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Abstract

In the present paper a direct demand modelling approach for traffic volume prediction on a
nationwide network is presented, exploring the ability of different spatial modelling alternatives
to be applied for such purposes. A particular focus is on the identification of variables that can
capture the interregional demand patterns, utilizing concepts from network theory. A new
variable called accessibility-weighted centrality is introduced, constructed by applying a set of
modifications on the stress centrality index, tailored for the task of the annual average daily
traffic (AADT) prediction. The results exhibit clearly that the inclusion of network theory-based
variables in the model formulation can lead to a significant enhancement on the predictive
accuracy. In addition to the already tested models in the literature, two spatial simultaneous
autoregressive models are estimated and it is shown that they have the potential to be applied
both for interpolation and forecasting since their estimated parameters are unbiased and
consistent. A comparison of the different estimated models to the output of a traditional four-
step model is conducted to show to what extent direct demand models on nationwide scale can
constitute a trustworthy alternative to more advanced, but definitely more data demanding and
computationally burdensome models.
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1. Introduction

Many studies in the field of transport modelling have dealt with the issue of annual average
daily traffic (AADT) prediction, developing different methodologies to tackle the problem. In
general, two main streams of literature can be found. One that exploits different modelling
techniques aiming at resolving the issues of spatial dependence and heterogeneity, while in the
second stream the construction and the inclusion of more variables describing the demand
patterns in models is investigated. The employed methodologies vary from the aspatial
regression techniques to the statistical techniques accounting for the spatial effects. In
particular, the later encompass two different approaches. The first one is utilizing a data-driven
approach of spatial statistics called kriging, while the second one utilizes the geographically
weighted regression (GWR) of the class of spatial econometric models. Nevertheless, the
majority of the studies developed methodologies tailored for small, or medium, scale level of
analysis in terms of network size, having mainly the purpose to interpolate AADT from known
to unmeasured locations.

1.1 Literature review

Xia et al. (1999) developed a multiple regression model for estimating AADT on non-state
roads of Florida and found that the most important contributing predictors are the roadway
characteristics along with the area type, while socioeconomic variables were found to have an
insignificant impact on AADT. Similarly, Mohamad et al. (1998) developed a multiple
regression model for AADT prediction for county roads in Indiana, incorporating various
demographic variables which were found to be significant. In a similar context, Desylas et al.
(2003) developed a multiple regression analysis model for pedestrian flows.

The plausibility of applying the GWR model for estimating AADT was demonstrated in another
study (Zhao and Park, 2004) and it was shown that it can lead to the enhancement of the
prediction accuracy, compared to the aspatial ordinary linear regression. Eom at al. (2006)
exploited ordinary kriging for interpolating AADT for non-freeway facilities in Wake County,
North Carolina, and concluded that its predictive capability is much better than the ordinary
regression models. Along the same line of thought, Wang and Kockelman (2009) applied
kriging-based methods for AADT prediciton at unmeasured locations, making use of Texas
highway count data, and highlighted further the capability of applying kriging for prediction
purposes on a statewide network. Selby and Kockelman (2013) explored the application of two
spatial methods for prediction of AADT on the same statewide network (universal kriging and
GWR), and they concluded that both methods reduce predictions errors over aspatial regression
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techniques whereas the predictive capabilities of kriging exceed those of GWR. Interestingly,
the estimation of the kriging parameters taking into account network distances, instead of
Euclidean, showed no enhanced performance.

Furthermore, Pulugurtha and Kusam (2012) developed Generalized Estimating Equations
models to estimate AADT using integrated spatial data from multiple network buffer
bandwidths. Spatial data included off-network characteristics such as demographic, socio-
economic and land use characteristics, captured over multiple network buffer bandwidths
around a link and integrated by the employment of distance decreasing weights. The
methodology was applied on a city level (Charlotte, North Carolina). As a continuation of the
previous study, Duddu and Pulugurtha (2013) exploited the application of the principle of
demographic gravitation to estimate AADT based on land-use characteristics on the same
network. A negative binomial model was estimated along with neural network models.
Interestingly, the results obtained showed that the developed models gave significantly lower
errors in comparison to outputs from traditional four-step method used by regional modellers.

In a recent study by Lowry (2014), a new method for interpolating AADT was presented,
tailored for communities where attributes such as roadway characteristics, land-use etc., are
uniform over space, and thus their inclusion in the model bears no explanatory power. The new
method used novel explanatory variables that are derived through a modified form of stress
centrality, a network analysis metric that quantifies the topological importance of a link in a
network. The case study showed high quality results. The same methodology found application
as well for estimating directional bicycle volumes (McDaniel et al., 2014).

