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Abstract

The integration of customer behavioral models in optimization provides a better understanding of
the preferences of clients (the demand) to operators while planning for their systems (the supply).
These preferences are formalized with discrete choice models, which are the state-of-the-art
for the mathematical modeling of demand. However, their complexity leads to mathematical
formulations that are highly nonlinear and nonconvex in the variables of interest, and are
therefore difficult to be included in (mixed) integer linear problems (MILP). These problems
correspond to the optimization models that are considered to design and configure a system.
In this work, we present a general framework that integrates advanced discrete choice models
in MILP. Nevertheless, a linear formulation comes with a high dimension of the problem. To
address this issue, and given the underlying structure of the model, decomposition techniques
such as Lagrangian decomposition can be applied. Two subproblems with common variables
have been identified: one regarding the user and one regarding the operator. In the former, the
user has to perform a decision based on what the operator is offering, whereas in the latter, the
operator needs to decide about the features of the supply to attract the users.

Keywords
discrete choice models, combinatorial optimization, simulation, decomposition techniques





          

      


1 Introduction

Even though demand and supply closely interact in many applications, such as airlines or
high speed railway, these two research fields have evolved independently, without paying too
much attention to the existing interdependencies between the two. Indeed, incorporating the
preferences and tastes of customers, which are usually characterized with discrete choice models,
allows for a better planning of the systems for the operators. The design and configuration of
such systems are typically addressed with optimization models, being MILP a relevant portion
of the models reported in the literature.

In Pacheco et al. (2016), we propose a general framework that allows to integrate in MILP
discrete choice models for which it is possible to draw from its associated probability distribution.
This feature is important because we rely on simulation to circumvent the nonlinearity introduced
by the demand model. To illustrate how the framework can be employed, an application on
revenue maximization is considered. The performed experiments exhibit that the resulting
formulation is a powerful tool to plan systems based on the heterogeneous behavior of customers.
However, the disaggregate representation of the clients’ behavior, together with the linearity of
the formulation, leads to a computationally expensive problem (see Section 3.1).

To address this issue, we can benefit from the structure of the problem and explore decomposition
techniques to solve it in an efficient way. These techniques are used in optimization problems
that have the appropriate structure. They allow to speed up and facilitate the solution approach
and/or to obtain good bounds for the optimal value of the objective function (Conejo et al.,

2006).

In practice, there are two different decomposable structures: one characterized by complicat-
ing constraints, with Lagrangian relaxation as the main associated decomposition technique,
and another one characterized by complicating variables, with Benders decomposition as the
principal technique. In our case, even if both could be applied, we focus on the former, since
some constraints in the MILP can be seen as complicating because they are involved in both the
demand and the supply model.

The remainder of the paper is organized as follows. In Section 2, the modeling framework is
summarized, and the mathematical formulation for the application on revenue maximization is
provided. Section 3 motivates the use of Lagrangian relaxation and characterizes the different
problems comprised within this technique. Finally, in Section 4 we describe the future avenues
of research associated with this investigation.





          

      


2 Modeling framework

In this approach, we embed a discrete choice model, which models the choices of customers,
inside a MILP, which models the decisions of the operator. In this section, a summary of the
mathematical formulation is provided.

2.1 General context

Regarding the demand model, we denote by C the choice set, which contains all potential
services plus an opt-out option to capture the customers leaving the market (i.e., customers
choosing a service from a competitor or not choosing anything at all). We consider a population
of N customers, and we assume that the choice set of each customer may be different (e.g., due
to different tastes, restrictions, etc.). The choice set of customer n is denoted by Cn.

The common specification of the utility associated with service i by customer n is

Uin = Vin + εin, (1)

where Vin is the deterministic part and εin the error term, which is assumed to follow a probability
distribution. We note that for the integration of the choice model in a MILP, the endogenous
variables (present in both the demand and the supply models) need to appear linearly in the
utility function. Thus, we assume Vin has the form

Vin =
∑

k

βinkxe
ink + qd(xd), (2)

where xe
ink are the endogenous variables for service i and customer n (indexed by k), and qd(xd)

is a term that depends on other exogenous demand variables xd (only present in the demand
model), in a possibly nonlinear way defined by the function qd.

