
Towards High Performance Mobility Simulations

Rodrigo Bruno

Michel Mueller

Gustavo Alonso

Torsten Hoefler

Systems Group, Dept. of Computer Science, ETH Zurich May 2019

STRC 19th Swiss Transport Research Conference
Monte Verità / Ascona, May 15 – 17, 2019

Systems Group, Dept. of Computer Science, ETH Zurich

Towards High Performance Mobility Simulations

Rodrigo Bruno, Michel Mueller, Gustavo
Alonso, Torsten Hoefler
Systems Group
Dept. of Computer Science, ETH Zurich
Universitatstrasse 6, 8092 Zurich, Switzerland
phone: +41-44-632 68 79
fax: +41-44-632 10 59
{rodrigo.bruno,michel.mueller,alonso,torsten.hoefler}@inf.ethz.ch

May 2019

Abstract

Efficient public transportation plays a key role in addressing crucial societal challenges such as
urban planning, pollution, or energy consumption. To understand how transportation systems
might evolve and determine the impact of new technologies and planning decisions, traffic
simulations are used to explore different scenarios and help with the planning process. Existing
tools, however, suffer from scalability and performance problems when it comes to simulating
country-wide scenarios with millions of moving agents, scenarios that are needed to understand
how complex transportation networks behave.

In collaboration with the Swiss Railway Services (SBB) and IVT (ETH), the Systems Group
at ETH is developing a high performance and scalable traffic simulation platform capable of,
initially, covering the entire population and transportation network of Switzerland. With current
tools, such scenarios are projected to take months of computing time when running on a powerful
multi-core server. By redesigning MATSim’s simulation engine for the use of highly efficient
data structures and algorithms, we have been improving its performance, allowing us to pursue
our end goal of simulating a Swiss-scale scenario. Further performance gains are expected as
we include improvements on convergence rates, the replanning stages of the simulation, and
enable scalability across clusters of machines.

Keywords
Mobility Simulation; Agent-based Simulation; High Performance Computing; Large Scale

1 Introduction

Efficient public transportation plays a key role in addressing a number of crucial challenges
to society such as urban planning, pollution, or energy consumption. Achieving efficiency
and keeping public transportation systems competitive is challenging, though, given the fast
changes in vehicle and transportation modalities, in demographics, and the urgent need to reduce
the human impact on global climate. To understand how transportation systems might evolve
and determine the impact of new technologies and planning decisions, traffic simulations are
often used to explore different scenarios and help with the planning process. Existing tools,
however, often exhibit scalability and performance limitations when it comes to simulating
country-wide scenarios with millions of moving agents, scenarios needed to understand the
behavior of complex transportation networks and how they might evolve in the future. A deeper
look into current simulation works is presented in Section 2.

In collaboration with SBB (Swiss Federal Railways) and IVT (Institute for Transport Planning
and Systems, ETH), the ETH Systems Group is designing a high performance and scalable
traffic simulation platform capable of supporting large scenarios as well as repetitive what-if
analyses requiring many runs under different parameters to evaluate the impact of intended and
unintended changes. The initial goal of the project is to provide complete coverage of the entire
population and transportation network of Switzerland. Tools like MATSim, proposed by Horni
et al. (2016), provide a wealth of functionality having been designed for flexibility rather than
high performance. It can take up months even when running on a powerful multi-core server
using the current MATSim implementation to run the scenarios we want to support. Figure 1
presents the execution time for simulating 10% Switzerland, for one iteration, with MATSim’s
default simulator, QSim. From these results, one can roughly estimate that simulating 100%
Switzerland, for 1000 iterations (the most commonly used number of iterations at SBB), would
take approximately 116 days, an unrealistically long time for any production system.

We have conducted an extensive performance analysis on QSim (the simulator included in MAT-
Sim), both looking at raw performance as well as studying the underlying modelling problem
through our own prototypes. Our experiments show that the main performance bottlenecks are
data structures and algorithms chosen for ease of use by the developer but not for their efficient
representation and memory access speed.