1.2 Description of the framework of the paper

The objective of the current research is to develop a direct demand modelling approach for
prediction of AADT on a nationwide network, a task which has not been addressed sufficiently
in the existing literature. The particularity of the nationwide network level case stems from the
inherent incapability of spatial densities of different socioeconomic data to capture the
interregional demand patterns that occur on the links, since they fail to explain the high volume
of interregional through traffic. Driven by this and building upon the work of Lowry (2014),
we have expanded the stress centrality index to align with travel demand modelling aspects. In
brief, the main advantage of this is that it can facilitate a quantification of the interregional
demand patterns by associating the network structure with the travel accessibility concept. This
allows to bring into the modelling formulation a way to capture both the spatial direction and
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extent along with the trip attraction competition that govern the travel demand, allowing us to
capture the demand capacity interaction at the core of transport modelling.

In addition to the already tested models in the literature (ordinary least squares [OLS] model,
negative binomial model, universal kriging, and GWR), the utilization of the family of spatial
simultaneous autoregressive (SAR) models (Anselin, 1988a) is tested, in terms of its capability
to be applied for AADT prediction purposes. The advantage of such models is that they can
resolve spatial dependence issues, accounting for the spatial correlation, offering a structural
explanation of the AADT and since their estimated coefficients are unbiased and consistent,
they can be used for both interpolation and forecasting purposes, an important aspect for both
policy evaluation and project appraisal purposes.

In summary, a set of different models is estimated and evaluated in order to draw sound
conclusions on the newly employed variables and also on SAR models’ capabilities to be
employed for AADT prediction purposes and thus highlight in a quantifiable way their strengths
and weaknesses. At last, a comparison of models predictive accuracy to the output of a
traditional four-step model is conducted to show to what extent such models can constitute a
trustworthy alternative to more advanced, but definitely more data demanding and
computationally burdensome, models.

2. Methodology

2.1 Centrality indices

The construction of a new variable capturing the interregional demand patterns, taking into
account the direction of potential interactions over space, is of central importance for the
estimation of AADT models on a nationwide network. Making use of network theory, centrality
is an index that aims to identify the most influential persons in the context of a social network.
Different centrality indices have been introduced over the years, aiming at the identification
and the quantification of the importance of a particular person in a social network. In general,
centrality indices take into account the number of shortest paths that pass by a given link/node,
either for given pairs of nodes, or for all pair of nodes within the network. In the case where a
capacity constraint exists in the form of a particular weight/cost associated with each link/node,
then this weight should be taken into account in the routing algorithm for the identification of
the shortest paths.
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Departing from the social sciences questions, centrality indices are meaningful for all networks’
analyses. From this viewpoint, centrality indices are meaningful for the analysis of transport
networks as well and can provide a quantifiable measure of the importance of links, taking into
account the network structure and the cost of traversing each link (distance or time). In the case
of transportation, networks correspond to directed networks, given the allowed and prohibited
turning movements on its vertices (nodes), and are modelled as higher level networks in order
to account for them. Stress centrality index was introduced by Shimbel (1953) and is defined
as the number of shortest paths connecting all pairs of nodes of the network that pass via a link.

Stress centrality, = Y; jey 0;;(e) (1)

Where e is any link of the network, V the set of all nodes, o;;the shortest path from node i to
node j, and a;;(e) is equal to one if the link e is part of the shortest path connecting i and ]
nodes.

By definition, higher hierarchical links have high centrality values, while that might be the case
as well for lower hierarchical links given the network structure. In the case of transport
networks, the hierarchy is given by the functional class of the roads whereas their importance
is normally matched by the number of trips using the given link. Naturally, two issues with
respect to the application of the stress centrality index for transport networks come to the
surface. First, the issue of travel demand since not all nodes are attracting or producing the same
number of trips and thus this should be taken into account in the centrality formulation. Second,
interaction between nodes tends to diminish and becomes very small as the distance between
them increases, which should be accounted for in a modified stress centrality formulation.

Addressing the aforementioned issues takes place in three steps. At first, the issue of trip
production and attraction is addressed by making the assumption that production is related to
the economically active population in the vicinity of the origin node, and attraction at the
employment positions at the destination node. Second, the interaction intensity between the
nodes should be associated with a function that diminishes by network distance. The distance
decay function embedded in the measure of travel accessibility is employed for this reason,
since accessibility is a measure of how far people are willing, or able, to travel on the course
of their daily life and quantifies how interaction opportunities decrease over the distance
(Hansen, 1959). Two variations of distance decay function are tested to identify the one that
fits the data better (Halas et al., 2014). The parameters of the distance-decay function can be
either estimated, if data availability allows it, or taken from another study. Last, a restriction
has to be imposed with respect to the direction of potential interactions by standardizing the
accessible opportunities from each node to each node, by the total number of opportunities
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accessible from the origin node. The incorporation of these changes in the stress centrality index
and the derivation of the constructed index, called accessibility-weighted centrality, is presented
below. It should be noted that the constructed variable mirrors to a great extent the first two
steps of the traditional four-step model, however this is inevitable due to the nature of the
relationships that we need to capture in the variable.

