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Abstract

Public transport networks such as bus and railway networks are highly complex systems. In
fact, multiple sources of uncertainty including fluctuating passenger demand, variable road and
traffic conditions, weather, and technical failures affect the network performance and reliability.
These uncontrollable, stochastic factors follow intricate dynamics in space and time that makes
it difficult to incorporate them into important decision-making processes of traffic management.
For example, understanding how delays evolve (fade out absorbed by available buffer times,
remain the same, or propagate through the network) is critical to undertake correct rescheduling
actions for vehicles in the presence of delays or disruptions. Moreover, the number of stochastic
factors is usually very large due to the many moving units or network links, which poses further
modeling challenges. Goal of this paper is twofold. First, we review the existing stochastic
models of the uncertainty employed in the public transport optimization literature, underlying
their merits and shortcomings. Second, we define a roadmap for modeling high-dimensional
uncertainties in public transport networks in a sound manner, with the goal of incorporating this
uncertainty into stochastic optimization approaches.
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1 Introduction

Public transport (PT) networks such as bus and railway networks play a crucial role in trans-
portation systems due to their large capacity and environmental benefits. Despite the excellent
standards of PT networks in Switzerland, societal and environmental targets focus strongly
on increasing modal share and quality of collective transport. This puts increasing pressure
on PT companies to improve performance in terms of reliability, frequency, and punctuality.
Meanwhile, these companies are being forced to increase their cost efficiency, due to limited
investments and funding or even cost reductions.

The variability and delays in operations represent the single largest threat influencing service
reliability and making improvements in the efficiency of PT networks complex to achieve. Buses
and railways are operated according to plans (timetables) that are determined in advance. When
an unexpected disturbance occurs, operations might deviate from this plan and cause delays.
Even though Switzerland is one of the countries with the highest realized PT punctuality, delays
are not uncommon. For example, more than 10% of train runs experienced more than 3 minutes
delay SBB (2019). These disturbances can easily propagate through time and space in bus and
railway networks according to complex dynamics that are hard to predict. Besides crew and
vehicle plans, delays can significantly affect passengers (e.g., missed connections), strengthening
the perception of PT unreliability.

The operations of PT networks is complex also because it relies on the resolution of many
interconnected optimization problems, for instance, determining the arrival and departure time
of vehicles, rescheduling the system in the presence of delays, and operating vehicles in an
energy-efficient manner. One way to improve the performance of PT networks would be by
solving these optimization problems with the objective of reducing delays and their propagation
in the network. In other words, taking tactical and operational decisions that would make the PT
network more efficient, more robust to perturbations, and more reactive to recover delays. This
goal could be achieved by developing optimization models that would account for current and
possible future uncertainties when making decisions. Most PT literature, however, has so far
employed a deterministic optimization approach in which either the system is assumed to be
completely known, or expected values are assumed sufficient to determine system parameters.
In reality, multiple sources of uncertainty such as fluctuating passenger demand, variable road
and traffic conditions, weather, and technical failures, affect the performance and reliability of
public transport networks.

Correctly modeling the uncertainty and representing it in a way that is suitable for an optimization
model is challenging and requires several modeling steps (Trivella 2018): (i) identifying the





       

sources of uncertainty affecting decisions, (ii) selecting a model to describe the stochastic
evolution of the uncertainty, e.g., a stochastic process, (iii) calibrating the parameter of the model
using historical data, and (iv) generating scenarios of the uncertainty form the calibrated model.
Thus, it is important that uncertainty in PT networks is accurately modeled to produce realistic
scenarios for the future traffic, passenger demand, weather, and delays. The uncertainty related
to delays, for example, might involve either infrequent disruptions or small-medium but more
frequent delays, which might follow very different dynamics in space and time. After uncertainty
is modeled, tactical and operational problems that explicitly account for this uncertainty in the
decision making process have to be formulated and solved. Considering “uncertainty-aware”
methodology has the potential to significantly improve upon current industry practices and state
of research, in which future uncertainties are mostly neglected.

