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Abstract

It has been recently shown that the localized linear regression time series model captures well
nonlinear traffic propagation single freeways (without network features) regardless of the traffic
states, such as congestion or free flow state. In this work, we examine the possibility of extension
of the model to network cases. One issue with extending to network cases comes from the
massive number of data points. The higher data dimension forces the larger training data
set for training huge transition matrices in the model. Therefore, we introduce a method to
reduce the size of data adequately by introducing the Laplacian matrix which is well known as
spectral graph transformation. This transformation allows us to reduce the dimension of data
by considering the structure of a freeway network. We show that it is possible to take the full
advantage of the localized linear transformation on the graph spectral domain so that prediction
is successfully performed under freeway networks in an accurate and efficient manner.
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Traffic prediction; dimensionality reduction; localized linear regression time series model;
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Introduction

Traffic prediction is one of the most important features to support successful Intelligent Trans-
portation System (ITS). Accurate traffic prediction not only can enable for operators to establish
dynamic control strategies but also for a traveller to make decisions about his or her trip by
having useful information such as travel time so that which route would take the least travel time
under dynamic conditions.

Literature review in the topic is vast, but only a few papers are cited due to space limitation.
Yildirimoglu and Geroliminis (2013) grouped the historical data set to three clusters (weekdays,
Friday, and weekend), and build the stochastic congestion map for each cluster. Based on the
stochastic map, the authors matched the real-time measurement to the most similar congestion
map with a threshold and predict traffic state. Chandra and Al-Deek (2009) predicted traffic
by applying vector autoregressive (VAR) model. Although the authors studied VAR model
with traffic data and the results show great performances, they conclude that VAR model is
highly dependent on the stationary condition of traffic data, which means it is possible that the
assumption is not realistic. Also the authors said the performance degradation of prediction
would be occur since the rush hour behavior would be different from the off-peak, while time
series models use global parameters including VAR model. Nanthawichit et al. (2003) predicted
traffic state (velocity field) by using the macroscopic fundamental diagram (MFD) model. There
are also several works based on neural network framework Wei and Lee (2007), Palacharla and
Nelson (1999), Polson and Sokolov (2017).

Kwak and Geroliminis (submitted) introduced a localized linear regression time series model to
predict traffic state and experienced travel times. The authors showed that the model captures
nonlinear traffic propagation well for a single freeway, not a network, regardless of the traffic
states and their dynamics, such as congestion or free flow state. They showed the model only
for a single freeway route so, in this paper, we introduce a way for generalizing the model to
freeway networks which creates significant computational and modeling challenges.

One issue with extending to network cases comes from the massive number of data points.
For example, the freeway network in the district 7 of California has around 900 detectors as
shown in Fig. 1. The higher data dimension forces the larger training data set for training huge
transition matrices in the model. Another thing to keep in mind is to take an advantage of spatial
correlation correlations among links in the network. For example, links in the center area of
Fig. 1 are more interacting to each other than those in boundaries.





               

 


[GROUND TRUTH] 04-12-2017 [Mon] 17:00
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Figure 1: The traffic state (speed) of December 4th (Monday), 2017 of district 7 in California.

Therefore, in this work, we introduce a well known data dimensional reduction method in graph
theory that exploits the Laplacian matrix which is used for transforming a traffic state from
vertex domain to spectral domain. This transformation allows us to reduce the dimension of data
by considering the structure of a freeway network. We show that it is possible to take the full
advantage of the localized linear transformation on the graph spectral domain so that prediction
is successfully performed under freeway networks.

1 Localized linear regression time series model

In the work of Kwak and Geroliminis (submitted), the authors introduced a localized linear
regression time series model.

xd
t+1 = Ht+1,txd

t + n (1)

The authors built this model based on three important hypothesis: First, current state (xd
t ) is

linearly transformed to the next state (xd
t+1) with the transition matrix (Ht+1,t). Second hypothesis

is that the transformation is localized in time domain which means that the transformation is





               

 


only valid between t and t +1. Lastly, the authors assumed that the transformation is independent
of days, regardless of different traffic demands.

By assuming each element of the noise vector follows Gaussian distribution independently and
identically, the authors trained the transition matrix minimizing the square error of noise matrix
(collection of noise vectors for different days), and the final solution is:

Ĥt+1,t = Xt+1XT
t (XtXT

t )−1 (2)

where the matrix Xt represents the collection of state vectors which corresponds the time t in the
historical data set.

