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Abstract

Traffic management with congestion pricing is a measure for mitigating traffic congestion
in a protected corridor. Hence, the level of service in a city center (i.e., the protected
corridor) increases and leads to a reduction in travel times and travel delays. So far,
implementations in the field are restricted to static pricing, i.e., the price is fixed and
not responsive to the prevailing regional traffic conditions. Dynamic pricing overcomes
these limitations but also influences in real time the user’s route choices. Consequently,
this measure can be utilized to aim for optimal traffic distribution in the network. The
proposed framework models a large-scale network where every region is considered as
homogeneous, allowing for application of Macroscopic Fundamental Diagram (MFD). We
compute Dynamic System Optimum (DSO) and Dynamic User Equilibrium (DUE) of
the macroscopic model by formulating a linear optimization problem and utilizing the
Dijkstra algorithm and a multinomial Logit model, respectively. Finally, we derive the
optimal pricing functions for an exogenous demand scenario by applying the concept of
elasticities. We test our framework to a case study in Zurich, Switzerland, and showcase
the optimal price functions for the multi-region model.

Keywords
Optimal congestion pricing; Multi-region urban modeling; Macroscopic Fundamental
Diagram (MFD); Optimal route-choice
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1 Introduction and problem statement

In recent decades traffic congestion has emerged, especially in urban transportation
networks. Hence, this is leading to negative impacts on the performance level of such
networks, the environment, and also on social aspects. To tackle this problem, a promising
approach is congestion pricing (often also called road pricing). Besides systems that
are focusing on the pricing of one lane (Hot-Occupancy-Lanes), tolls at the border of a
protected region have been shown as beneficial. Such fixed corridor (or cordon) pricing
systems are already applied in reality (e.g., London, Singapore, or Stockholm) and show
a decrease in the Vehicle Kilometers Traveled (VKT). Nevertheless, most of the pricing
schemes are fixed over time and do not adjust to current traffic states (i.e., the current
vehicle accumulations) in a system. The most advanced cordon pricing system so far is
implemented in Singapore, where tolls are revised four times a year by evaluating the
deviation of speed measurements (Eliasson, 2017).

Hence, the question arises if dynamic congestion pricing can improve the performance
of a transportation network. This research topic has gained rising attention in the
last years. The optimal toll problem has been tackled for microscopic and macroscopic
traffic models. On the microscopic level, the pricing of all network links (first-best pricing
problem) has been claimed as impractical due to high operational costs and low acceptance
rate of the users. Also, the theoretical modeling of large networks has to tackle high
computational complexity. Therefore, recent research focuses on the second-best pricing
problem, where only a subset of the links is utilized for pricing. Considering such a
small toy network, represented as a graph, Meng et al. (2012) and Chung et al. (2012)
are formulating optimization problems to derive optimal tolls with a bi-level cellular
particle swarm optimization and (also considering demand uncertainties) a mixed-integer
problem, respectively. Both works focus on the determination of prices by utilizing the
total distance traveled on priced arcs in a network. An optimal speed-based pricing design
using the average travel speed has been proposed by Liu et al. (2013). Finally, a joint
model incorporating the travel distance and time (Joint distance and time toll (JDTT))
was introduced by Liu et al. (2014). Methodologies of the aforementioned papers are
operating at the link level, which remains challenging when one considers a city center
corridor with a high number of links (holds for the first and second-best toll problem).
Besides, sophisticated modeling incorporates a dynamic traffic assignment, which makes
the computation of dynamic traffic equilibria (i.e., Dynamic User Equilibrium (DUE) and
Dynamic System Optimum (DSO)) relatively expensive. Nevertheless, this is an essential
procedure to evaluate the applied dynamic pricing scheme.
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To account for given drawbacks of microscopic modeling of congestion pricing, other
works have focused on a macroscopic approach with the utilization of multi-region models
and Macroscopic Fundamental Diagram (MFD). To the authors’ best knowledge, one
of the first works considering MFD to obtain optimal pricing was published by Simoni
et al. (2015). As no feedback-control strategy was applied, Gu et al. (2018) investigate
several pricing methodologies with a simulation-based optimization and feedback control.
The work combines a microscopic simulator with a Proportional-Integral (PI) control
utilizing the MFD. This approach allows maintaining a protected region at the critical
vehicle accumulation (corresponding to the maximum vehicle flow) and calculating prices
based on the link-based distance and time travelled. Nevertheless, the iterative approach
introduces a heavy dependency on a simulator to derive the MFD and the link-based
prices; moreover, no comparison to traffic equilibria is performed.