The rest of this paper is organized as follows. We start in Section 2 by giving a brief overview
of optimization under uncertainty for the benefit of the reader. To underscore the need of
incorporating uncertainty in PT optimization, in Section 3 we perform a literature review on
the existing stochastic models of uncertainty in PT networks underlying their shortcomings,
with a primary focus on railways and buses. Notice that in this review we are interested in how
uncertainty is considered and modeled in order to make decisions, i.e., within optimization
models. We do not consider empirical papers that, e.g., calibrate probability density functions
(despite there exist several ones). Then, in Section 4 we define a roadmap for modeling high-
dimensional uncertainties in PT networks in a sound manner for incorporation into optimization
processes. In Section 5, we draw conclusions on uncertainty modeling in PT optimization.

2 Stochastic optimization background

Optimization under uncertainty, or stochastic optimization, refers to a collection of quanti-
tative methods to make better decisions in the presence of uncertainty. While deterministic
optimization is handled using a universal mathematical programming framework, stochastic
optimization encompasses different modeling techniques and solution approaches including
stochastic programming (Birge and Louveaux 2011), robust optimization (Ben-Tal et al. 2009),
and approximate dynamic programming (Bertsekas 2011, Powell 2011). Tackling a stochastic
optimization model is usually significantly more challenging than a deterministic model (which
can be itself an NP-hard problem). The reasons behind this additional complexity is often
associated with the search over policies (i.e., collections of decision functions) rather than scalars
or vectors (Powell 2018) and with the necessity of establishing a good model to describe the
stochastic evolution of the uncertainty.





       

Stochastic optimization approaches are widely recognized and applied in a variety of contexts
such as energy operations and planning (Wallace and Fleten 2003, Boomsma et al. 2012, Trivella
et al. 2018), finance (Ziemba and Vickson 2014), and healthcare (Ahmadi-Javid et al. 2017),
and have led to remarkable achievements. Also, research in air traffic control, which is similar
to railway traffic control in terms of capacity and passenger flows (Pellegrini and Rodriguez
2013), has already pioneered stochastic optimization in planning of operations, resulting in
major improvements (Glover and Ball 2013, Jacquillat and Odoni 2015). On the other hand,
the stochastic optimization literature in railway and bus transportation is far behind and still
requires a substantial development. This paper attempts indeed to narrow this knowledge gap
by understanding how bus and railway optimization problems can be tackled using the realistic
environment dynamics neglected in current deterministic models.

3 Uncertainty models in the public transport optimization

literature

The functioning and operations of a PT network require solving a number of interconnected
problems at tactical level (e.g., timetabling) and operational level (e.g., traffic control) that in
reality are usually affected by some degree of uncertainty. As mentioned in Section 1, taking
this uncertainty into account when solving these problems is critical to improve the performance
and reliability of PT.

In this section, we present some of the most important problems in railway and bus optimization
and show that uncertainty has only been considered limitedly or with too simple, hence unrealistic
models in the literature. We review the literature on PT rescheduling in Subsection 3.1, on PT
timetabling in Subsection 3.2, and train trajectory optimization in Subsection 3.3.

3.1 Real-time rescheduling problem

In this subsection, we consider the rescheduling problem, or real time traffic control, which
consists in taking corrective actions in the PT network in order to mitigate the impact of delays
or disruptions in the system. Given that both the sources of uncertainty and the rescheduling
decisions are very different between railway and bus networks, we split our review in two parts:
we consider railways first and then move to buses.





       

3.1.1 Train rescheduling

Railway operations exploit the available infrastructure capacity according to a predefined
timetable, i.e., an operating plan that establishes arrival and departure times of trains. When
disturbances in the network occur due to e.g. technical failures or fluctuations in passenger
demand and travel time, railway operations might deviate from the timetable. Since railway
networks are very constrained systems, delays can easily propagate in space and time in a
snowball effect (knock-on), especially in saturated infrastructures (Corman et al. 2010a).

Timetables with large buffer times between trains ensure that delays are easily absorbed by
the network, but imply lower utilization of the infrastructure that makes railway services less
attractive and economical (Kroon et al. 2009). This approach is also not viable in practice due to
the expected increase of railway passenger demand and consequently capacity utilization, as in
case of Switzerland (Zischek 2017). A complementary and more practical way to handle delays
is through railway traffic control procedures, i.e., adjusting the timetable in real-time by taking
actions such as retiming arrivals and departures, reordering trains, and rerouting trains (Corman
and Meng 2014). Choosing the right action is however hard for a human traffic controller due to:
(i) the large number of rescheduling options available, and (ii) the variability in the system that
complicates determining whether a delay will fade out absorbed by the buffers, remain the same,
or propagate. Thus, human controllers can only rely on their past experience in evaluating the
effect of real-time schedule updates, or on fixed procedures (Hansen and Pachl 2014).