The behavioral assumption is that customer n chooses service i if the associated utility is the
largest within the choice set Cn. The probability that customer n chooses service i is

Pn(i|Cn) = Pr(Uin ≥ U jn,∀ j ∈ Cn). (3)

This formulation is typically nonlinear as a function of the endogenous variables. For the sake
of the integration, we work directly with the utility functions, and not with the corresponding
probabilities. To deal with the random nature of the utility function, we rely on simulation.





          

      


For each error term εin, we generate R draws ξin1,. . . ,ξinR based on its distributional assumption.
Each draw corresponds to a behavioral scenario. For the specification (1), we have

Uinr = Vin + ξinr =
∑

k

βinkxe
ink + qd(xd) + ξinr. (4)

A relevant application to illustrate the described methodology is the maximization of revenue.
We use this example to characterize a concrete MILP. The objective is to find the best strategy in
terms of pricing and capacity allocation in order to maximize the revenue of the operator, which
sells services at a certain price (to be decided) and with a given capacity.

In this formulation, the price is the only endogenous variable, appearing in both the utility
function (demand) and the objective function (supply). We define pin ∈ R as the price that
customer n must pay to access service i. We assume it can take a finite number of values,
called price levels, between a lower bound `in and an upper bound min (bounds on the integer
representation of the price). For linearization issues, it is characterized as follows:

pin =
1

10k

(
`in +

Lin−1∑
`=0

2`λin`

)
, (5)

where the term in brackets corresponds to the binary representation of the price as a integer value
(λin` are the associated binary variables, and there are Lin of such variables), and 1

10k transforms
the integer value into the actual continuous value of the price (with a precision of k decimals).
The decision variables are therefore λin`, and not pin.

2.2 Mathematical formulation

The mathematical formulation for the application described above is depicted in Fig. 1. We
provide a brief description of its sets, input parameters, variables, objective function and
constraints.

Sets

• I = |C|: number of services, indexed by i (i = 0 denotes the opt-out option)
• Lin: number of binary variables characterizing the price levels, indexed by `
• N: number of customers, indexed by n

• R: number of draws, indexed by r





          

      


Input parameters

• ci: capacity of service i

• `in,min: integer bounds on the price (set by the operator)
• `inr ≤ Uinr ≤ minr: bounds on Uinr (pin is bounded and qd(xd) is given)
• `nr = min j∈Cn ` jnr: smallest lower bound for customer n and scenario r

• mnr = max j∈Cn m jnr: largest upper bound for customer n and scenario r

• Minr = minr − `nr, Mnr = mnr − `nr (big-M constraints)
• qd(xd): term depending on exogenous demand variables (given)
• βin: parameters associated with the price variables pin (for the sake of compactness of the

formulation, we impose βin = 0 for i = 0, so that the price term vanishes)
• ξinr: r-th draw from the error term for service i and customer n

Variables

• Unr: maximum discounted utility, Unr = maxi∈C zinr

• yin ∈ {0, 1}: availability at operator level, 1 if service i is available to customer n and 0
otherwise (explicit decision of the operator)

• yinr ∈ {0, 1}: availability at scenario level, 1 if service i is available to customer n in
scenario r and 0 otherwise (result of the choices of other customers when service capacity
is insufficient to satisfy the total demand)

• zinr: discounted utility, Uinr when the service is available and `nr otherwise
• winr ∈ {0, 1}: choice, 1 if service i is chosen by customer n in scenario r and 0 otherwise
• αinr` ∈ {0, 1}: linearization of the product winrλin`, 1 if winrλin` = 1 and 0 otherwise
• λin` ∈ {0, 1}: binary representation of the price (see (5))

Objective function Maximization of the total expected revenue (6), which is obtained by
adding the revenues from all services but the opt-out. The revenue of each service is calculated
with the associated price and the expected demand (obtained from the choice variables).