Although optimal pricing solutions could be applied in the field, the users elasticities
to a specific toll is not considered. The concept of elasticity gives the relation between
the percentage of change in the demand and change in price. Hence, the quantities
give insights to the reaction of users to a specific toll price. Olszewski and Xie (2005)
derived the elasticity of different pricing systems (e.g., specific bridge sections in New York,
motorways in Spain, cordon pricing in Singapore). The results indicate that elasticity
is dependent on the type of pricing system (road section, specific infrastructure type,
cordon), time of the day, and also if all or specific vehicles are priced. Sarlas et al. (2013)
extended the findings with an analysis in Athens (Greece). To this end, if the elasticities
of users in the system are available, the concept can be utilized to determine optimal toll
prices, if the following information is present: the DSO and DUE of the transportation
network for a known exogenous demand are known and hence allows the calculation of
the system-, and user-optimal transfer flows.

In the present work, we focus on a multi-region-network based on Sirmatel and Geroliminis
(2018) and Genser and Kouveals (2019) to find the optimal macroscopic pricing scheme
with given elasticities. The defined urban regions are considered as homogeneous with
different characteristics (i.e., size, capacity, average trip length) in the heterogeneous
traffic network. A well-defined MFD characterizes every region with a recently proposed
method by Ambühl et al. (2018). The determination of DSO is solved by reformulating
the nonlinear model into a linear program by applying several approximations based on
the work by Genser and Kouvelas (2020) with a Linear Rolling Horizon Optimization
(LRHO); i.e., the optimal splitting rates are determined. Implementation of the DUE is
based on the utilization of Djikstra algorithm to find the shortest paths and a multinomial
Logit (MLN) model to determine the user’s route choices. To determine the optimal
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time-varying tolls, the concept of elasticity is deployed by utilizing the transfer flows of
DUE and DSO scenarios to model the change in demand and users costs.

The remainder of this paper is organized as follows: Section 2 introduces the macroscopic
modeling based on the so-called P/L model. Section 5 elaborates on the derivation of
DSO with a linear approach. Furthermore, DUE with Djikstra algorithm and MLN are
introduced. The optimal toll derivation is presented in Section 4 and elaborates on the
offline computation with known elasticities. The methodology is applied to a case study
in Zurich, Switzerland, with results for DSO, DUE as well as the optimal tolls. The paper
closes with a conclusion and future work in Section 6.

2 Macroscopic multi-region modeling

A multi-region-network partitioned into homogeneous regions is introduced, defined by
R = {1, 2, . . . , K}, where K is the number of regions. Every region from R is modeled
with a well-defined MFD, represented by the function G(NI(t)). NI(t) denotes the
accumulation of a region I at time t. Consequently, the dynamic equations can be defined
in continuous time as follows:

dNII(t)

dt
= QII(t)−MII(t) +

∑
H∈NI

MHII(t), (1)

dNIJ(t)

dt
= QIJ(t)−

∑
H∈NI

MIHJ(t) +
∑

H∈NI ;H 6=J

MHIJ(t), (2)

where indices I ∈ R, H ∈ NI and J ∈ R represent the origin, stop-over, and destination
region, respectively. Variables NII(t) and NIJ(t) denote accumulations of region I that
have final destination region I and J , respectively. NI is a set that contains all neighboring
regions of I. Internal demand within one region is defined by QII(t); moreover, demands
with origin I and destination J are denoted by QIJ(t). Note that QII(t) and QIJ(t) are
exogenous signals. Intra- and inter-regional flows are computed by functions MII(t) and
MIHJ(t) representing internal flows in a region and transfer flows from region I to H
(with final destination J), respectively, defined as follows:

MII(t) =
NII(t)

NI(t)
G(NI(t)), (3)
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MIHJ(t) = θIHJ(t)
NIJ(t)

NI(t)
G(NI(t)). (4)

Variable θIHJ(t) represents the route choices at time t; for its computation, an implemen-
tation of Dijkstra shortest path algorithm in combination with a MNL model is utilized
for the computation of DUE. To find the optimal route guidance (i.e., DSO splitting
rates), a linear optimization problem is solved (see Section 3 for the derivation).

The sequence of regions a user can traverse in the proposed model is not arbitrary. If the
indices IHJ are parametrized with I = J , paths are restricted (e.g. IHJ = 131). This
assumption does not allow for unrealistic path choices and improves the quality of the
model. Note that the transfer flows need to be restricted by (5). The minimum among
incoming transfer flow or maximum region capacity is considered, preventing a region
from accepting incoming flows that exceed capacity (overflow). The latter is modeled with
function CIHJ(NH(t)) (the reader is referred to Sirmatel and Geroliminis (2018) for the
modeling of function C(·)).

M̃IHJ(t) = min
(
CIHJ(NH(t)), θIHJ(t)

NIJ(t)

NI(t)
G(NI(t))

)
. (5)

Nevertheless, the constraint is omitted throughout this work.

Elements of set R are considered as homogeneous and can, therefore, be characterized by
a well-defined MFD. Previous works are using mathematical relationships for modeling
an MFD that is represented as an polynomial of degree n (e.g. in Geroliminis and
Daganzo (2008) the approximation takes the form of G(NI(t)) = (aN3

I (t) + bN2
I (t) +

cNI(t))/L̄, where coefficients a, b, c are derived from measurement data and L̄ denotes
the average trip length). Furthermore, other approximations, such as an exponential
function are used. However, the function parameters lack physical meaning and might
introduce problems with the application of optimization procedures. Instead of assuming
a functional relationship, another approach is to estimate the MFD from measurement
data. Nevertheless, the quality of data or difficulties in data acquisition might lead to
unreasonable approximations Ambühl et al. (2018). In the current work, for modeling
function G(·) the novel procedure developed by Ambühl et al. (2018) is utilized; represented
by an approximation of a trapezoidal diagram with the properties of smoothness, concavity,
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and continuity, defined by:

G(NI) = −λ ln

(
exp

(
−
a NI

LI,n

λ

)
+ exp

(
− qout

λ

)
+ exp

(
−

(NI ,jam
LI,n

− NI

LI,n
)b

λ

))
. (6)

Function G(·) is the estimated outflow [veh/s] with respect to NI ; qout denotes the
maximum outflow (capacity) in [veh/s]; parameter LI,n denotes the network length of a
region in R. The utilized approach for deriving the MFDs proposes a function that is
dependent on the density k. Consequently, our approach needs to convert the input NI

and jam accumulation NI,jam, by applying NI/LI,n for density k [veh/m] and NI,jam/LI,n

for jam density κ [veh/m]. a and b define the slopes of free-flow speed and congestion
propagation, respectively; finally, λ serves as smoothing parameter. Note that variable
names for free flow speed a and congestion propagation b are different than the work
in Ambühl et al. (2018), because the parameters are utilized for an entire urban region
and not a single intersection.