To address these shortcomings, we are developing Hermes (High pERformance Multi-mode
transport nEtwork Simulation), an alternative simulation engine intended to be a drop-in re-
placement for QSim compatible with the rest of MATSim. Hermes is built around two main

Figure 1: MATSim simulator (QSim) Scalability simulating 10% Switzerland for 1 Iteration

4002

2654

1590
1145 1076 1090

Number of Threads

Si
m

ul
at

io
 T

im
e

(s
ec

on
ds

)

0

1000

2000

3000

4000

5000

1 2 4 8 16 32

design decisions. First, Hermes is an event-driven simulator meaning the simulation tracks and
produces events that need to occur at a specific time. In other words, Hermes does not process
network links or agents individually but simulation events instead. Doing so is important to
efficiently support sparse networks, where the average number of events is low, as it is to be
expected in large scale scenarios. Second, Hermes is heavily optimized for the common case,
i.e., the most common type of network events. Basic network events such as activities, legs,
and public transportation related events are handled through a fast code path. Complex and
experimental features, such as taxi events, are handled through a slower, not optimized code path.
By relying on this execution path split, it is possible to support both large-scale simulations using
standard/simpler network features while supporting simulations requiring more experimental
features.

Preliminary performance results obtained using SBB’s testing infrastructure and utilizing a
MATSim scenario of Switzerland with 10% of the population (provided by SBB) show that
Hermes is significantly faster than QSim. These results validate both the design decisions and
performance techniques used while developing Hermes.

2 Related Work

There have been many proposed simulation engines such as the work by TRANSIM Smith
et al. (1995), SUMO Behrisch et al. (2011), DRACULA Liu (2010), DynaMIT Ben-Akiva et al.

(1998), and MATSim Horni et al. (2016) that, however, suffer from scalability problems and
therefore, are unable to simulate large scale scenarios.

Parallelization of the simulation engine is a popular approach as it is the fastest way to scale
inside a single machine as presented by Barceló et al. (1998) and Aydt et al. (2013). However,
parallelization has several challenges such as selecting/designing efficient data structures that
minimize the overhead of synchronization. Besides, parallel approaches are limited to a single
machine, which poses a limit on the number of cores and size of the memory usable by the
simulation.

To overcome the resource limitation posed by using a single node, distributing the simulation
has been also proposed by Cetin et al. (2003), Rickert and Nagel (2001), Cameron and Duncan
(1996), Klefstad et al. (2005), Suzumura and Kanezashi (2014), and Suzumura et al. (2015).
While distributing the workload provides much more resources to the simulation, it also poses
new challenges such as a the partitioning the network. Such partitioning is usually very difficult
as agents might be able to teleport to random locations in the network, making it difficult to
estimate a good partition of the network and thus potentially leading to large communication
overheads.

Finally, more recently, a number of works also proposed the use of GPUs to accelerate the
simulation effort as proposed by Strippgen and Nagel (2009), Shen et al. (2011), Xu et al. (2014),
Vu and Tan (2017), Heywood et al. (2015), and Saprykin et al. (2019). However, these works
require even more complex algorithm implementations (specially designed for GPUs) which
will most likely break the MATSim goals of keeping the code extensible and maintainable by
the community.

In sum, this work is proposing a realistic implementation of a MATSim simulator, one that
could be integrated in MATSim without breaking the MATSim ecosystem, while providing
high scalability and performance. To the best of our knowledge, this is the first work to comply
with both goals, stay compatible with MATSim and still allow the execution of such large scale
scenarios (such as the Switzerland scenario).