Constraints

• Utility: (7) defines the utility associated by customer n with service i in the r-th scenario
(obtained from (4) with the price as the only endogenous variable)
• Availability: (8) makes service i unavailable if i < Cn and (9) relates both availabilities (a

service cannot be available at scenario level if it is not made available by the operator)
• Discounted utility: (10)–(13) correspond to the linear formulation of zinr





          

      


• Choice: (14)–(17) characterize the choice (i.e., service i is chosen by customer n in
scenario r if i is the argument of the maximum discounted utility)

• Capacity allocation: (18)–(20) handle the capacity limitations
• Pricing: (21) bounds the price from above and (22)–(24) are the linearizing constraints

associated with αinr`

Figure 1: MILP for the demand-base revenue maximization application

max
1
R

1
10k

[∑
n

∑
i>0,i∈Cn

∑
r

(
`inwinr +

∑
`

2`αinr`

)]
(6)

subject to

Uinr = βin
1

10k

(
`in +

∑
`

2`λin`

)
+ qd(xd) + ξinr, ∀i ∈ Cn, n, r, (7)

yin = 0, ∀i < Cn, n, r, (8)

yinr ≤ yin, ∀i, n, r, (9)

`nr ≤ zinr, ∀i, n, r, (10)

zinr ≤ `nr + Minryinr, ∀i, n, r, (11)

Uinr − Minr(1 − yinr) ≤ zinr, ∀i, n, r, (12)

zinr ≤ Uinr, ∀i, n, r, (13)∑
i

winr = 1, ∀n, r, (14)

winr ≤ yinr, ∀i, n, r, (15)

zinr ≤ Unr, ∀i, n, r, (16)

Unr ≤ zinr + Mnr(1 − winr), ∀i, n, r, (17)

yinr ≥ yi(n+1)r, ∀i > 0, n < N, r, (18)
n−1∑
m=1

wimr ≤ (ci − 1)yinr + (n − 1)(1 − yinr), ∀i > 0, i ∈ Cn, n > ci, r, (19)

ci(yin − yinr) ≤
n−1∑
m=1

wimr, ∀i > 0, n, r, (20)

`in +
∑
`

2`λin` ≤ min, ∀i > 0, i ∈ Cn, n, (21)

λin` + winr ≤ 1 + αinr`, ∀i > 0, i ∈ Cn, n, r, `, (22)

αinr` ≤ λin`, ∀i > 0, i ∈ Cn, n, r, `, (23)

αinr` ≤ winr, ∀i > 0, i ∈ Cn, n, r, `. (24)





          

      


3 A Lagrangian relaxation method for the uncapacitated

case

3.1 Motivation

The framework described in Section 2 has been tested on a case study from the recent literature.
We have considered a parking services operator, whose disaggregate choice model is charac-
terized in Ibeas et al. (2014). More precisely, they estimate a mixtures of a logit model (i.e.,
allowing for different coefficients among customers) to describe the behavior of potential car
park users when choosing a parking place.

For the experiments performed in Pacheco et al. (forthcoming), we consider a sample of N = 50
customers to avoid solving huge optimization problems. The choice set is composed of I = 3
services (including the opt-out option), and L = 4 binary variables are used to characterize
the price, giving rise to 16 possible price levels (Lin = L,∀i, n). Then, different values of R

have been employed to evaluate the complexity. For R = 250 (the largest number of draws
considered), the uncapacitated case (when services are assumed to have unlimited capacity, i.e.,
constraints (18)–(20) are ignored) takes 2.5 hours, whereas the capacitated case (the full model
in Figure 1) takes almost 42 hours.

These results confirm that the problem is computationally expensive, even for instances of
moderate size. In practice, populations are way larger and a high number of draws is desirable
to be as close as possible to the true value, so it is important to develop methodologies in order
to overcome this limitation. As mentioned in Section 1, we consider Lagrangian relaxation to
speed up the solution approach.

In this technique, the constraints that are considered hard are relaxed by bringing them to the
objective function with associated parameters, called Lagrangian multipliers. The resulting
optimization problem is called Lagrangian subproblem. It holds that the optimal value of
the Lagrangian subproblem is a lower (upper) bound on the optimal value of the original
minimization (maximization) problem. In order to obtain the tightest possible lower (upper)
bound, an optimization problem on the Lagrangian multipliers, called the Lagrangian dual

problem associated with the original optimization problem, is solved.