The academic research tackled the railway traffic control problem by developing techniques
of mathematical optimization aimed at finding the most suitable (i.e., mathematically optimal)
control action. The models developed in the literature are both macroscopic (large networks with
only stations and lines; Tomii et al. 2005, Meng and Zhou 2011) and microscopic (small networks
with high level of details including individual signals, blocks, and switches; Corman et al. 2010b,
2011, 2012, Pellegrini et al. 2014, Lamorgese and Mannino 2015).These formulations are usually
challenging combinatorial optimization problems. Thus, the common assumption to quickly
find a solution to these models is a deterministic and static setting, i.e., with full information
about future state of the system. As a result, these control approaches actually ignore the
uncertainty and variability that they aim to reduce. The use of uncertainty-aware models in
railway optimization is recognized as a promising approach which is slowing being adopted
by researchers. However, to our knowledge, only a few papers that we review below deal
specifically with uncertainty-aware real-time railway operations.

Meng and Zhou (2011) focus on finding a robust train dispatching under random segment running
time and segment capacity breakdown duration. The work is relevant as the authors develop
a rolling-scenario approach which is scenario-based, i.e., decisions are made by accounting





       

for multiple possible outcomes of the uncertainty. In the numerical experiments, however,
the authors only consider a one-dimensional uncertainty (a capacity breakdown that follows a
Gaussian distribution), which makes the problem significantly easier compared to having (i)
multiple uncertainties that (ii) evolve over time. Yin et al. (2016) consider the energy-efficient
real-time rescheduling problem in a metro system using approximate dynamic programming.
The system is affected by uncertainty in passenger demand and is high-dimensional. In fact,
passenger demand is modeled for each station of the line as a time-dependent Poisson distribution.
However, the random variables are independently distributed over stages and are uncorrelated. In
a recent work, Ghasempour and Heydecker (2019) also use approximate dynamic programming
for a train rescheduling problem in a single junction. The authors account for uncertainty in
dwell times at stations and section running time delays, and model them, respectively, using
a Weibull distribution and a Beta distribution. The random variables in this paper are also
uncorrelated since they are considered as independent and identically distributed, similar to Yin
et al. (2016).

3.1.2 Bus rescheduling

Bus networks are also frequently affected by delays. In addition to fluctuations in passenger
demand and boarding and alighting time, the travel time variability (e.g., due to traffic conditions
and weather) is a major source of uncertainty in bus networks (Kieu et al. 2014, Ma et al. 2016).
This makes the delay and system dynamics significantly different than in railway networks. One
of the most common effect of this stochastic system dynamics is the so-called bus bunching, or
platooning. A bus service is indeed considered best when times between successive bus arrivals
(headways) are equal. However, variability in the network makes it impossible to maintain equal
headways. When a bus is behind schedule, it will stay longer at the next stops because more
passengers will be boarding and alighting, and the delay will increase further. At the same time,
the amount of passengers in the following bus will decrease and the headway between the two
buses becomes smaller and smaller, resulting in buses clustering together, or bunching. When
this effect happens, bus operators might use different bus rescheduling strategies to restore the
desire headways.

Holding strategies are popular and consist in holding a bus at a station to create a certain
headway with the bus in front or behind. Bus holding to equalize headways has been studied by
academics for many years. In some recent literature, Bartholdi and Eisenstein (2012) suggested
to systematically delay buses at control points, while by Delgado et al. (2012) developed and
solved a non-linear deterministic mathematical program. Another strategy to address bunching
is stop skipping, in which a bus is allowed to skip a stop either completely or partially by
only enabling passenger drop (Sun and Hickman 2005). A joint holding and stop skipping





       

strategy was studied by Sáez et al. (2012) using a model predictive controller on a short time
horizon. Other options to restore headways include short turning, i.e., the bus turns around
before reaching the end point, deadheading, i.e., the bus is allowed to skip some stops when
empty (Yu et al. 2012), or simply speeding up between stops. Similar to the railway literature,
research in bus rescheduling has not accounted for uncertainty explicitly in the decision making
process to the best of our knowledge.

