring rule.

Next, the notion of a zero forcing set is defined.

Definition 6 Let Z ⊂ V be a set of initially black nodes of G. If after repeatedly applying
the coloring rule, all nodes of G become black, Z is called a zero forcing set.

There is a one-to-one correspondence between the control nodes that render a network
strongly structurally controllable and zero forcing sets.

Theorem 3 (Monshizadeh et al. (2014); Reissig et al. (2014)) A self-damped LTI
network with graph G is strongly structurally controllable if and only if VC is a zero forcing
set of G.

Now, in a ring road network, we aim here to obtain the smallest sets of control nodes
that ensure its controllability for any set of nonzero parameters in (21). The next result
is an extension of the results of Mousavi and Kouvelas (2020) for the strong structural
controllability of highway networks defined on a ring-road.





   

Theorem 4 Consider a ring road network described by the dynamics in (21). The
minimum number of actuators to ensure the strong structural controllability of this network
equals to max{1, nr + ns}, where nr and ns are the number of on-ramps and off-ramps,
respectively. In order to find the cells where these sensors should be placed, one should
consider the following rules:

a) If the ring road has no on/off-ramps, then the single actuator can be placed at any
cell of the network.

b) Associated with any off-ramp, one actuator should be placed at the cell immediately
downstream of the cell that is connected to the off-ramp.

c) Regarding any on-ramp of the network, one sensor should be considered that can be
placed at the on-ramp.

d) If there is a cell which is connected to both an off-ramp and on-ramp, one actuator is
placed at the on-ramp, and one sensor is located at the cell immediately downstream
of that.

Proof: Consider the simple graph associated with the network of the example depicted
in Fig. 2(b). One can see that any off-ramp node si has only one in-neighbor, node i;
while any on-ramp ri has one one out-neighbor, node i. Moreover, any node i with an
off-ramp and on-ramp, has out-neighbors, nodes i + 1 and si, and in-neighbors, nodes
i− 1 and ri, respectively. If an off-ramp node is initially black, based on the coloring rule
in Definition 5, it cannot force any other node to become black. Thus, actuators should
not be placed at off-ramp nodes. If the network has no on/off-ramp nodes, it is a directed
cycle, where a zero forcing set can include any single node of the graph. If the network
has one off-ramp si, one can see that VO = {i+ 11} is a zero forcing set. Now, assume
that any other node of the graph initially becomes black (where the actuator is placed).
Then, every node that has only one out-neighbor, can force it to become black. However,
node i has two white out-neighbors, i.e. nodes si and i+ 1. Thus this node cannot change
the color of its out-neighbors, and the coloring process is stopped. Thus, either si or i+ 1

should be initially black as well. In this case, the number of control nodes increases, and
thus, the best place for the location of the sensor is node i+ 1. Now, consider a network
with only one on-ramp ri. One can see that VC = {ri} is a zero forcing sets of the network,
and according to Theorem 3, render it strongly structurally controllable. Since ri has no
in-neighbor, it cannot be forced by any other nodes of the graph to become black. Thus,
if we initially color any other node of the graph, the node ri cannot be black, and then the
number of control nodes should increase; thus the proof of clause (c) is complete. Clause
(d) can be proven in a similar way as well.





   

Figure 3: Configuration of the actuator placement in a ring road network.
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For example, by considering the ring road network of Fig. 2(a) and employing Theorem 4,
one can define VO = {r3, 4, 6, r7} as the smallest sets of control nodes, that ensures the
system’s strong structural controllability. This is illustrated in Fig. 3.

