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Abstract

Analysis of long-distance travel demand has become more relevant in recent times. The reason
is the growing share of traffic induced by journeys related to remote activities, which are
not part of daily life. In today’s mobile world, these journeys are responsible for almost 50
percent of the overall traffic. Consequently, there is a need of reliable long-distance travel
forecasting tools. A potential tool is agent-based simulation. Due to the complex task of
destination choice modelling, there are just few agent-based simulations available. This paper
presents a continuous target-based simulation that simulates long-distance travel behavior for a
long period of time. It is shown how destination choice and mode choice is modelled in this
agent-based simulation. Destination and mode are chosen simultaneously along with activity
type and activity duration. The presented approach uses a heuristic to reduce the choice set
since the underlying multi-dimensional optimization problem is too hard to be solved directly
with acceptable computational effort. Afterwards the best combination of destination, mode and
activity is determined based on the agents’ projected discomfort.
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1 Introduction

To date, travel demand generation focuses on reproducing and predicting daily life behavior. This
stands in contrast to the significant part of traffic volume caused by long-distance journeys related
to activities not usually undertaken during daily life. Studies report that long-distance journeys
account for almost half of all vehicle miles travelled (e.g. 40% in France, 2008 (Grimal, 2010)
or 45% in Germany, 2014 (Frick et al., 2014)). This fact is valid even without accounting for
freight traffic. Therefore, analysis of long-distance travel behavior has become more important
recently.

Destination choice is a crucial part of travel demand models. Wrong destination models lead
to substantial over-estimates of miles travelled. Therefore, destination choice is included in
statistical travel demand models (He et al., 2009; Zheng and Guo, 2008; Bekhor and Prashker,
2008) as well as in microsimulations (Horni et al., 2012; Jonnalagadda et al., 2001; Horni, 2013).
The same applies to mode choice analysis (Johansson et al., 2006; Chorus et al., 2008; Miller
et al., 2005; Rieser et al., 2009). Nevertheless, the focus of these models and simulations is
usually daily life. Holiday destination choice has been investigated as well in the past (Crompton,
1992; Karl et al., 2015), but due to the enormous size of the choice set the analysis is difficult.
Researchers have to introduce an additional structure, like hierarchy of destination classes in the
choice set, in order to estimate models.

Just few microsimulations focus on long-distance travel behavior. Thus, not many destination
choice implementations in long-distance agent-based simulations are known. Long-distance
journeys are the core interest of the microsimulation presented in this paper. We will introduce
a model for long-distance destination choice. The proposed model is divided in two parts:
a heuristic pre-processing part and an optimization part. The destination will be optimized
simultaneously with the duration of the activities.

An estimator for long-distance travel demand is valuable, because it introduces a new possibility
to evaluate political decisions in this policy domain. An application might be the evaluation of
big infrastructural investments, like new bridges, tunnels or airports, which is very useful for the
cost-benefit analysis of this investments. Additionally, results for long-distance travel demand
can be combined with short-term traffic simulations to get a complete image of total demand for
travel.





            

2 Related Work

Agent based simulations have a long tradition in analysis and explanation of social behavior.
Schelling (1971) is often referred to be the first developer of an agent based simulation.
Agent based simulations were also used to estimate travel demand (Axhausen and Herz, 1989;
Pendyala et al., 1997) or to generate an activity-based travel forecast (e.g. Bhat et al. (2003) or
Miller (1996)). Nowadays agent based simulations make a notable contribution to the field of
transportation research (e.g. Balmer (2007), Arentze et al. (2010), Kuhnimhof and Gringmuth
(2009), Erath et al. (2012)).

The target-based approach is related to the need based theorywhichwas introduced byArentze and
Timmermans (2006). They developed also a model for activity generation with the assumption
of utilities described as dynamic function of needs (Arentze and Timmermans, 2009). Targets
instead of needs were used as an explanation of human behavior (Märki et al., 2012b) and
validated by Märki et al. (2012c) for short distance travel generation.

Long-distance trips have been the focus of recent literature. Long-distance travel behavior has
been analyzed several times, e.g. for the UK and the Netherlands (Limtanakool et al., 2006).
Some statistical long-distance travel demand models have been developed (e.g. Erhardt et al.
(2007)) and used for traffic forecast (e.g. Beser and Algers (2001)). Recently, different surveys
were also analyzed to derive an outlook on the future of long distance travel demand (Frick and
Grimm (2014), Outwater et al. (2015a)).