3 Hermes - a high performance mobility simulator

Hermes is a new simulator for MATSim developed with performance in mind. The goal is to
scale to very large scenarios (nation-wide scenarios, for example) and in order to achieve such
goal, Hermes is built around the event-driven simulation design principle, where the simulator
processes events that are scheduled to occur at every simulation step. This is a radically
different design choice compared to link-driven simulation (currently used in QSim, the default

MATSim simulator) which processes all the network links at every simulation step. While more
challenging to implement correctly, event-driven simulation algorithms can be significantly
faster when compared to link-driven simulation algorithms because the network does not have to
be traversed by the simulation algorithm on every simulation step. For example, if there are no
agents interacting with a specific link, this link will not be visited by the event-driven simulation
but it will still be visited by a link-driven simulator. This difference has a significant impact on
sparse networks (networks which contain hot clusters of very utilized links separated by mostly
underutilized links). Sparse networks are specially relevant as they approximate real world large
scale scenarios such as the Switzerland scenario.

Besides the type of simulation algorithm to use (either link-based or event-based), a second
fundamental challenge arises when highly optimized code requires low maintainability and high
extensibility. In particular, MATSim code is required to be highly extensible and accessible to
a large community of developers that might not be experts on High Performance Computing
(HPC, for short). To address this problem, Hermes provides a fast/optimized simulation path
for the most common/standard simulation features and allows plugins, that implement more
advanced/experimental features, to extend Hermes. This way, Hermes supports efficient exe-
cution of very large scenarios that use the most common simulation features, and also more
research-oriented scenarios that might use more experimental simulation features.

In the next sections we analyze in deeper detail the design decisions of Hermes and how it
integrates with the MATSim simulation framework.

3.1 Simulation Workflow

Hermes is developed as a simulator inside the MATSim simulation framework. MATSim is
a widely used tool that allows users to simulate agent-based transport scenarios. A MATSim
execution has three main conceptual steps : Simulation step, Scoring step, and the Replanning
step.

The first, Simulation step, is responsible for simulating the agents on the network, i.e., moving
agents between links, processing interactions between agents and public transportation, etc..
The Simulation step receives as input a specific sequence of actions that must be performed by
each agent on the network (called plans) and produces, as output, a number of network events.
Network events describe when, how, and what happens in the network.

These network events are then processed by the Scoring step which produces a final score for

Figure 2: Hermes Simulation Workflow in MATSim

the simulation executed with the current set of agent plans. This score is then analyzed by a
termination criteria which decides if the simulation should continue with one more iterations or
if it should terminate. New plans for each agent are generated by the Replanning step. The goal
of the Replanning step is to create plans that improve the overall score of the simulation.

Hermes is inserted in MATSim as a new drop-in replacement for the Simulation step. Figure 2
presents the simulation workflow of Hermes integrated in MATSim. The green boxes represent
code developed in Hermes while the yellow boxes represent MATSim’s code. Note that the
Extensions component is provided as a way to install plugins that implement advanced simulation
features, which are not implemented and therefore not optimized in Hermes. For each simulation
iteration, Hermes executes three main steps: Scenario Setup, Simulation Core, and Event
Processing. Each of these are discussed in the following sections.

3.2 Scenario Setup

The Scenario Setup is the first step of a Hermes simulation iteration and it consists on preparing
the data structures that are used by the Simulation Core. These data structures include: i) the
links that form the network that is being used for the simulation, ii) the agents that participate
in the simulation, and iii) other helper data structures that are used to keep state during the
simulation.

Since the data stored by these data structures is heavily accessed during the simulation, it is
important to select and design these data structures carefully to allow the simulation code to

be as efficient as possible. In practice, two design goals are present when designing these data
structures.

First, data should be compressed as much as possible. This will not only save memory but it
will also improve caching as more data will be cached. One simple practical example is using
integers for identifiers instead of Strings (as MATSim does). An integer will be stored in a 32
bit word while a String might take an arbitrary amount of space (depending on the number of
characters).

The second design goal is to avoid multiple hops in memory when loading data. For example,
when loading a value stored in a hash table, several memory hops will be necessary to load the
data value. However, if the data is stored in a flat memory array, only one access is necessary.