4 Control method

Thanks to the controllability analysis, we are able to determine the minimum number of
actuators and their exact locations in highway networks. For employing these actuators
in traffic flow management, it is crucial to develop a control method.
In this part, we utilized an MPC based control method designed by Chavoshi and Kouvelas
(2020) for the modified METANET model.
In this work, the objective is to develop a coordinated control of VSL and RM in order to
reduce congestion propagation and improve the traffic conditions on freeways. Non-Linear
Model Predictive Control (NLMPC) is a straightforward control pathway to deal with
nonlinear systems. It performs as a recursive on-line optimization of nonlinear problems
subject to the system dynamics and additional constraints. In principle, the MPC type of
controllers have the advantage of taking into account the impact of the predicted future
behavior of the system into the current control signal designing. In this section, we briefly
describe the structure of the MPC approach. MPC belongs to a larger group of control
methods, known as Model Based Control. The common feature of this general type of
control methods is that apart from considering the process model when designing the
controller, the model is also considered in the block diagram. MPC has three fundamental
features: it has a predictive model, it solves an optimization problem, and it performs as





   

a receding horizon control. The predictive model provides the relationship between the
future inputs and future outputs. As the next step, a cost function is defined according to
the finite future steps of input and output signals. MPC creates the control signals through
optimizing the cost function. Finally, the first step of the control signal resulted from
the optimization program is applied to the process and the same procedure is repeated
for every time step (receding horizon). MPC has two main parameters, the prediction
horizon kp and the control horizon kc, which denote the finite number of future outputs
and inputs, respectively, that are considered in every iteration of optimization. Essentially,
the control horizon is smaller or equal to the prediction horizon. In this study, we use
METANET as the predictive model of macroscopic traffic flow on highway networks.
In the modified version of METANET, equations (7)-(8), which describe the impacts
of applying VSL and RM, contain minimum operators. In general, one can model the
minimum operator by using an auxiliary integer variable in the optimization language.
Therefore, in this problem the NLMPC is appeared as a recursive MINLP optimization.
Either increasing the prediction horizon or the number of cells results in increasing the
number of integer variables, and consequently the computational time grows exponentially.
This drawback makes the designed NLMPC approach, impractical for large-scale real
networks. In order to tackle this problem we propose to approximate the minimum
operators with a continuous function. The work in Boyd and Vanderberghe (2004) has
presented a log-sum-exp convex function f(x) = log(ex1 + ex2 + · · ·+ exn) that is bounded
as below:

max(x1, x2, . . . , xn) ≤ f(x) ≤ max(x1, x2, . . . , xn) + log(n). (23)

The above inequalities indicate that log-sum-exp function is an approximation of maximum
operator, and thus the concept of a quasi-maximum function can be used. Quasi-maximum
is a smooth approximation of the maximum operator:

max(x1, x2, . . . , xn, λ) ' log(eλx1 + eλx2 + · · ·+ eλxn)

λ
, (24)

where λ is a setting parameter; larger λ increases the accuracy of the approximation. In
this paper, we can prevent the usage of integer variables by applying the quasi-maximum
to approximate the min{·} operators in the predictive model. Therefore, the optimization
transformes to a recursive NLP which requiers less computational time compared with the
recursive MINLP version that is applied in Hegyi et al. (2005a). In order to justify this
claim, we re-simulated the case study in Hegyi et al. (2005a) and applied the NLP method.
The results indicate that the average computation time for one iteration of MPC is 1.13 s
that is extremely faster than the 6 s reported by Hegyi et al. (2005a). Subsequently, we





   

define a quadratic cost function form as follows:

min
U(k), 1≤k≤kc

kp−1∑
j=1

Ns∑
i=1

(ρi(j)−ρcr,i)2+(vi(j)−vcr,i)2+ω
Ns∑
i=1

(vi(kp)−vcr,i)2+(ρi(kp)−ρcr,i)2 (25)

where, Ns is the number of segments included in the freeway stretch under study. In
fact, the optimization problem can be described as searching for the control signals U(k)

(RM rate and speed limits) that minimize the error of the density and speed with their
corresponded desired values. In equation (25) ρcr,i and vcr,i are the desired densities and
speeds, respectively, that correspond to the critical point in the FD of the segment i.
The critical point represents the optimal functioning point of the traffic flow in each
segment. Therefore, this cost function results in trying to regulate the traffic flow close
to the critical point in the FD. We denote ω as a weight to emphasise the importance
of the final state of the system at the end of the prediction horizon in the cost function.
In this study, we consider the control horizon kc equal to the prediction horizon kp. By
increasing the prediction horizon one can get more intuition about the future; therefore,
the predicted trajectory is more accurate. However, increasing the prediction horizon
will consequently increase the computational time and result in time-expensive solutions.
In order to find an appropriate value we investigate the relationship between prediction
horizon and performance of the controlled system. Vehicle Hours Traveled (VHT) is a
well-known criterion to evaluate performance of traffic networks, and is computed as
follows:

VHT = T
K∑
j=1

Ns∑
i=1

ρi(j)vi(j)∆(i, j) + T
K∑
j=1

Nor∑
i=1

wi(j) (26)

where K is the total simulation time. Figure 4 presents the effect of prediction horizon on
VHT. By increasing the prediction horizon to more than 6 time steps, the improvement
gained in terms of VHT is insignificant. In our experiments we choose to consider a
prediction horizon of 9 time steps. Furthermore, in order to obtain reasonable solutions,

Figure 4: The effect of prediction horizon on VHT.
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the states and control signals need to be bounded by physical and operational constraints.
The constraints on the state variables are derived from the fundamental diagram and are
as follows:

0 ≤ ρi(k) ≤ ρi,max (27)

0 ≤ vi(k) ≤ vf,i (28)

0 ≤ wi(k) (29)

We also define constraints on the control signals. Since the implementation of RM
cannot block the on-ramp inflow completely, the RM rate is restricted by a lower bound
(cmin = 0.2), which is the minimum admissible value. On the other hand, the speed limit
has also lower and upper bounds. Obviously, the speed limit cannot exceed the free flow
speed; in addition, a lower bound (vmin = 50 km/h) is considered due to safety reasons.

Cmin ≤ ci(k) ≤ 1 (30)

vmin ≤ vV SL,i ≤ vf,i (31)

5 Simulation setup

The controllability analysis enables us to apply the designed NLMPC control method for
large networks on real-time. However, considering the fact that we investigate control-
lability for a simplified linear version of the macroscopic traffic model, we expect some
inexactness in the analysis’s results. Therefore, by employing the results of controllability
we would observe a trade-off between the control’s performance and the computational
costs. As the ultimate goal, we would like to assess this trade-off by performing a sim-
ulation experiment for a large network. We have selected the Antwerp ring road as a





   

Figure 5: An overview to the Antwerp ring road Mattas et al. (2018)

case study for the simulation. Antwerp is a city in Belgium, has the second biggest port
in Europe. Due to this fact, Antwerp ring road serves high traffic demand that is a
mixture of heavy vehicles traffic due to the port and the normal commuter’s demand for
the city. Antwerp experienced heavy congestion during rush hours. You can observe the
Antwerp topology in the following figure. We focus on the counter clockwise direction
to perform the simulation. Antwerp has roughly the 48 km length with 27 centroids
(destination/origin points) distributed along this length. Mattas et al. (2018) designed the
OD matrix based on the real data captured from the Antwerp’s detectors and simulated
the traffic flow for morning peak hours in aimsun. We would use this OD matrix to design
the demand for the network and simulate the macroscopic model of Antwerp traffic during
the morning rush hours. In order to apply the cell transmission based macroscopic model,
we did the segmentation by taking into account the CFL condition, Resulted in 139 cells
along the Antwerp.

6 Future work

As the next step, it is essential to calibrate the METANET’s parameters with the help
of aimsun simulation for Antwerp network. After finishing the initial prepration of
Antwerp ring road, we are ready to evaluate the performance of the proposed strategy.
For this purpose, we designed two simulation scenarios for Antwerp case study. In
the first scenario, we ignore the controllability analysis and employ VSL for every cell.
Based on our experience in smaller networks, although applying VSL for every cell





   

enhances traffic flow features significantly, it is not applicable in real-time because of the
computational time issue. In the second scenario, we place the VSLs in the Antwerp
network in accordance with the results of controllability analysis. Decreasing the number
of VSLs notably simplify the optimization problem. In addition, since we locate VSLs
based on the controllability analysis, we envision a real-time control management that
maintains roughly the performance of the basic scenario.
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