The usage of a continuous target-based model for a long-term simulation of long-distance travel
demand was introduced recently by Janzen and Axhausen (2015b). This adaptation is beneficial,
because the statistical models of long-distance travel behavior focus on the current state of the
world, which is not always sufficient. Thus, there is a need of a tool to predict travel demand
after major infrastructural or cost changes.

Destination choice has been the focus of a vast amount of studies. Statistical models have been
the tools used to explain destination choices (Outwater et al., 2015b; He et al., 2009; Zheng
and Guo, 2008; Adler and Ben-Akiva, 1976; Bekhor and Prashker, 2008; Southworth, 1981).
Nevertheless, most of the studies focus of daily life, e.g. shopping locations. Destination choices
in daily-life have been also modelled in microsimulations (Horni et al., 2012; Jonnalagadda et al.,
2001; Horni, 2013). Holiday destination choice with a focus on choice set generation has been
studied as well (Crompton, 1992; Crompton and Ankomah, 1993; Karl et al., 2015; Seddighi
and Theocharous, 2002). Modelling vacation destination choice is a problem tackled recently
(Van Nostrand et al., 2013; Bhat et al., 2016; LaMondia et al., 2010). However, long-distance





            

destination choice has not yet been implemented in an agent-based simulation.

Furthermore, a variety of models has been implemented to model the mode choice (Vovsha,
1997; Klöckner and Matthies, 2004; Johansson et al., 2006; Chorus et al., 2008). The mode
choice in the scope of long-dist travel has been investigated (Bhat, 1995; De Lapparent et al.,
2013) as well as mode choice in other agent-based transport simulations (Miller et al., 2005;
Rieser et al., 2009; Meister et al., 2010). Finally, combined mode and destination choice has
been focus of research (Anas, 1981; Timmermans, 1996).

3 Continuous Target-Based Model

We introduce a microscopic travel demand model, which is used to generate long-term and
long-distance travel demand, namely the Continuous Target-based Activity Planning (C-TAP)
model. The core of microscopic models is built with agents representing virtual people. In
contrast to iteration-based models (like the one used by Balmer (2007)) a continuous planning
model does not iterate to a steady state, but generates continuously an activity schedule without a
systematic replaning. One of the main advantages is the capability of the simulation to generate
arbitrarily long activity plans in linear runtime. Thus, it is a better basis for the generation of
long-term, long-distance travel demand. Finally, we choose an event-driven simulation, which
is more effective for our issues than a time-driven simulation, because the action between two
events is not crucial to the simulation and maintaining a single event queue can be implemented
simply in our simulation.

The simulation presented in this section was introduced by Märki et al. (2012b,a, 2013). The
extension to a long-term simulation was presented by Janzen and Axhausen (2015b) and improved
by Janzen and Axhausen (2015c,a). We explain in this section the main ideas of C-TAP, i.e. the
behavioral targets, the activities and their interaction within the simulation algorithm. Afterwards,
we will show how the destination choice is incorporated in the activity planning.

3.1 Behavioral Targets

The core idea of (Long-Term) C-TAP is the usage of behavioral targets, which represent the
motivation of the agents to perform an activity. The focus in C-TAP are activities that take
place outside of the agents environment and are planned in advance. An example of such





            

a long-distance and long-term motivation is vacation. In this case an agent might have the
motivation to go on vacation for two weeks twice a year.

There are several options to define targets. In the following we present the two types that are
used in C-TAP and were proposed by Märki (2014):

• Percentage-of-time target: indicates how much relative time within an observation window
an agent would like to spend on a specific activity (e.g.the motivation to spend a specific
amount of time on vacation within one year).

• Duration target: indicates howmuch time an agent would like to spent for a single execution
of a specific activity (e.g. the motivation to spend a specific amount of time on each
vacation).

Note that the first target type include the definition of an observation window. But in case of the
simulation presented here it is not necessary to include additional parameters to the calibration
of the simulation, because it is sufficient if the observation window just equals the simulated
time, i.e. one year. However, the users can give some of the targets a bigger weight, if they
shorten the observation window.