The remainder of this section is organized as follows. In Section 3.2, we define a simpler
optimization problem to start with by making some assumptions on the problem modeled in
Figure 1, and we characterize the corresponding Lagrangian subproblem (Figure 3). We note that





          

      


it can be split into two subproblems with common variables: the choice subproblem, concerning
the choice made by each customer (Figure 4), and the price subproblem, concerning the selection
of the price level for each service (Figure 6). We provide an algorithm to solve each subproblem
(Figure 5 and Figure 8, respectively). In Section 3.3, we detail the associated Lagrangian dual
(63) and we approximate it with a subgradient method (Figure 9).

3.2 Lagrangian subproblem

Given the complexity introduced by the capacity constraints (18)–(20), we consider at first
the uncapacitated case to characterize the Lagrangian subproblem. Indeed, as soon as we
forget about capacity, the problem is reduced to that of assigning the service with the highest
utility to each customer (among the available ones) and of computing the price for each service.
Other considerations that are taken into account are itemized next. The resulting formulation is
presented in Figure 2.

Availability Since the capacity of the services is unlimited, the variables for the availability
at scenario level (yinr) are not needed (they are all equal to 1). Furthermore, the availability at
operator level is characterized by means of the subsets Cn, and not with the variables yin. This is
a simplification with respect to the model in Figure 1, since it does not enable the operator to
close and open services depending on the arriving customers. However, it can fit some contexts
where it is not possible to decide on the availability of the services in an online way (e.g., parking
services). Consequently, we get rid of constraints (8)–(9) and (15).

Discounted utility Given that there is no availability at scenario level, the concept of
discounted utility is not necessary, and the value of the utility can be used directly (i.e.,
zinr = Uinr,∀i ∈ Cn, n, r). Then, constraints (10)–(11) involve the bounds on the utility

linr ≤ Uinr ≤ minr, (25)

and constraints (12)–(13) are redundant, and can therefore be ignored.

Choice In this approach, we remove the variables Unr and we define the choice variable as
follows:

winr =

 1 if i = arg maxn,i∈Cn
{Uinr}

0 otherwise,
∀i, n, r. (26)





          

      


With this specification the model becomes nonlinear (we refer to it as pseudo-MILP).

Figure 2: Pseudo-MILP for the uncapacitated case

max
1
R

1
10k

∑
i>0,i∈Cn

[∑
n

∑
r

(
`inwinr +

∑
`

2`αinr`

)]
(27)

s.t.

Uinr = βin
1

10k

∑
`

2`λin` + binr, ∀i ∈ Cn, n, r, (28)

`inr ≤ Uinr ≤ minr, ∀i ∈ Cn, n, r, (29)

winr =

 1 if i = arg maxn,i∈Cn
{Uinr},

0 otherwise,
∀i, n, r, (30)∑

i

winr = 1, ∀n, r, (31)

`in +
∑
`

2`λin` ≤ min, ∀i > 0, i ∈ Cn, n, (32)

αinr` ≤ λin`, ∀i > 0, i ∈ Cn, n, r, `, (33)

αinr` ≤ winr, ∀i > 0, i ∈ Cn, n, r, `, (34)

where binr = βin
1

10k `in + qd(xd) + ξinr ∀i ∈ Cn, n, r. (35)

Capacity We ignore constraints (18)–(20) to account for unlimited capacity of services.

Pricing Constraint (22) is not needed because of constraints (23)–(24) and the objective
function (6). This can be verified by considering two cases:

• λinl = 1 ∧ winr = 1⇒ αinr = 1: constraints (23)–(24) are always verified, but do not force
αinr to be equal to 1. However, since the objective function is to be maximized and these
variables appear positively in the objective function, they are pushed to the upper bound,
that is 1, so that constraint (22) can be ignored.

• λinl = 0 ∨ winr = 0⇒ αinr = 0: constraints (23)–(24) already force αinr = 0 (regardless of
the objective function), and therefore constraint (22) can also be ignored.

We note that constraint (22) could have also been removed in Figure 1, but as mentioned in
Section 2.1, we are aiming at keeping a general framework, and the MILP in Figure 1 is just a
concrete characterization (i.e., with a particular objective function).