To model a realistic demand-supply system, the simulation plant receives consistent
demand patterns as trapezoids. A trapezoid is defined as a symmetric shape by specifying
the rising time tr [s], falling time tf [s] (where tr = tf), time that the demand remains
constant tc [s], and demand magnitude Qt in [veh/sec]. Often these parameters are found
by generating random numbers that satisfy the given application requirements. In current
work, an optimization procedure from Kosmatopoulos and Kouvelas (2009) is utilized to
find appropriate parameters tr, tf , tc, and Qt, producing a desired simulation scenario
(e.g. two congested and two uncongested regions). By setting a target accumulation per
region on the MFD curves, different scenarios for testing the optimal route guidance
determination can be generated efficiently (Genser and Kouveals, 2019).

3 Equilibra derivation

At first, the derivation of DSO is introduced. The multi-region model is formulated with
several nonlinearities (e.g. formulation of MFD function G(·), fraction of accumulations
NIJ(t)/NI(t), etc.). Hence, an NMPC is applied in several other studies focusing on
optimal control (Sirmatel and Geroliminis, 2018; Tajalli and Hajbabaie, 2018; Hajiahmadi
et al., 2013). This work formulates the problem as a linear model to allow the application of
an LRHO. The application of an LRHO implies the utilization of a linear model. Therefore,
the nonlinearities are removed by applying several approximations based on Genser and
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Kouvelas (2020).

First, the model parameters αII(k) and αIJ(k) are introduced, which are updated every
time a predicted solution is applied to simulation plant; i.e., the parameters remain
constant over the prediction horizon and are updated when rolling the prediction horizon.
αII(k) and αIJ(k) are defined as follows:

αII(k) =
NII(k)

NI(k)
, αIJ(k) =

NIJ(k)

NI(k)
. (7)

Secondly, MFD functions GI(·) are approximated with a number of piece-wise affine (PWA)
functions; l = {1, 2, ..., L} denotes the index of PWA function and L the total number of
functions, chosen for an accurate approximation. In the following, each piece-wise linear
MFD function is indicated by Gl

I(·).

Thirdly, Kouvelas et al. (2017) introduces new decision variables

fII(k) = θIII(k)Gl
I(NI(k))αII(k), (8)

and

fIH(k) = Gl
I(NI(k))

∑
J∈R

θIHJ(k)αIJ(k), (9)

where fII(k) and fIH(k) define decision variables for internal and transfer flows, respectively.
The right sides of equations (8) and (9) show the remaining nonlinearities by the product
of decision variables θIII(k) and θIHJ(k), respectively. The introduction of fII(k) and
fIH(k) allow to complete the linearization of the problem. As in Kouvelas et al. (2017)
after the methodology was applied to find the optimal perimeter control, a transformation
from fII(k) and fIH(k) to the original control variables is used.

Nevertheless, variables fII(k) and fIH(k) only consider internal flows, and transfer flows to
a neighboring region H; i.e., the information about final destination J is not available. In
our approach to determine the optimal splitting rates θIII(k) and θIHJ(k) this information
is necessary to ensure that the summation of flow proportions on every possible path
from I to J is correct, as well as for the transformation to the original decision variables.
Therefore, we introduce one additional decision variable fIHJ(k) that is constrained by∑
J∈R

fIHJ(k) = fIH(k), ∀I,H ∈ R (10)
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to ensure that splitting rates can be constrained correctly and calculation of the original
decision signals θIII(k) and θIHJ(k) can be obtained. Note that for θIII(k) the result does
not influence optimal route choices, as the splitting rate corresponds to users traveling
from origin I, over I, to a final destination I. Hence, the splitting rate must be θIII(k) = 1.
Nevertheless, the decision signals are included in the algorithm and the results need to be
validated.

An LRHO procedure is introduced and utilized to solve the optimal route guidance
problem:

max
NI(k),fII(k),fIH(k)

Tc ·
kp+Np−1∑

k=kp

∑
I∈R

[
fII(k) + fIH(k)

]
(11)

s.t. NI(k + 1) = NI(k) + Tc

(
QI(k)− fII(k)− (12)∑

H∈NI

fIH(k) +
∑
H∈NI

fHI(k)
)

(13)

0 ≤ fII(k) ≤ αIIG
l
I(NI(k)) (14)

0 ≤ fIHJ(k) (15)∑
H∈NI

fIHJ(k) ≤ αIJ(k)Gl
I(NI(k)) (16)

0 ≤ NI(k) ≤ NI,jam (17)

k = kp, kp + 1, ..., kp +Np − 1 (18)

∀I, J ∈ R, H ∈ NI (19)

Note that all constraints in equations (11)–(19) are linear, and consequently, the problem
can be solved with low computational power as a linear program.