3.2 Activities and State Values

Activities are necessary to complete the concept of a target-based simulation, because the targets/
motivations described above are satisfied by the execution of a corresponding activity. Activities
also mark the trip purposes. The decision on the executed activities is based on state values. For
each target we define a state value, which is necessary to measure the satisfaction. We need to
introduce two types of state values:

• for the percentage-of-time targets: the state value is the result of a convolution of the
activity execution pattern with an exponential kernel, which is restricted to the length
of the observation window. So it increases during the execution of the relevant activity,
respectively decreases during non-execution.

• for duration targets: the state value is defined as the activity duration.

The level of satisfaction now is measured by the quadratic difference of state value and target
value. This measurement is called discomfort and its influence within the model is described in
detail in the next section.





            

3.3 Core Algorithm

We will now present and discuss the main implementation issues of the Long-Term C-TAP
model. The core algorithm of the Long-Term C-TAP simulation has a simple structure and is
shown in algorithm 1.

Algorithm 1 Core C-TAP Algorithm (Pseudo Code)

1: while simulation end not reached do
2: for all agent with no activity do
3: state Ð UpdateAgentStatepagentq

4: next Activity Ð MakeDecisionpagent, stateq

5: agent.executepnext Activityq

6: end for
7: nextTimeStep “ minimump all execution endpointsq

8: proceed to nextTimeStep

9: end while

The main procedure is a continuous, event-driven iteration over discrete points of time. This
iterative process is implemented by the outer while-loop including the incremental computation
of the consecutive time points in lines 7 and 8. Whenever an agent finishes the execution of an
activity, the function MakeDecision (line 4) computes the next activity based on its current
state, which has to be updated before (line 3). After that, the activity is executed until the
computed execution end. Activity execution also includes traveling to the location of the activity.
Recording these trips we obtain the travel demand. The simulation stops after a predefined
stopping condition is reached. This condition is usually a time period, which has to be simulated.
In case of long term simulations a time period of one year is reasonable. The implementation of
the MakeDecision function, which describes the activity planning, is discussed in the following
subsection.

3.4 Activity Planning

In order to make decisions on the next performed activities one needs a measurement to value
different options of activity performance. This valuation is the core of the decision process and
should be simple and fast to compute. Given this, we can compare different activities (including
different durations and locations) and choose the best option. In the case of C-TAP the quality of





            

a potential decision is measured by the discomfort value

Dptq “
ÿ

ωPA

p f ωtargetptq ´ f ωstateptqq
2
˚ γω, (1)

where γω a bandwidth normalization factor. The function f k
targetptq describes the target value at

a given point of time t, while f k
stateptq describes the state value at t. The set of all activities is

named A.

The decision procedure is the following. Whenever a decision about the next activity of an
agent has to be made, all possible combinations of next activities are computed. The number
of planned activities is called planning horizon and is a parameter of the simulation. The next
step is the calculation of the activity duration minimizing the discomfort value at the end of
the planning horizon. Finally, the first activity of the optimal activity combination is chosen
to be the next executed activity. We assume in the following that the planning horizon is one
activity, i.e. just a single activity is planned. This assumption is made in order to simplify the
discussion of the problem presented in this paper. The implementation of C-TAP plans several
activities in advance as it was shown by Janzen and Axhausen (2015a). The crucial part of this
procedure is the minimization of the discomfort value, which is an exponential multi-dimensional
optimization problem.

3.5 Decision Making

The discomfort minimization problem for a specific agent is discussed in detail in this subsection.
Following the description above, we assume that for every activity ω there exist two targets,
namely a duration target Tω

dur P R
` and a percentage-of-time target Tω

perc P r0, 1s. For simplicity
we keep both types of T fixed, but an extension to a function of time is applicable.

Given an activity duration t, the discomfort of a single agent for an activity a can be expressed
as

Dpt, a, l, v0q “

percentage-of-time targets
hkkkkkkkkkkkkkkkikkkkkkkkkkkkkkkj

ÿ

ωPA

pTω
perc ´ vωpt, v0pωqqq

2
`

duration targets
hkkkkkkkkkkikkkkkkkkkkj

ÿ

ωPA

pTω
dur ´ tq2 ˚ γω, (2)

where vωptq is the state value of the percentage-of-time target corresponding to the activity ω
after execution of activity a with a duration of t. v0pωq is the state value of an activity ω before
the execution of a. The first sum consists of the discomfort arising from percentage-of-time
targets, while the second part sums the discomfort of the duration targets. The first part does not





            

include normalization factors, because its parts are already normalized to the r0, 1s-interval.