Accessibility — weighted centrality, = },; jey 0ij(e) (2)

Employm f(cost;;)

gij(e) = X jev Popul; A3)

! Travel Accessibility;

Travel Accessibility; = ¥ Employm; * f(cost;;) (4)

[*cost;;
_Je 1
f(COStij) = {eﬁ*COSfija (5)

Where e is any link of the network, V the set of all nodes, o;;the shortest path from node i to
node j, and o;;(e) is equal to the sum total according to formula 3, if the link e is part of the
shortest path connecting i and j nodes.

2.2 Modelling approaches

In order to test the predictive accuracy of models for AADT prediction, the application of
different models is examined. In particular, the classical ordinary least square (OLS) model
constitutes the starting point due to its simplicity, where the dependent variable Y is described
by a linear function of independent variables X with the parameters  being the least squares
estimates. One of the main assumptions of the model requires that the error should be spherical,
meaning that they should be homoscedastic and not auto-correlated.

Y=pX+¢ (6)

where Y is a vector with N values of the dependent variable, f is a vector with the regression
coefficients, X is a matrix with the independent variables and ¢ a vector of error terms.

However, the application of the OLS estimator for the statistical analysis of spatial data results
to residuals that are not independent, but spatially correlated, leading to the violation of the
assumptions of the OLS estimator.
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Spatial econometrics was popularized by Anselin (1988a) and are defined as the use of
regression models by accounting for the impact of spatial effects (spatial dependence and
heterogeneity) in their specification and estimation, avoiding the statistical problems such as
unreliable statistical tests and biased and inconsistent estimated parameters. This is facilitated
by the inclusion of a spatial weight matrix (W) in the model specification that incorporates
information about the extent of the neighborhood, the type of the adjacency, and the relative
weight that should be assigned on the neighboring locations. In the transport network case, it
specifies the expected direction and mechanism of influence.

In the case of the spatial dependence, SAR models can account for it by the inclusion of relevant
spatial autoregressive components (Kissling and Carl, 2007). In particular, the spatial error
model assumes that the spatial dependence exists in the error term of the model, and thus the
spatial autoregressive process is applied to it.

Y=pX+u (7)
with u = AWu + ¢ (8)

where u the error term, A the spatial autoregressive coefficient, W a matrix with the contiguity
structure having dimensions N x N, and ¢ a vector of independent and identically distributed
(iid) error terms.

The spatial lag model assumes that the spatial dependence exists in the response variable and
applies the spatial autoregressive process to the response variable, treating it as a lagged
variable. The formulation of the model is:

Y =pWY +BX +¢(9)
where p is the spatial autocorrelation parameter, and WY is the term for the lagged variable.

On the front of spatial heterogeneity, geographically weighted regression constitutes a
technique which allows different relationships to exist in space, instead of a global relationship,
and provides localized estimates of the coefficients (Charlton and Fotheringham, 2009).

Y(z) =Bi(2)X +u (10)

Where the notation p;(z) indicates that the parameter describes a relationship around location
u and is specific to that location (Charlton and Fotheringham, 2009).

Kriging is a geostatistical technique used for interpolation purposes. In the case of ordinary
kriging, the assumption is that the unobserved value is decomposed into two terms, the local
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trend BX, and the error terms which are spatially correlated and their variance is assumed to
follow a semivariogram relation y(h;;), as a function of the distance h between the points
(detailed information can be found at Oliver and Webster (1990)). In line with previous studies
of AADT prediction (e.g. Selby and Kockelman (2013)), three semivariogram functions are
evaluated:

Exponential: ¥ (h;j; ¢o, Ce, as) = ¢o + Ce <1 — 8_2) (11)

Gaussian: y(hlj' Co) Ce» as) = Cp + Ce (1'2}711 — 0.5 (%) > (12)

h

_Zy
Spherical: y (h;j; o, Cesas) = ¢ + €, (1 —e as) (13)

Last, the negative binomial regression is widely used along with the Poisson regression, for the
modelling of count data, accounting properly for their non-negative nature.

3. Case study

In order to assess the plausibility of applying a direct demand modelling approach for prediction
of AADT on a nationwide network, and evaluate the capability of the centrality indices to
enhance the predictive accuracy of such models, a case study is designed and conducted. More
specifically, the network of Switzerland is employed as the study network (ARE; National
Transport Model, 2010), where the Federal Roads Office collects count data at various locations
of the network and calculates AADT values. As the basis year, the year 2010 is chosen in order
to be comparable with the output of the latest version of the National Transport Model. In
particular, for the basis year AADT data on 398 links exist which are used for the model
estimation as dependent values. A map of the study network along with the spatial distribution
of the count locations can be seen in Figure 1.
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Figure 1 Case study network and count locations

Source: ARE, National Transport Model, 2010.