The derivation of DUE is based on finding the shortest paths with Djikstra algorithm
and a MLN model. To model the inputs for these algorithms, the costs of a trip in the
network have to be available. Therefore, we first calculate the travel time of a trip from a
region I to a neighbor H by utilizing the signals from the macroscopic model. The travel
time τIH(k) can be defined as follows:

τIH(k) = τI(k) + τJ(k) =
L̄I ·NI(k)

GI(NI(k) · L̄I

+
L̄H ·NH(k)

GH(NH(k) · L̄H

, (20)

where τI(k) and τH(k) are approximated by the fraction of average trip lengths L̄I , L̄h

and the corresponding estimated speeds (by utilizing the outflow GI(NI(k)), average trip
length L̄I , and vehicle accumulation of a region NI). Note that all elements for τIH(k) of
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a given network with arbitrary topology can be compiled in a travel time matrix T(k).

To transform the elements of T(k) into generalized costs that users experience when
traveling through the network, we utilize the Value of Time (VOT). Hence, the generalized
cost matrix C(k) can be defined by simply multiplying

C(k) = T(k)V (k), (21)

where V (k) is a matrix of VOTs for all trips from I to H in the network. Generalized costs
C(k) are then utilized to calculate the shortest paths with Djikstra algorithm (represent
minimum users costs) and derive the route choices with the MLN, which is defined as
follows:

θIHJ(k) =
exp(µUH,IJ)∑

H∈N exp(µUH,IJ)
, (22)

where UH,IJ defines the utility function for individuals going from I to J to an alternative,
here a neighbor region H. Essentially, UH,IJ is modeled with a deterministic term, which
is the corresponding element for a pair (I,H) from the generalized cost matrix C(k),
and an error term that is omitted in this work; finally, µ denotes a scaling parameter.
This definition of the MNL is motivated by Ben-Akiva and Bierlaire (1999). The derived
quantities of DUE and DSO are utilized for the determination of toll prices in Section 4.

4 Price determination with the concept of elasticities

This work utilizes the macroscopic multi-region model to derive optimal tolls for every
region boundary in the network. Recent works that have been published, e.g., Gu
et al. (2018), focus on a Proportional-Integral (PI) scheme utilizing MFD to allow for
maintaining a protected region at the critical vehicle accumulation (corresponding to
maximum vehicular flow) and calculating prices based on the link-based distance and time
travelled. Here, on the contrary, we utilize the concept of elasticity to derive an optimal
price matrix. If one assumes the elasticities and cost matrix of DSO as known, at every
time step, the concept allows for the calculation of additional costs that a user should
experience to lead the network to the optimal state.

First, we introduce the concept of elasticity E which can be defined by the fraction of
partial derivative of demand Q and price P (at any point) and the product of price-demand
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ratio:

E =
∂Q

∂P

P

Q
. (23)

Olszewski and Xie (2005) have further introduced a simplified calculation of elasticities by
utilizing the arithmetic average of demand and price quantities before and after a price
change. Hence, the elasticity can be derived by

E =
(Q2 −Q1)(P2 + P1)

(P2 − P1)(Q2 +Q1)
, (24)

where variables with index 1 and 2 represent demands and prices before and after the price
change, respectively. We modify this concept for our problem by modeling the demand
with transfer flows MIH(k), i.e., the flows that want to leave from region I towards their
destination J and have to decide on which region to traverse based on the current costs
and travel times. Hence, all transfer flows that leave a region I and traverse via region H
are defined as:

MIH(k) =
∑
J∈R

MIHJ(k). (25)