          

      


The constraints associated with the choice performed by the customers are (28)–(31), whereas the
ones associated with the price selection are (32)–(34). We note that these sets of constraints have
a common variable: winr. In order to separate the Lagrangian subproblem into the choice and
the price subproblems, we introduce copy variables vinr and the corresponding copy constraints
(which are relaxed in a Lagrangian way):

vinr = winr, ∀i, n, r. (36)

We take advantage of the structure of the problem and we write constraint (36) as follows:

vinr ≤ winr, ∀i, n, r, (37)∑
i

vinr = 1, ∀n, r. (38)

To prove the equivalence between (36) and (37)–(38), assume that for a certain customer n and
scenario r, there exists a service j such that v jnr > w jnr. This implies v jnr = 1 (since

∑
i vinr = 1)

and w jnr = 0. So there must exist j′ such that w j′nr = 1 (since
∑

i winr = 1) and v j′nr = 0 (since
v jnr = 1). But this implies v j′nr < w j′nr, which is a contradiction to our original assumption.
Hence, we necessarily have vinr = winr ∀i, n, r.

The advantage of constraints (37)–(38) is twofold. On the one hand, the replacement of the
equality in (36) by the inequality in (37) introduces non-negative Lagrange multipliers (instead
of unconstrained multipliers), which facilitates the corresponding optimization. On the other
hand, we introduce redundant assignment constraints (38), which strengths the Lagrangian
subproblem. Constraint (37) is the one relaxed in a Lagrangian way.

In addition to constraint (37), constraint (28) defining the utility variable Uinr is also transferred
to the objective function with unconstrained Lagrange multipliers. This allows us to decouple
the choice subproblem from the price subproblem. The resulting Lagrangian subproblem is
depicted in Figure 3. We denote by θinr ∈ R the Lagrangian multipliers associated with constraint
(28), and by γinr ≥ 0 the ones associated with constraint (37).

The choice subproblem involves the variables Uinr and winr, and comprises constraints (40)–(42)
(Figure 4), whereas the price subproblem involves λinl, αinrl and vinr, and comprises constraints
(43)–(46) (Figure 6). In both cases, the objective function is composed by the terms depending
on the corresponding variables.

Furthermore, two decomposition sources are identified in the model in Figure 1. On the one
hand, each draw r represents an independent scenario, and all scenarios are coupled only in
the objective function (6). On the other hand, each customer n aims at choosing the service





          

      


among the available ones maximizing her utility, and all customers are coupled in the capacity
constraints (18)–(20), to ensure that the capacity of each alternative is not exceeded, and in the
objective function (6), to calculate the total demand. For the Lagrangian subproblem defined in
Figure 3, the choice subproblem decomposes by n and r (i.e., a subproblem is solved for each
customer and draw), and the price subproblem decomposes by n (i.e., a subproblem is solved
for each customer). We denote the subproblems by Zc

nr(θ, γ) and Z p
n (θ, γ), respectively.

Figure 3: Lagrangian subproblem

Z(θ, γ) = max
1
R

1
10k

[∑
n

∑
i>0,i∈Cn

∑
r

(
`inwinr +

∑
`

2`αinr`

)]
(39)

+
∑

n

∑
i∈Cn

∑
r

θinr

(
Uinr − βin

1
10k

∑
`

2`λin` − binr

)
+

∑
i

∑
n

∑
r

γinr(vinr − winr)

s.t.

`inr ≤ Uinr ≤ minr ∀i > 0, i ∈ Cn, n, r (40)

winr =

 1 if i = arg maxn,i∈Cn
{Uinr},

0 otherwise,
∀i, n, r, (41)∑

i

winr = 1, ∀n, r, (42)

`in +
∑
`

2`λin` ≤ min, ∀i > 0, i ∈ Cn, n, (43)

αinr` ≤ λin`, ∀i > 0, i ∈ Cn, n, r, `, (44)

αinr` ≤ vinr, ∀i > 0, i ∈ Cn, n, r, `, (45)∑
i

vinr = 1, ∀n, r. (46)

3.2.1 Choice subproblem

The choice subproblem for each customer n and draw r is defined in Figure 4. The solution of
this problem is easy to compute by taking into account the following observations:

• The value of Uinr is either minr or `inr. Indeed, if θinr > 0, then Uinr = minr, since the
objective function is to be maximized and the term θinrUinr contributes positively. If
θinr < 0, then Uinr = `inr, since the term θinrUinr contributes negatively. If θinr = 0, Uinr can
take any value, so for the sake of simplicity we merge this case within θinr > 0.