A stochastic simulator of a bus network in used in Delgado et al. (2012). This simulator assumes
that (i) passenger arrivals follow a Poisson distribution with different mean at each stop, and
(ii) travel times between two stops follow a log-normal distribution. However, the optimization
model developed by the authors to take corrective actions (i.e., bus holding time) is deterministic,
i.e., it does not account explicitly for future scenarios of the uncertainty but simply uses the
mean of these distributions as reference. The model is then re-optimized every time a bus arrives
at a station. The rolling horizon approach by Sáez et al. (2012) assumes that passengers arrive at
stations following an exponential distribution instead. The rescheduling actions in this paper are
also taken based on a single forecast of the system evolution, that is, the variability of the future
is not exploited when taking decisions.

3.2 Timetabling problem

The real-time rescheduling possibilities for trains and buses discussed above and their effective-
ness in presence of delay depend on the timetable. Timetables are determined in the planning
phase but influence real-time traffic control and vice-versa, i.e., the two problems are intercon-
nected. Constructing a timetable consists in determining the planned arrival and departure times
for units at stops/stations and has been extensively studied in the PT literature (see Parbo et al.

2016 for a recent survey, and Robenek et al. 2016). Determining PT timetables is computation-
ally hard even in deterministic settings because all departure and arrival times are considered as
decision variables, giving rise to complex mathematical programs. Nonetheless, some recent
literature has also addressed the problem of incorporating robustness in PT timetable design
or planning processes in general (see Fischetti et al. 2009, Cacchiani and Toth 2018, Lubsy
et al. 2018, and references therein), where robustness refers to the ability to absorb or resist
to unexpected changes, i.e., to continue operations at some level under disturbances. The
drawback of these approaches is that they are static, in the sense that they cannot fully integrate
the real-time dynamics and rescheduling decisions into the timetabling design phase. A fully
stochastic/robust timetabling model would, for each feasible timetable, solve a second-stage
problem to evaluate the real-time operational performance of the current timetabling solution
under uncertainty or perturbations. Clearly, this fully stochastic perspective would also increase





       

the complexity of a possible solution approach.

A simpler way to increase robustness towards real-time operations and prevent delay propagation
is by properly allocating the buffer times between possibly conflicting events in a timetable.
This can be seen as a subproblem of the full timetabling problem, where decision variables
are buffer times to insert between events rather than every departure and arrival time. If
we had accurate delay dynamics and uncertainty-aware policies for real-time railway traffic
control or bus rescheduling, we could in fact exploit these tools to improve the buffer time
allocation in timetabling. Kroon et al. (2008) discuss the buffer time allocation problem using a
stochastic optimization model that maximizes the robustness against stochastic disturbances.
The paper assumes that stochastic disturbances are independent of the current timetable and
that the simulation of the model does not include traffic control decisions. The initial (primary)
disturbances are modeled as truncated exponential distributions, which are then randomly
perturbed during the rest of the horizon. The buffer time allocation is also tackled in Jovanović
et al. (2017) and a robust allocation is found essentially via a knapsack problem reformulation.
Despite the approach in Jovanović et al. (2017) is interesting, it also has major limitations since
the uncertainty: (i) is only considered a-posteriori to evaluate a solution, and (ii) it follows
extremely poor dynamics because an initial delay is drawn from a uniform distribution and is
then assumed to propagate in a deterministic manner through the network. Thus, the buffer time
allocation literature would benefit from more realistic delay dynamics, and by integrating the
uncertainty and real-time control decisions in the allocation process using stochastic optimization
techniques.

3.3 Train trajectory optimization

The last problem we consider in this review pertains specifically to railways and is the train

trajectory optimization problem, that is, determining energy-efficient trajectories for trains
driving between two stations while fulfilling the scheduled arrival time and the other various
operational constraints. This problem has attracted considerable attention in the recent railway
literature (see, e.g., the surveys in Yang et al. 2016b and De Martinis and Corman 2018).
Improving energy efficiency is indeed one of the most important challenges in modern railway
transportation because the energy consumption represents one of the largest operating costs
(Railenergy 2016). As discussed in Hansen and Pachl (2014), optimizing the speed profiles of
individual trains can lead to potential energy savings in the range of 5–20%, and is therefore an
attractive measure for railway companies to reduce energy consumption since it does not require
any particular investment or infrastructural updates.