The price that a user has to pay for the travel is represented by the generalized cost
matrices CIH(k). Therefore we utilize (24) and modify it to:

EIH(k) =
(MIH,SO(k)−MIH,UE(k))(CIH,SO + CIH,UE)

(CIH,SO − CIH,UE)(MIH,SO(k)−MIH,UE(k))
. (26)

Note that the indices SO and UE represent the corresponding quantities computed by
DSO and DUE, respectively. If elasticity EIH(k) is assumed as known and DSO has
already been computed by the proposed methodology from Section 5, we can rearrange
(26) to derive the new cost matrix CIH,P(k), which denotes the generalized costs that
users need to experience so that system optimum is achieved.

CIH,P(k) =
CIH,SO(k)

(
MIH,UE(k)

(
EIH(k) + 1

)
+MIH,SO(k)

(
EIH(k)− 1

))
MIH,UE(k)

(
EIH(k)− 1

)
+MIH,SO(k)

(
EIH(k) + 1

) . (27)

Finally, we can derive the tolls matrix P (k) which contains all toll prices pIH(k) by
subtracting the generalized cost matrix CIH,P(k) from CIH,UE(k)

P (k) = CIH,P(k)− CIH,UE(k). (28)

9
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Note that P (k) is not bounded by any means, and in that sense can give not only extremely
high but also negative prices, which means that there should be an economic incentive for
people to travel through this toll (so that the systems operates in DSO). Nevertheless,
in practice, the derived prices are bounded by operational constraints, e,g, by following
condition:

pmin ≤ pIH(k) ≤ pmax, ∀pIH(k) ∈ P (k), (29)

where pmin denotes the minimum permissible price, which should be set to 0 for practical
reasons and pmax denotes the maximum permissible price, dependent on the, e.g., each
country’s currency or gross domestic product. Note that the smaller the space for all
elements pIH(k) is chosen, the bigger the deviation from the DSO will be.

5 Case study

Content of the result section is not shown here for journal publication reasons.

6 Conclusion

The paper presents the derivation of optimal price functions for a multi-region network
with homogeneous regions, characterized by well-defined MFD functions. First, the
optimal routing information (splitting rates) is derived with an LRHO optimization
problem, providing network system optimum, which can be utilized as ideal target for the
determination of dynamic pricing functions. To relax the nonlinear optimization problem,
a recent linearization methodology was implemented that allows the application of LRHO.
The proposed method from the literature was extended and utilized for obtaining optimal
splitting rates in the multi-region-network. Accumulation trajectories are utilized to show
the system improvement of the methodology with TTS as a performance indicator. The
results are compared to DUE scenario, which is derived by utilization of Dijkstra route
choice algorithm and a MLN. The proposed linear program reduces TTS significantly and
guarantees an optimal and fast solution as opposed to nonlinear formulations.

To determine the optimal pricing functions, the concept of elasticities is applied. With
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utilization of the generalized cost matrices of DUE and DSO (derived with the VOT),
a price matrix is computed offline that shows the dynamic pricing functions for the
simulation scenario. Furthermore, the average prices and activation times of all tolls are
calculated to give an impression on which tolls are from great importance to reach the
system optimum for a given demand scenario.

Future research should focus on a sensitivity analysis of the proposed traffic management
settings. The performance evaluation can be further extended by comparing the TTS-
improvement with a nonlinear system and also how sensitive the controller is to parameters
such as the control time step and prediction horizon. Based on recent research, the
simulation plant should be extended with a trip length model (for now only average trip
lengths are considered) that allows extensive analysis of users’ travel times in the system.
Furthermore, a weighting of the different regions can be applied in the optimization
procedure to account for different region parameters (i.e., size, storage capacity, etc.).
This improves the quality of the modeling further and also contributes to a more detailed
evaluation of the proposed methodology. Besides, the online computation of the pricing
methodology by formulating an optimization problem and incorporating the elasticity
concept into the simulation plant is considered.
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