          

      


• Constraint (49) states that the service within Cn with the highest value of Uinr (i.e., Unr)
is chosen, and constraint (50) implies that only one service can be selected. Thus, the
service i ∈ Cn such that maxi|θinr≥0{minr} and maxi|θinr<0{`inr} is the one chosen.

• If several i ∈ Cn achieve Unr, we must choose the one with the highest contribution to the
objective function, i.e., with the largest {`in + θinrUnr − γinr}.

Figure 4: Choice subproblem

Zc
nr(θ, γ) = max

1
R

1
10k

∑
i>0,i∈Cn

`inwinr +
∑
i∈Cn

θinrUinr −
∑

i

γinrwinr (47)

s.t.

`inr ≤ Uinr ≤ minr, ∀i ∈ Cn, (48)

winr =

 1 if i = arg maxn,i∈Cn
{Uinr},

0 otherwise,
∀i, (49)∑

i

winr = 1. (50)

The algorithm to compute ZC
nr(θ, γ), based on the above observations, is described in Figure 5.

Figure 5: Algorithm to solve the choice subproblem

Input: θinr, γinr

Set Uinr =

 minr if θinr ≥ 0
`inr otherwise

∀i ∈ Cn

Obtain i where Unr = maxi∈Cn Uinr is achieved
Compute i∗ = arg maxi∈Cn

{`in + θinrUnr − γinr}

Output: Zc
nr(θ, γ) =

 1
R

1
10k `i∗n +

∑
i∈Cn

θinrUinr − γi∗nr, if i∗ , 0,∑
i∈Cn

θinrUinr − γi∗nr, if i∗ = 0.

3.2.2 Price subproblem

The price subproblem for each customer n is defined in Figure 6. For each draw r, the general
idea is to calculate the contribution to the objective function for each service i when it is chosen
(vinr = 1) and when it is not (vinr = 0). Then, the service with the highest contribution for that
draw is chosen, and the associated price is computed.





          

      


Figure 6: Price subproblem

Z p
n (θ, γ) = max

1
R

1
10k

∑
i>0,i∈Cn

∑
r

∑
`

2`αinr` (51)

−
1

10k

∑
i∈Cn

∑
r

θinrβin

∑
`

2`λin` +
∑

i

γinrvinr

s.t.

`in +
∑
`

2`λin` ≤ min, ∀i > 0, i ∈ Cn, (52)

αinr` ≤ λin`, ∀i > 0, i ∈ Cn, r, `, (53)

αinr` ≤ vinr, ∀i > 0, i ∈ Cn, r, `, (54)∑
i

vinr = 1, ∀r. (55)

Unchosen service If vinr = 0, then αinr` = 0 ∀` (due to constraint (54)). The contribution to
the objective function for service i and draw r is

ζ0
inr(θ, γ, λ) = −

1
10k θinrβin

∑
`

2`λin`. (56)

We can consider three cases to characterize ζ0
inr based on the values of θinrβin:

1. If θinrβin < 0, then ζ0
inr is always positive, and since the objective function is to be

maximized, we obtain λin` = 1 ∀` such that
∑
` 2`λin` = min − `in (the remaining λin` are

equal to 0).
2. If θinrβin > 0, then λin` = 0 ∀`, since ζ0

inr is always negative and we are maximizing the
objective function.

3. If θinrβin = 0, then ζ0
inr = 0, so λin` can take any value. We merge this case within case 2,

so that λin` = 0 ∀`.