3.3 Simulation Core

After preparing all the necessary data structures, Hermes’ simulation code is invoked to perform
the actual simulation. As already discussed, the simulation executes an event-driven algorithm
that generates events that are used in the next phase (Scoring) of the MATSim simulation
workflow.

In the remainder of this section, the core simulation algorithm is presented and a number of
optimization techniques that improve the performance of the simulation are discussed.

3.3.1 Simulation Algorithm

A simplified, yet representative, version of Hermes simulation algorithm is presented in Algo-
rithm 1. The algorithm begins with the main procedure, Simulate, that executes all the steps of
the current simulation iteration. Then, for each step, each agent that should be processed in the
current step is handled by calling the Process_Agent procedure (line 4). After processing the
agents that need to be handled in the current simulation step, all links that need to be handled in
the current simulation step are also processed (line 6).

The Process_Agent procedure will handle a single agent and it will try to route this agent in the
network according to the specified action in the agent’s plan. For example, a leg plan entry means
that the agent needs to enter a specific link. A special case of the Process_Agent procedure
occurs when Hermes does not implement a handler for the type of action that the agent needs to

Algorithm 1 Hermes Simulation Algorithm
1: procedure Simulate
2: for step in iteration do
3: for agent in delayed_agents(step) do
4: Process_Agent(agent)

5: for link in delayed_links(step) do
6: Process_Link(link)

7: procedure process_agent(agent)
8: switch agent.plan.top do
9: case leg

10: // handle agent leg, push to link

11: case activity

12: // handle agent activity, add to delayed_agents

13: case pt

14: // handle public transport interaction

15: case de f ault

16: // call extension code to process plan entry

17: procedure process_link(link)
18: while can_process_agent(link.top) do
19: Process_Agent(link.top)

20: link.pop()

21: delayed_links[link.top. f inish].append(link)

execute. In this case (link 15), Hermes resorts to external code (registered extensions) that will
be called to handle this agent.

Finally, the Process_Link procedure will process an individual link by going through the agents
that are ready to leave the link and trying to route them. The loop stops when one agent cannot
be routed to its next hop in the network. After processing all the agents that can be routed, the
link is re-inserted in the data structure that holds links until they need to be processed (line
21).

Since this is an event-driven algorithm, there is no full iteration over the network links or agents
that participate in the simulation. As demonstrated in lines 3 and 5, only the agents and links
that need to be handled in a particular simulation step are accessed and processed.

3.3.2 Core Algorithm Optimizations

To achieve high performance simulation, Hermes employs a number of optimizations that come
from understanding how the developed algorithm will be compiled and mapped the to underlying
hardware. The main optimizations are depicted below:

Avoid objectification - While Object Oriented languages such as Java heavily rely on objects
to couple logic and state, large scale use of such constructs (objects) leads to performance
problems/inefficiencies. First, every object requires some memory to accommodate metadata,
which becomes non-negligible when many objects are used. Second, every time an object is
used, its memory location is loaded, leading to severe performance penalties when many objects
are being used. To reduce memory utilization and memory loads, Hermes uses primitive types
whenever possible. One simple example is to keep identifiers as ints instead of Strings;

Avoid non-consecutive-memory data structures - Coupled with the objectification problem
comes the use of non-consecutive-memory data structures. Such data structures include Lists and
Maps which do not place the elements of the data structure consecutively in memory. As a result,
accesses to a single element of the data structure might require multiple accesses to memory. To
avoid such data structures, Hermes uses arrays of primitive types whenever possible;

Avoid polymorphism - Another performance consequence of the object oriented programming
model are polymorphic method calls. A polymorphic method call occurs when a method can
have multiple implementations, for example, through the use of class hierarchy or interfacing.
When handling a polymorphic call, the compiler does not know which method will be used until
the call is performed. In Hermes, we try to remove all the polymorphic calls from the simulation
code to allow important compiler-driven optimizations (such as method inlining);

Compact hot code paths - A hot code path is a set of instructions or methods that are executed
very frequently. Removing all logic that could live outside the hot code path leaves only essential
instructions that could not be pre-computed or post-computed. This improves the ability to
further optimize the code. In Hermes, this principle is applied in several places, where the hot
code path can be made more compact and efficient. One example is the pre-computation of
the data structures that hold the events that need to be fired during the simulation (described
next).