The train trajectory optimization problem has been approached in the operations research





       

literature using a number of methods that include formulating a mathematical program (e.g.,
mixed-integer and/or non-linear; Wang et al. 2013, Wang and Goverde 2016), formulating a
boundary value problem with differential equations (Howlett 2000, Howlett and Pudney 2012),
and by using dynamic programming on a graph generated from discretized space, time, and
speed points (Ko et al. 2004, Haahr et al. 2017, Zhou et al. 2017). The existing literature has
primarily studied the train trajectory optimization problem in a deterministic environment where
speed profiles are computed neglecting any uncertainty during the trip. In reality, there are
random factors that vary for each journey on the same track or even during the journey. These
factors include weather conditions (wind, rain, snow), train load (mass of passengers and goods),
traction effort and train resistance, for instance, and can affect the energy consumption and
consequently the optimal train speed profile. Accounting for these factors would enable deriving
driving controls that could be more energy-efficient because they could adapt to this uncertainty.
We were able to find only a few papers that deal with train trajectory optimization in an uncertain,
or partially uncertain environment.

Yang et al. (2016a) consider an integrated timetabling and speed profile optimization problem
under variable train mass at inter-stations, tractive force, braking force, and train resistance.
However, leaving train mass aside, the other quantities are actually considered “variable” by
the authors simply because they are modeled as a function of speed (which in common in
microscopic models), but they are not treated as random variables. The paper shows that
accounting for uncertainty in train mass can lead to 3% energy saving compared to a deterministic
benchmark. Trivella et al. (2019) consider uncertainty in wind as a Weibull distribution and
suggest to exploit the knowledge of this information to improve the trajectory based on an
updated train resistance. The model however assumes that weather information realizes before
the beginning of the journey and does not vary dynamically during the journey, therefore
stochastic optimization is not used by the authors.

4 A roadmap for uncertainty modeling in optimization

problems

In this section, we start by highlighting and discussing the shortcomings of existing models in
the literature in Subsection 4.1. Then, in Subsection 4.2 we indicate our suggestions on how to
develop in a sound manner models for the stochastic evolution of uncertainty in PT networks. In
Subsection 4.3, we discuss how to incorporate these models into an optimization routine.





       

4.1 Shortcomings in existing models

Our literature review in Section 3 highlighted that uncertainty is relevant in railway and bus
networks since there are numerous papers that consider uncertainty in passenger demand,
weather, running times, dwelling times, delay duration, etc. However, our review also points out
that the current modeling of uncertainty in PT optimization is lacking, mainly for the following
two reasons:

1. There is a lack of optimization models that account for uncertainty explicitly in the de-
cision making process, that is, consider future variability through multiple scenarios of
the uncertainty. In fact, most optimization models employ a deterministic optimization
approach based on a perfect information assumption or a single forecast of the uncer-
tainty (expected value) to make decisions. The expected value of a probability distribution
conveys only very limited information on the distribution, which is generally insufficient
to make good decision in the presence of uncertainty. Intuitively, this issue might be even
more acute in case of multimodal distributions because the expectation can fall between
two peaks. These distributions have indeed been examined in the PT empirical literature
and, for example, Ma et al. 2016 suggested that bus travel times follow a multimodal
distribution.

2. The dynamics of uncertainty is usually captured in a poor manner by assuming a single
stochastic factor and/or by using simple independent and uncorrelated random vari-
ables that include the uniform distribution, Gaussian, Weibull, Beta, or exponential, to
name a few. No paper in our review employs stochastic processes, which are generally
considered more appropriate to model the stochastic evolution of uncertain factors over
time, compared to independent random variables. In fact, stochastic processes embed a
temporal correlation of random variables. For instance, the use of stochastic processes to
model uncertainty is well established and common in the energy optimization and finance
literature. Below, we identified other shortcomings related to uncertainty modeling:

• A single-factor model of uncertainty is generally used rather than multi-factor mod-
els that assume the uncertainty to be driven by multiple stochastic factors. This is
a big simplification in many optimization models that involve a large number of
moving units or network links and where a multi-dimensional model of uncertainty
appears more appropriate/realistic.