The remaining question in the discomfort calculation is the computation procedure of the
vω-values, i.e. how do the state values change during the execution of the activities. The state
values are described by two exponential functions. First, there is a state value increasing function:

ν̂apt, v0paqq “ 1` pv0paq ´ 1qe´τa¨t . (3)

Second, we define also a state value decreasing function:

ν̌apt, v0paqq “ v0paq ¨ e´θk ¨t . (4)

In both cases v0 is the state value before the increase or decrease applies. τk and θk are constants,
which are computed for every activity subject to multiple other variables. These values are not
explained in detail here. Note also that valid values of v are between 0 and 1. Whenever an
activity a is executed for a duration t, the corresponding state value increases by ν̂aptq. Whenever
an activity is not performed for a duration t (the agent either travels or performs another activity),
its state value decreases by ν̌aptq. Note that ν̂apt1, ν̂apt2, vqq “ ν̂apt1 ` t2, v0paqq. The same
applies to the ν̌a-function. This property simplifies the computation of a single discomfort
value.

The discomfort function D can be now phrased as follows:

Dpt, a, l, v0q “

percentage-of-time targets
hkkkkkkkkkkkkkkikkkkkkkkkkkkkkj

ÿ

ωPA

pTω
perc ´ va

pt, v0pωqqq
2
`

duration targets
hkkkkkkkkkkikkkkkkkkkkj

ÿ

ωPA

pTω
dur ´ tq2 ˚ γω (5)

“

n
ÿ

ωPAza

pTω
perc ´ vωpt, v0pωqqq

2
` pT a

perc ´ va
pt, v0paqqq2 ` pT a

dur ´ tq2 ˚ γa (6)

“

n
ÿ

ωPAza

pTω
perc ´ ν̌apt, v0pωqqq

2
` pTω

perc ´ ν̂apt, v0paqqq2 ` pT a
dur ´ tq2 ˚ γa (7)

In equation (6) all duration discomforts other than corresponding to activity a are excluded,
because duration targets apply just to actually performed activities. Equation (7) uses the state
value evolution functions. Finally, Equation (7) is also the function optimized in each activity
planing step. Note that all state values are decreasing, when the agent is travelling to the next
activity.

The decision on the next activity and the execution duration is made as follows. For every activity
and location the optimal duration is computed. The optimal duration is the one minimizing the





            

discomfort D. Afterwards, the activity minimizing the discomfort is executed. Nevertheless, the
discomfort definition above does not include any location attributes. We describe in the next
section how the destinations influence the activity planning.

4 Modelling Long-Distance Destination Choice

The activity planning as described above does not imply a destination choice. The destination
has to be chosen simultaneously with the activity since it influences the discomfort of the agents
directly. Thus, the optimal activity and the optimal duration are dependent on the locations of
the activities performed.

Destination choice is based on several parameters, destination parameters as well as individual
parameters. Research has been studying intensively these parameters and their influence (Karl
et al., 2015; Crompton and Ankomah, 1993). Destination specific parameters that are included
are the following:

• Type: Type of activity at this destination. It influences the destination choice indirectly
via some of the following parameters.

• Location: Coordinates or a node in a network defining distance and travel duration.
• Quality: A measure for the appreciation for this destination.
• Price: Costs for this destination, which are dependent on type, distance, quality and
duration of the considered activity.

• Seasonal Penalty: A function lowering the quality in dependence of the season, e.g.
beaches are not appreciated in cold months.

Other parameters have been studied, but are not included here. For example, the need of a visa
for specific countries or the question whether the destination is domestic or international may
influence destination choices.

Besides these destination parameters, individual parameters play a substantial role in the decision
process. The following parameters are included in the destination choice module:

• Awareness: Binary function indicating whether the person is aware of the destination.
• Second Home: Potentially, a link to a destination. Reducing the costs of vacation at this
destination.

• Budget: A person’s limit for the costs.