3.4 Event Processing

The final step of the Hermes simulation workflow in MATSim is the event processing. An event
is a piece of information that can be used to describe when, how, and what happened in the
network. These events are important to understand how the agents move in the network and they
interact with public transports, for example.

One important observation regarding events is that most of the information that is contained in
an event (namely the how and what) can be predicted from the plans. In other words, the plan
of an agent tells what the agent will do and how. The only missing information is when each
action will be triggered. Hermes takes advantage of this observation and pre-computes all events
during scenario setup. This allows Hermes to mostly avoid event setup during the simulation.
During a simulation, the only task is to tag the times at which each event is triggered. At the end
of the simulation, only a few operations need to be executed to ensure that events produced by
Hermes are compatible with MATSim events.

4 Evaluation Results

Hermes is a new, drop-in, simulator for MATSim and, in order to measure the performance
benefits of using Hermes we now present some evaluation results. The goal of this experimental
evaluation is twofold. First, analyze the performance impact of Hermes and measure the time it
takes to finish the simulation and compare it to QSim, the default simulator in MATSim. Second,
measure quality of the simulation results produced by Hermes, i.e., assuming QSim as the point
of reference.

All the performance results were obtained in a single node equipped with an Intel Xeon E5-4650
v2 @ 2.40GHz (10 cores per socket, 4 sockets) and with 512 GBs of DDR4 @ 1866 MHz.
Several runs were performed to confirm that the presented results are reproducible and are
representative of the performance of the system. All runs were executed in isolation. A scenario
of Berlin with 1% of the total agents was used for this performance evaluation.

Figure 3: Hermes Simulation Workflow in MATSim

Iterations

Ti
m

e
(m

s)

0

50000

100000

150000

200000

QSim Hermes Hermes - Simulation Core

4.1 Simulation Performance

We start the study of Hermes’ performance by comparing MATSim simulation workflow time
with both simulators: QSim and Hermes. This is an end-to-end metric that shows the global
performance of the simulator and abstracts some internal simulation steps, which are discussed
in the next section.

Figure 3 presents the simulation time (in milliseconds) for QSim (blue bars), Hermes (red bars),
and Hermes Simulation Core (yellow bars). For this experiment, we configured MATSim to run
for only 10 iterations. The simulation time for the first and last iterations is higher than the other
iterations because MATSim records the state of the simulation to disk. Since a typical simulation
incurs into a high number of iterations (1000 iterations, for example), the performance of these
two iterations will not be analyzed in this work.

Looking at the execution time of iterations 1 to 9, it is possible see that Hermes (red bar) reduces
the simulation type by 70% on average when compared to QSim (blue bar). It is also interesting
to note that Hermes Simulation Core (yellow bars) is significantly faster than QSim and Hermes
(7x faster than QSim on average). This is an important result as it indicates that a significant
portion of time is spent not executing code that is actually moving agents and simulating our
scenario but instead, executing internal MATSim code (discussed next).

Figure 4: Hermes Simulation Workflow in MATSim

Iterations

Ti
m

e
(m

s)

0

50000

100000

150000

Scenario Loading Simulation Core Event Processing MATSim Event Processing

4.2 Hermes Simulation Breakdown

In order to have a better understanding on where time goes inside Hermes’ simulation, we
conducted further analysis on the iteration workflow in MATSim. The results are presented in
Figure 4, which contains performance results for each of the Hermes simulation workflow steps:
Scenario Loading (blue bars), Simulation Core (red bars), and Event Processing (yellow bars),
as presented in Section 3.1). In addition, we also present results for MATSim event processing,
a step that is executed after Hermes Event Processing and before Scoring.