The authors also designed a linear predictor by minimizing mean square error between predicted
state and the real state as follows:

xd
t (h) = Ht+h,txd

t , (3)

where xd
t (h) represents the h-time step ahead predictor at time t and Ht+h,t =

h∏
i=1

Ht+h−i+1,t+h−i.

2 Data dimensional reduction for graph signal

The main issue with extending from a freeway to a network comes from the expansion of data
dimension. In equation (2), the computational cost of the matrix multiplication depends on the
size of the state matrix. Also, the matrix XtXT

t would be rank deficient when the data dimension
is higher than the number of training data.

Data dimension reduction methods have a potential to alleviate such issues. Here, we introduced
the unnormalized Graph Laplacian which is defined as L := D −W, where the degree matrix D
is a diagonal matrix whose ith diagonal element is equal to sum of the weights of all the edges
incident to vertex i. Therefore, for any graph signal x which is defined in a vertex domain, it
satisfies:

(Lx) (i) =
∑
j∈Ni

W (i, j)
[
x (i) − x ( j)

]
(4)

where the neighborhood Ni is the set of vertices connected to vertex i by an edge, the ith
element of vector x is represented as x (i), and the ith row and jth column entry of matrix W is
represented as W (i, j). Because the Laplacian matrix is symmetric by the definition, it has a





               

 


complete set of orthonormal eigenvectors (U) and corresponding eigenvalues (Λ):

L = UΛUT (5)

where (i, i)-th element of the diagonal matrix Λ represents ith eigenvalue in ascending order, i.e.,
Λ (1, 1) ≤ Λ (2, 2) ≤ · · · ≤ Λ (N,N) and ith column of the matrix U represents the eigenvector
which corresponds to the eigenvalue Λ (i, i). If a graph is connected, then Λ (1, 1) = 0.

We transform the original graph signal (in our case, traffic state vector x) to the row space of U

x̂ = UT x (6)

Interestingly, the transformed vector x̂ contains the information of “spectrum" of the state vector
x with the information of the graph structure which is defined by the weight matrix W. For
example, the first element of the vector x̂ (1) contains dc (direct current) information of the signal
x, but the last element of the vector x̂ (N) contains the information of much higher frequency of
the signal x. For more information, refer the paper Shuman et al. (2012).

For the data compression, we chose subset of eigenvectors rather than the full set of those

x̃ = ŨT x (7)

where Ũ = U (:, 1 : k).

Therefore, we applied localized linear regression time series model with the transformed and
compressed state vector x̃ instead of x in equation (1). After prediction by equation (3) with the
compressed spectral signal x̃, the predicted spectral signal x̃t (h) is reconstructed as follows:

xt (h) = Ũx̃t (h) (8)

3 Numerical results

We used 300 basis (eigenvectors), so the compression rate is 300/900 = 1/3 and trained the
transition matrices Ht+1,t with the traffic data (speed) for the freeway network in district 7 of
California from 2015-01-01 to 2017-11-30. Figure 2 shows one example of prediction result at
15:00 of 2017-12-04 for 2 hours later (17:00).





               

 


[PREDICT] 04-12-2017 [Mon] 17:00 at 15:00
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Figure 2: The prediction of the traffic state (speed) of 17:00 at 15:00, December 4th (Monday)
2017, district 7 of California.

Comparing the result to the ground truth (Fig. 1), it is shown that the prediction based on the
localized linear regression time series model by compressing data performs well. Since we
choose 300 eigenvectors which correspond to 300 smallest eigenvalues, we can see that the
prediction result seems smoother that the ground truth. It means that the traffic signal is naturally
denoised (similar to low pass filter) during prediction process. Also, because the dc component
of the traffic signal (average of traffic values of a network at a certain time) is always dominant
to other components, it is unnecessary to execute the post process which bounds the traffic signal
to have a proper value, e.g., non negative speed.

4 Conclusive remarks

In this paper, we generalized localized linear regression time series model to network case.
We introduced graph spectral transformation to reduce data dimension to make it possible to
train the transition matrix. In the full paper, more test data will be examined to evaluate the
performance of the traffic predictor and be compared with the state-of-the-art techniques. For
the future work, further generalization of the method to urban networks is a research priority





               

 


that contains additional challenges.
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