• Almost no paper assumes correlation among different random variables. Correlation
in practice exists between different sources of uncertainty as well as different random





       

variables in space and in time (e.g., the evolution of delays, number of passengers).

• In some papers only the initial (time-zero) uncertainty is sampled from a probability
distribution and is then assumed to evolve deterministically over time. This means
that the uncertainty has no dynamics over time and, once the initial value of the
uncertainty realizes, then the decision making problem reduces to a deterministic
optimization problem.

Given the lack of modeling approaches that consider realistic uncertainty dynamics and the
explicit integration of uncertainty into optimization/decision making, in the next sections we
propose some guidelines for overcoming these limitations.

4.2 Modeling phase

First, we propose the use of stochastic processes to describe the stochastic evolution of the
unknown system over time (e.g., passenger demand or road traffic conditions), rather than
independent and uncorrelated random variables. Example of stochastic processes are the well-
known geometric Brownian motion, Ornstein-Uhlenbeck, and Poisson diffusion, to name a few
(Pinsky and Karlin 2010). Each process is able to capture different aspects of the uncertainty
dynamics, as it can also be noticed in Figure 1 where we draw sample paths from a geometric
Brownian motion (Figure 1(a)) and an Ornstein-Uhlenbeck process (Figure 1(b)). For instance,
the former process can capture a trend/drift in the data while the latter process can capture mean
reversion. Thus, the stochastic process must be chosen carefully based on the characteristics of
the historical data.

Figure 1: Example of stochastic processes
(a) Geometric Brownian motion (b) Ornstein-Uhlenbeck process





       

There exist also more complex processes in which the evolution of an uncertain quantity is
driven by multiple stochastic factors, i.e., multi-factor processes. A realistic modeling of the
uncertainty in a PT network in space and time entails associating each moving unit or link in
the network with at least one stochastic factor (i.e., amount of traffic on the link) representing
how uncertainty evolves in time in some spatial coordinates (which can either be “Eulerian”, i.e.
fixed, or “Lagrangian”, i.e., following the movement of the vehicle). A large number of moving
units or network links results in a high-dimensional dynamical model of the uncertainty, i.e.,
composed of many stochastic factors. These factors will also have some degree of correlation.
For instance, adjacent roads have similar traffic conditions with high probability.

Once a suitable stochastic process has been identified, the next step involves calibrating the
process on real data to obtain the parameters (e.g. volatility, drift, correlation) that best fit the
historical data about passenger demand, traffic, and potentially other uncertainties. For example,
the calibration of a stochastic process can be done by applying a Kalman filtering technique (see
Hamilton 1995, Schwartz and Smith 2000).

At this point, the calibrated stochastic process can be used to generate scenarios for the
uncertainty using Monte Carlo simulation. Depending on the structure of the underlying
decision making problem, the evolution of the stochastic process can be approximated by a
discrete-state scenario process using different representations.

In Figure 2, we show three different ways of representing the uncertainty with discrete scenarios
over a four-period horizon: a scenario tree (Figure 2(a)), a scenario fan (Figure 2(b)), and
a scenario lattice (Figure 2(c)). In all three cases, a node wi in the representation denotes a
stochastic process outcome at a stage i. In the scenario tree and lattice, given wi, the distribution
of wi+1 in the next-period is characterized by finitely many possible outcomes corresponding
to the branches exiting wi and probabilities associated with each branch. A scenario is a path
from the root (stage i = 0) to a leaf (stage i = 3 in the figure) as the ones marked in red.
The number of nodes and scenarios in the scenario tree grows exponentially with the number
of time periods, which makes handling scenario trees hard in problems with many decision
stages. In the scenario lattice, the number of nodes only grows linearly but it might be anyway
difficult to handle this structure since there is no unique predecessor for a given node wi. In
contrast, a scenario fan consists of a set of sample paths of the uncertainty generated in Monte
Carlo simulation. Scenario reduction techniques are frequently used to decrease the number
of scenarios and increase computational tractability while preserving most of the stochastic
information enclosed in the original set of scenarios.