Looking at the Scenario Loading times (blue bars), it is possible to see that for the first iteration,
there is a high amount of time required to build all the data structures necessary for the simulation.
However, in subsequent iterations, only minor updates to agent plans are necessary and therefore,
the time of this step is negligible after the first iteration.

The Simulation step (red bars) represents the time used by the simulator to loop through all the
events and moves agents in the network. This is where most of the complexity of the simulation
lies. The Event Processing step requires a very low amount of time to execute as very little work
is performed at this stage of the simulation (as discussed in Section 3.4).

Finally, the MATSim Event Processing step (green bars) is where most of the time goes. This
is step is responsible for forwarding all events to all event listeners registered in MATSim.
Although this code is not part of Hermes, is has a significant impact on the overall simulation
performance at it has to be executed in between every iteration. Therefore, and since this is the
component that is taking the most amount of time (even more than the Simulation Core), this is
currently our target for improving the performance of MATSim.

Figure 5: Hermes Simulation Workflow in MATSim

Percentage of Travel Time Skew

N
um

be
r o

f A
ge

nt
s

0

10000

20000

30000

40000

20 40 60 80 100

4.3 Hermes Simulation Travel Time Skew

We finish our evaluation section by providing results of the quality of Hermes’ simulation. In
this experiment, we consider that QSim is our target and we compared the percentage of travel
time skew for agents simulated in Hermes. For example, an agent with a travel time skew of
10% means that this agent, when simulated with Hermes, takes either 10% more time or 10%
less time to complete its trip.

A histogram of the travel time skew is presented in Figure 5. From these results, one can
conclude that Hermes is providing less than 10% skew for most agents. This seems to be a
reasonable penalty given the performance improvements that is currently provided by Hermes.
Nevertheless, we are working on reducing the travel time skew of Hermes compared to QSim.
One main factor for increasing this time skew is the fact that Hermes is using integers for all its
internal calculations (length, time to destination, etc) instead of double precision values as used
by QSim.

5 Conclusions and Next Steps

In this work, we presented an work-in-progress effort to make large scale simulations possible
in MATSim by providing a new simulator implementation, Hermes. Hermes is an event-driven
simulator that provides a fast execution path for most common simulation features but still

supports extensions for research-oriented features.

The experimental evaluation shows that Hermes is able to reduce the simulation time when
compared to the current default simulator, QSim. It is also demonstrated that the current
bottleneck is the MATSim Event Processing step, that takes most of the simulation time for each
iteration.

The next steps in the development of this project include the improvement of MATSim Event
Processing and the study of the applicability of ensemble runs in MATSim (i.e, running multiple
simulations in parallel). By running multiple simulations in parallel, it would be possible to
explore multiple replanning options at the same time, thus reducing the number of iterations nec-
essary until the simulation finishes. Hermes is available at github.com/muellermichel/matsim.

6 References

Aydt, H., Y. Xu, M. Lees and A. Knoll (2013) A multi-threaded execution model for the
agent-based semsim traffic simulation, paper presented at the AsiaSim 2013, 1–12, Berlin,
Heidelberg, ISBN 978-3-642-45037-2.

Barceló, J., J. L. Ferrer, D. García, M. Florian and E. L. Saux (1998) Parallelization of Micro-

scopic Traffic Simulation for Att Systems Analysis, 1–26, Springer US, Boston, MA, ISBN
978-1-4615-5757-9.

Behrisch, M., L. Bieker, J. Erdmann and D. Krajzewicz (2011) Sumo – simulation of urban
mobility: An overview, paper presented at the SIMUL 2011, October 2011.

Ben-Akiva, M., M. Bierlaire, H. Koutsopoulos and R. Mishalani (1998) Dynamit: a simulation-
based system for traffic prediction, paper presented at the DACCORD Short Term Forecasting

Workshop, 1–12.