            

• Targets: Percentage-of-time and duration targets as described above.
• Perception: An individual function reducing or increasing the (perceived) quality of each
destination.

• Mode Availability: A set of modes that is accessible to the agent (potentially, also the
access time to the mode).

Awareness has been shown to be an important part in the decision process (Karl et al., 2015;
Seddighi and Theocharous, 2002) since most of the people are actually not aware of all
destinations. This phenomenon applies also to daily life’s destination choices and is referred
to as mental map (Narayana and Markin, 1975; Hannes et al., 2008; Ordóñez Medina, 2015).
Parameters, which are not included so far, are socio-demographics like age or education. Income
is modelled indirectly with the budget parameter. Additionally, a certain destination loyalty can
be observed in recent studies (Niininen et al., 2004; Oppermann, 2000; Oom do Valle et al.,
2006), but is not taken into account here, but one could extend the model for even longer duration
simulations.

A further set of paramters is needed to charactarize the available modes. Mode paramaters
include speed and costs per kilometer. A multi-modal network is needed in order to get travel
times and total travel costs for each route. Potentially, comfort of the mode can be added to the
set of parameters.

The destination choice model of C-TAP includes all the parameters above. Before the heuristic
implementation of the model is shown, the problem needed to be solved is described in detail in
the following.

4.1 Mathematical Formulation

The attributes of agents and locations described above have to be included in the activity
planning since the destination is part of the activity choice. Some of the attributes reduce the
probability to visit a specific location l. Since a probability can be quantified, we introduce an
attractiveness factor φ. The attractiveness factor includes the quality of a location qplq P r0, 1s,
the agents perception for the location εplq P r0.9, 1.1s and the seasonal influence on the location
spl, uq P r0, 1s at time u. The perception can be above 1.0, i.e. the perceived quality of a
location might be higher than the actual quality. The three attributes spl, tq, qplq and εplqmeasure
independently the attraction of the location. Assuming an activity starting time ts and an activity
ending time te, we incorporate φpl, ts, teq “ qplq ˚ εplq ˚

şte
ts

spl, uqdu{pte ´ tsq in the state value





            

increasing function:

ν̂apte´ts, v0paqq “ 1`pv0paq´1qe´τa¨φpl,ts,teq¨pte´tsq “ 1`pv0paq´1qe´τa¨qplq¨εplq¨
şte
ts

spl,uqdu (8)

A higher value φ will increase the slope of ν̂a. Thus, the state value will raise faster for the
considered activity. Consequently, the activity is more likely to be executed at locations with high
φ-values. A φ-value close to zero (e.g. due to the season effect) will prevent the corresponding
state value from rising. Therefore, an activity execution at these locations would not contribute
to a discomfort reduction and, consequently, the execution will not take place there.

There are also hard restrictions other than the soft restrictions included in φ. Hard restrictions
limit the solution space and can be expressed as constraints of an optimization problem. The
main constraints of the decision choice problem are budget constraints and awareness constraints.
Both were discussed above. Consequently, the discomfort minimizing problem can be expressed
as

min
t, a, l m

Dpt, a, l,m, v0q `

Budget Reduction Discomfort
hkkkkkkkkkkkkkkkikkkkkkkkkkkkkkkj

γB ¨
B ´ plpl, tq ´ pmpl,mq

B

s.t. l P Lpaq

l P AW

m P M

plpl, tq ` pmpl,mq ď B

t P R`

(9)

As before, the optimized variables are activity a, activity duration t and activity location l.
The location choice is limited to the set of available activity locations Lpaq and the location
set the agent is aware of AW . The mode choice m is limited to the set of available modes M.
Additionally, the budget B limits the choice set with respect to a location price pl and a mode
price pm that depends on the location and the duration. The price of a destination takes into
account whether the corresponding agent has a second home at the considered destination. In
other words, the price is lower for locations with a second home. The weighted budget reduction
discomfort ensures that agents choose the cheaper option, if there are two similar location.
Long-Term C-TAP solves this optimization problem every time an agent has to decide on his
next activity. Thus, activity type, activity location, activity duration and mode are optimized
simultaneously. The computation of the solution has to be fast, because the number of agents is
sizable and a reasonable time simulated is a year. Therefore, a heuristic approach is needed.