       

Figure 2: Uncertainty representation
(a) Scenario tree

𝑖 = 0 𝑖 = 1 𝑖 = 2 𝑖 = 3

(b) Scenario fan

𝑖 = 0 𝑖 = 1 𝑖 = 2 𝑖 = 3

(c) Scenario lattice

𝑖 = 0 𝑖 = 1 𝑖 = 2 𝑖 = 3

Source: Trivella (2018).

4.3 Optimization phase

Assume now that a calibrated model for generating scenarios of the uncertainty is in place. The
next step in our roadmap consists in formulating a stochastic optimization model to account
for future scenarios of the uncertainty explicitly in the decision making process. As men-
tioned, stochastic optimization has the potential to improve (in some case dramatically) the
performance of decisions over classic/deterministic optimization. However, it also entails a
number of challenges that make formulating stochastic optimization problems more complex.
In Figure 3, we display some of the most popular classes of stochastic optimization models. The
formulation choice depends on many factors such as the number of stages (e.g., two vs. many),





       

the dimensionality of the problems (e.g., in the state space, action space, and/or uncertainty
outcome space), and the objective function (expected value vs. worst case vs. risk measures).
Designing the objective function might be non trivial. Consider for example a railway timetable
solution in which a single train has a large delay with large probability and a solution in which
many trains have small delays with large probability, so that the total expected delay is the same
in both solutions. Which solution is preferable for the operator and for the passengers?

Figure 3: Some popular classes of stochastic optimization models and algorithm.

Stochastic programming

Robust OptimizationTwo-stage Multi-stage

Scenario decomposition (e.g., progressive hedging)

Approximate dynamic programming (ADP)

Information relaxations Stochastic dual dynamic programming

Least squares Monte Carlo Approximate Linear Programming

Finally, we must be able to solve our stochastic optimization model to obtain a solution (i.e.,
a decision or a control policy) that perform well in the presence of the uncertainty, which
means, depending on the objective function, performing well on average (i.e., in expectation)
or that optimizes the worst case or some risk measure of the uncertain reward or cost. The
classes of models in Figure 3 admit several algorithms to approximate the problem and obtain
computational tractability. For example, approximate dynamic programming is an umbrella of
methods that include the popular least squares Monte Carlo method (Longstaff and Schwartz
2001, Nadarajah et al. 2017, Trivella et al. 2018), approximate linear programming (De Farias
and Van Roy 2003, Nadarajah et al. 2015), stochastic dual dynamic programming (Pereira and
Pinto 1991, Löhndorf et al. 2013), and information relaxations (Brown et al. 2010, Mohseni-
Taheri et al. 2018) among others, and that can overcome the different curses of dimensionality
arising when embedding stochasticity in the problem.

5 Conclusion

In this paper we have discussed the modeling of uncertainty in public transport optimization
with a focus on railways and buses. We have reviewed the existing literature by covering





       

some of the most important optimization problems in public transport including timetabling,
real time rescheduling, and energy efficient driving operations. From the extant literature, we
identified a lack of modeling approaches that consider realistic uncertainty dynamics and the
explicit integration of uncertainty into optimization procedures. In fact, the literature has so far
mostly employed poor models for the stochastic dynamics of the uncertainty (e.g., simple, low-
dimensional, uncorrelated probability distributions) and a deterministic optimization perspective
that either uses perfect information of the future or assumes a single expected value of the
uncertainty is sufficient to make decisions.

We therefore provided suggestions on how to overcome these shortcomings from the PT literature
in order to improve decision making. Our roadmap for realistic uncertainty modeling in
PT optimization consists in two main steps: (i) modeling the evolution of the uncertainty
using stochastic processes calibrated based on real data, and (ii) using stochastic optimization
techniques that can exploit multiple scenarios of the uncertainty to take better operational
and tactical decisions (e.g., stochastic programming, robust optimization, and approximate
dynamic programming). Although similar steps are commonly used, e.g., in the energy and
finance literature, the PT literature has so far benefited only limitedly from the use of stochastic
processes and stochastic optimization methods. Thus, we recommend the adoption of these
techniques in future research on PT optimization.
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