We note that for i = 0, ζ0
inr(θ, γ, λ) is not defined, since the price variables are only defined

for i > 0. However, as we have set βin = 0 for i = 0, we can consider a contribution of 0 for
i = 0, and merge this possibility under case 3. By taking all possibilities into account, we define
ζ0

inr(θ, γ) as follows:

ζ0
inr(θ, γ) =

 − 1
10k θinrβin(min − `in), if θinrβin < 0,

0, if θinrβin ≥ 0 ∨ i = 0,
∀i ∈ Cn, r. (57)





          

      


Chosen service If vinr = 1, then αinr` = λinl ∀` (due to constraint (53)). The contribution to
the objective function for service i and draw r is

ζ1
inr(θ, γ, λ) =

1
10k

( 1
R
− θinrβin

)∑
`

2`λin` + γinr. (58)

We can consider three cases to characterize ζ1
inr based on the values of

{
1
R − θinrβin

}
:

1. If 1
R − θinrβin > 0, then ζ1

inr is always positive (γinr ≥ 0), and since the objective function is
to be maximized, we obtain λin` = 1 ∀` such that

∑
` 2`λin` = min − `in.

2. If 1
R − θinrβin < 0, then λin` = 0 ∀` so that ζ1

inr takes the highest possible value (i.e., γinr).
3. If 1

R − θinrβin = 0, then ζ1
inr = γinr and λin` can take any value. We merge this case within

case 2, so that λin` = 0 ∀`.

We note that for i = 0, ζ1
inr(θ, γ) = γinr (the other term is not defined). By taking all possibilities

into account, we define ζ1
inr(θ, γ) as follows:

ζ1
inr(θ, γ) =


1

10k

(
1
R − θinrβin

)
(min − `in) + γinr, if 1

R − θinrβin > 0,

γinr, if 1
R − θinrβin ≤ 0 ∨ i = 0,

∀i ∈ Cn, r. (59)

We can write the price subproblem in Figure 6 in terms of ζ0
inr and ζ1

inr. The resulting formulation
is defined in Figure 7. This problem is easy to solve. For each draw r, the chosen service is
the one with the highest contribution to the objective function, i.e., i∗r = arg max ζ1

inr(θ, γ). The
complete algorithm is described in Figure 8.

Figure 7: Price subproblem in terms of ζ0
inr and ζ1

inr

Z p
n (θ, γ) = max

∑
i∈Cn

∑
r

ζ0
inr(1 − vinr) + ζ1

inrvinr (60)

s.t. ∑
i∈Cn

vinr = 1, ∀r. (61)





          

      


Figure 8: Algorithm for the price subproblem

Input: θinr, γinr ∀i ∈ Cn, r

Compute ζ0
inr and ζ1

inr

Solve the problem in Figure 7 by computing i∗r = arg maxi∈Cn
ζ1

inr ∀r

Set vinr =

 1 if i = i∗r
0 otherwise

∀i, r.

Output: Zp
n (θ, γ) =

∑
r ζ

1
i∗r nr +

∑
i,i∗r

∑
r ζ

0
inr

3.3 Lagrangian dual

As mentioned in Section 3.1, the solution of the Lagrangian relaxation provides a lower (upper)
bound of the initial minimization (maximization) problem. Furthermore, in the case of (convex)
linear programs, the optimal solution of the Lagrangian subproblem coincides with the optimal
solution of the initial problem.

In this case, the Lagrangian subproblem presented in Figure 3 is written as

Z(θ, γ) =
∑

n

∑
r

Zc
nr(θ, γ) +

∑
n

Zp
n (θ, γ) −

∑
n

∑
i∈Cn

∑
r

θinrbinr. (62)

Since the original problem is a maximization problem, the Lagrangian dual is defined as

min
θ,γ

Z(θ, γ). (63)

The Lagrangian dual can be approximated by an iterative method that updates the values of
the Lagrangian multipliers by solving the so-called relaxed primal problem (RPP), which is
the Lagrangian subproblem for the given values of the multipliers. The number of iterations
depends on the desired accuracy of the result, and it can be set by the analyst or can obey a
concrete stopping criterion.