            

4.2 Heuristic Approach

The mathematical problem formulated above can not be solved optimally in a reasonable time.
Note that the set of destinations is discrete, unordered and potentially enormous. Though, the
problem has to be solved every time an agent has to make an activity decision. Thus, it is
necessary to have a solver that provides a result fast. Therefore, we propose an heuristic approach.
The main idea is a reduction of the set of valid locations using the constraints of the equation
(9). A location set reduction leads to a reduced set of feasible solutions and simplifies the
optimization problem.

Before a computation of the optimal location (and duration) for an activity, we introduce a check
whether the agent is aware of a location, whether he can afford it and whether it attracts him.
The remaining locations form the set of feasible locations. The following steps are performed for
each considered activity during an agents activity decision process:

1. Availability: Find all locations that provide the chosen activity and all modes that are
available.

2. Awareness: Remove all locations that are not part of the agents awareness.
3. Affordability: Compute the maximal duration tmax that the agent can afford. Remove the

locations where tmax is lower than minT rin%s of the duration target corresponding to this
activity.

4. Attractiveness: Compute the location attractiveness values φ. Remove the locations where
φ is lower than minF (Note: φ P r0, 1.1s).

5. Optimality: Solve the optimization problem (9) for the remaining set of locations. Apply
the optimal location and duration.

The steps 2-4 reduce the size of the solution space before the optimum within the reduced
solution space is computed. As described in the previous section, the attractiveness includes
location quality, season influence and agents’ perception. The parameters minT and minF are
parameters of the simulation. We propose to use minT “ 75% and minF “ 0.9 in order to
reduce the set of locations sufficiently. The distance or travel time is not mentioned explicitly
in the proposed approach since it influences the decision indirectly via the discomfort. The
discomfort of an agent increases, while he is travelling. Therefore, longer distances are avoided
if it is possible. A more detailed description of the discomfort minimization approach can be
found in Janzen and Axhausen (2015a).

The five steps of the approach are illustrated in Figure 1 1. Blue destinations are in the choice
1Country border shapes from http://thematicmapping.org/downloads/world_borders.php
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set, red destinations are excluded and the green destination is the one chosen due to discomfort
minimization. Assume that the destination for summer vacation is optimized and the considered
location choice set is limited to Europe (at country level). Thus, step 1 will generate a set of all
European countries (1 (a)). Afterwards, all countries, which are not in the awareness set of the
agent, are removed. In case of Europe, these countries are usually in Eastern Europe (1 (b)). The
next step removes all non-affordable destinations, i.e. all countries that are expensive (1 (c)).
Then, non-attractive countries are removed, e.g. due to seasonal effects (1 (d)). Eventually, the
optimal destination among the remaining options is computed and used.

Figure 1: Illustration of the destination choice: Summer vacation within Europe

(a) Availability (b) Awareness (c) Affordability

(d) Attractiveness (e) Optimality

5 Discussion

A major concern of this approach is data availability, and thus, calibration of the simulation.
Microsimulations as C-TAP need individual data for calibration and validation of the software.
In case of long-distance travel, these data sources are very rare and usually have a small sample
size. The lack of individual data was not an issue in this paper since the presented scenario was
artificial. Nevertheless, alternative data sources (e.g. GPS or GSM data) have to be taken into
account in order to increase the value of the microsimulation presented in this work

Due to the heuristic steps implemented before the activity planning, the number of possible





            

destinations is higher than usually in activity-based simulations. Nevertheless, handling thousands
of destinations (as it is the case in real world) is still impossible. Additionally, there might be
several C-TAP destinations at the same location (e.g. a cheap and an expensive one) leading to
a further increase of the complexity. However, the approach is applicable to the top-level of a
hierarchical destination choice problem, e.g. choice of a country or region before the choice of
the actual destination.

6 Conclusion

We have presented a destination choice algorithm that can be used within a continuous target-
based microsimulation for long-distance travel demand. Two stages were implemented. Firstly, a
heuristic reduces the number of considered destinations. Secondly, the discomfort minimizing
solution is computed among the remaining destinations. The impact of season, quality, price,
budget, awareness, second homes and perception has to be evaluated. Realistic evaluation
scenarios are needed for the future. However, the destination choice module presented is an
important step towards a tool that forecasts long-distance travel demand.
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