Cameron, G. D. B. and G. I. D. Duncan (1996) PARAMICS-parallel microscopic simulation of
road traffic, Journal of Supercomputing, 10 (1) 25–53.

Cetin, N., A. Burri and K. Nagel (2003) A large-scale multi-agent traffic microsimulation based
on queue model, paper presented at the 3rd Swiss Transport Research Conference, Ascona,
March 2003.

Heywood, P., P. Richmond and S. Maddock (2015) Road network simulation using flame gpu,
paper presented at the Euro-Par 2015: Parallel Processing Workshops, 430–441, Cham, ISBN
978-3-319-27308-2.

Horni, A., K. Nagel and K. W. Axhausen (2016) The multi-agent transport simulation MATSim,
Ubiquity Press London.

Klefstad, R., , , R. Jayakrishnan and R. Lavanya (2005) A distributed, scalable, and synchronized
framework for large-scale microscopic traffic simulation, paper presented at the Proceedings.

2005 IEEE Intelligent Transportation Systems, 2005., 813–818, Sep. 2005, ISSN 2153-0009.

Liu, R. (2010) Traffic Simulation with DRACULA, 295–322, Springer New York, New York, NY,
ISBN 978-1-4419-6142-6.

Rickert, M. and K. Nagel (2001) Dynamic traffic assignment on parallel computers in TRAN-
SIMS, Future Generation Computer Systems, 17 (5) 637–648.

Saprykin, A., N. Chokani and R. S. Abhari (2019) Gemsim: A gpu-accelerated multi-modal
mobility simulator for large-scale scenarios, Simulation Modelling Practice and Theory, 94,
199 – 214, ISSN 1569-190X.

Shen, Z., K. Wang and F. Zhu (2011) Agent-based traffic simulation and traffic signal timing
optimization with gpu, paper presented at the 2011 14th International IEEE Conference on

Intelligent Transportation Systems (ITSC), 145–150, Oct 2011, ISSN 2153-0017.

Smith, L., R. Beckman and K. Baggerly (1995) Transims: Transportation analysis and simulation
system, 7 1995.

Strippgen, D. and K. Nagel (2009) Multi-agent traffic simulation with cuda, paper presented at
the 2009 International Conference on High Performance Computing Simulation, 106–114,
June 2009.

Suzumura, T. and H. Kanezashi (2014) Multi-modal traffic simulation platform on parallel and
distributed systems, paper presented at the Proceedings of the Winter Simulation Conference

2014, 769–780, Dec 2014, ISSN 0891-7736.

Suzumura, T., G. McArdle and H. Kanezashi (2015) A high performance multi-modal traffic
simulation platform and its case study with the dublin city, paper presented at the Proceedings

of the 2015 Winter Simulation Conference, WSC ’15, 767–778, Piscataway, NJ, USA, ISBN
978-1-4673-9741-4.

Vu, V. A. and G. Tan (2017) High-performance mesoscopic traffic simulation with gpu for large
scale networks, paper presented at the Proceedings of the 21st International Symposium on

Distributed Simulation and Real Time Applications, DS-RT ’17, 127–135, Piscataway, NJ,
USA, ISBN 978-1-5386-4028-9.

Xu, Y., X. Song, Z. Weng and G. Tan (2014) An entry time-based supply framework (etsf) for
mesoscopic traffic simulations, Simulation Modelling Practice and Theory, 47, 182 – 195,
ISSN 1569-190X.

	Introduction
	Related Work
	Hermes - a high performance mobility simulator
	Simulation Workflow
	Scenario Setup
	Simulation Core
	Simulation Algorithm
	Core Algorithm Optimizations

	Event Processing

	Evaluation Results
	Simulation Performance
	Hermes Simulation Breakdown
	Hermes Simulation Travel Time Skew

	Conclusions and Next Steps
	References