There are different procedures for updating the Lagrangian multipliers. Here we consider the
subgradient method, because it is simple to implement and its computational burden is small.
Figure 9 shows the algorithm applied to our case. In step 1, we initialize the values of the
Lagrangian multipliers. In step 2, the Lagrangian subproblem (62) is solved for the given values
of the multipliers, obtaining values for the variables of the problem. The multipliers are updated
in step 3 by calculating a subgradient of the function Z(θ, γ) at the multipliers of the current





          

      


iteration (k). The subgradients are obtained as follows:

gk
inr = Uk

inr − βin
1

10k

∑
`

2`λk
in` − binr ∀i ∈ Cn, n, r, (64)

hk
inr = vk

inr − wk
inr ∀i, n, r. (65)

If they are equal to 0, the optimal solution is Z(θk, γk). If not, the multipliers are updated. To
do so, the step size needs to be computed. Many different types of step size rules are used. For
the sake of simplicity, we consider a constant step size (δ). As the multipliers associated with
equality constraints are free, the update is not restricted (i.e., θk+1

inr = θk
inr + δ · gk

inr, ∀i ∈ Cn, n, r, k),
whereas for the multipliers associated with “less or equal” constraints, we have to ensure that
they are positive. Thus, the multipliers take the maximum value between 0 and the value of the
update (i.e., γk+1

inr = max{0, γk
inr + δ · hk

inr}, ∀i, n, r, k).

Figure 9: Subgradient method

1. Initialization: set k = 0 and choose θ0
inr ∀i ∈ Cn, n, r and γ0

inr ∀i, n, r;
2. Solution of the RPP: solve Z(θk, γk) and obtain values for the variables Uk

inr, wk
inr, λ

k
in`, α

k
inr`

and vk
inr where it is achieved;

3. Update the multipliers: choose subgradients gk, hk of the function Z(θ, γ) at θk and γk (gk

associated with the relaxation of the utility constraint and hk associated with the copy
constraint).
The subgradients gk, hk are obtained with (64)–(65) ;
if (gk, hk)T = 0 then

the optimal solution is Z(θk, γk), stop;
else

compute θk+1
inr = θk

inr + δ · gk
inr, ∀i ∈ Cn, n, r;

compute γk+1
inr = max{0, γk

inr + δ · hk
inr}, ∀i, n, r;

increment k and go to step 2;

end

The subgradient method provides an upper bound of the original problem Figure 2. In order to
obtain a lower bound, we can follow these steps:

1. Fix the prices of the price subproblem.
2. Compute the choice of each individual based on the fixed prices.
3. Compute the original objective function value based on the prices from step 1 and the

choices from step 2.





          

      


4 Conclusions and future work

The Lagrangian relaxation technique described in Section 3 has to be evaluated and compared
with the results obtained with the exact method. We note that in the case study considered for
the exact method, the services were assumed to be accessible to all customers at an operator
level. Thus, both approaches can be safely compared, since the feature enabling the operator to
open or close a service depending on the upcoming customer is deactivated.

Despite the simplicity of the described technique, the upper bound provided by the Lagrangian
subproblem is restricted, in the sense that the price variables pin and the utility variables Uinr

can only take the associated extreme values. In practice, however, this is not the case and
intermediate price levels and values of the utility are achieved. Hence, the proposed technique
can be modified in order to define more complex subproblems, so that less importance is placed
in the subgradient method. One possibility to be explored is to duplicate the price variables
instead of the choice variables, since as soon as the former are fixed, the utiliy values can be
easily computed, and so the choices performed by the customers.

The extension of the method to the capacitated case is simple. Indeed, we notice that only the
choice subproblem has to be adapted, as the capacity constraints determine the set of available
alternatives to choose from. Since the priority list determining the order in which customers
are processed is assumed to be known, it is possible to iterate over the customers in the given
order (the subproblem now only decomposes by r), and track the remaining capacity of each
alternative. As soon as an alternative has reached its capacity, it is not offered anymore to the
upcoming individuals. This is done by updating the associated individual choice sets Cn.

As a future avenue of research, in case the difference between the upper and lower bound for
the original problem is significant, column generation can be used to define an exact method
to solve the Lagrangian dual. The attractiveness of column generation is to work only with a
sufficiently meaningful subset of variables, and to add more variables only when needed.
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