3.1 Centrality indices

3.1.1 Stress centrality

The first centrality measure that is of interest for evaluation mainly due to its simplicity, is the
stress centrality as defined in formula 1. The number of shortest paths connecting all pairs of
nodes of the network for each link is a variable that can be constructed with a relative ease,
making use of existing routines (e.g. igraph package for R (Csardi and Nepusz, 2006)).

3.1.2 Accessibility-weighted centrality measure

The construction of the accessibility-weighted centrality measure for the study network is
conducted according to the previously defined methodology. In particular, the new measure
includes a distance decay function which serves the purpose of capturing the diminishing
intensity interactions over distance and two variations of distance decay function are checked
to identify the one that fits better the data, in line with a previous study (Halas et al., 2014).
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Obviously, different parameters are associated with different trip purposes; e.g. people are
willing to travel shorter distances for shopping activities than for commuting to work. In our
case, the interregional commuting to work trips are the ones contributing to the available AADT
values the most and thus the estimated parameters should correspond to this trip purpose.

In order to facilitate the estimation of the parameters of these two functions, we make use of
the 2010 Microcensus data, where the residential and employment location of the participants
is reported and subsequently it is matched to a municipal level. The associated travel cost among
all municipalities is calculated by identifying their shortest paths on the employed weighted
directed network, both in terms of distance and travel time (free-flow travel time).

The nonlinear least-squares estimates of the parameters are calculated using the Gauss-Newton
algorithm. The estimated parameters and the shape of the distance decay functions are presented
in Figure 2, where the function with the two parameters is found to fit better to the data, for
both distance and travel time, and thus is the chosen one. Alternatively, these parameters could
be taken from previous studies as long as the associated cost metric is consistent with the one
of the case study to avoid giving rise to inconsistencies that can lead to erroneous results.

The next step is to define the origin and the destination nodes of the network that their shortest
paths are accounted in the calculation of the centrality measure. Given the interregional
character of the trips, a convenient choice is to employ a zonal level according to the
administrative level of municipalities. In this case, a node close to the centroid of each zone
serves as the origin and destination node for the trips of each zone, associating on it the
population and the employment positions of each zone. The advantage of that choice is the
availability of socioeconomic data aggregated on this level while the methodology can be easily
applied if more disaggregated data (e.g. on a hectar level) exist along with the identification of
different population and employment clusters, which can then replace the employed zonal
analysis level.

Finally, the calculation of the accessibility-weighted centrality value takes place for the subset
of links with count data, for both metric costs of network distance and travel time. For
computational reasons, given the finding that zones with distances more than 60 kilometers or
minutes between them (Figure 2) have an interaction intensity close to zero, we restrict the
time/distance window around each link to these values. Essentially that means that only the
shortest paths among the origins and destinations within a radius of 60 kilometers or 60 minutes
around each link are found and taken into account.
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Figure 2 Estimated parameters of the accessibility distance decay functions
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3.2 Independent variables

In essence, the regression yields two components; one that captures the impact of supply on
AADT, and one that captures the impact of demand allowing to model their interaction. On the
supply side, variables describing the road capacity are put to use. More specifically, the
functional class of the road and the number of lanes are the chosen explanatory variables. On
the demand side, a set of variables is tested thoroughly in order to capture to the greatest
possible extent the demand patterns. These variables correspond to the spatial densities of
socioeconomic variables for various radii, stress centrality indices and the constructed
accessibility-weighted centrality measure. Additional spatial variation is added on the demand
side by the inclusion of the public transport network density in the vicinity of each road (density
of public transport stops within 5 km radius), as indicative of the intensity of local activities,
and thus of local demand. The summary statistics of the included variables are presented in
Table 1. As it can been, in conjunction with the box-plot in Figure 3, the newly constructed
variable has a similar magnitude as the AADT while their correlation is close to 0.75, providing
evidence that the new variable has the capability of reproducing satisfyingly the variation of
demand over space.
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Table 1 Summary statistics of variables

Variables Unit Mean Median  St. Dev.
AADT (before transformation) Vehicles 14370 8668 14146
Freeway - Highway Dummy 184 - -
Major road Dummy 136 - -
Rural major road Dummy 78 - -
One-lane road Dummy 231 - -
Two-lane road Dummy 147 - -
Three-lane road Dummy 20 - -
Population density (kernel

weighted): 10 km Residents/ sg. km 571 327 626
Population density (kernel

weighted): 20 km Residents/ sg. km 369 303 323
Stress centrality Importance 8.30*10° 2.21*10° 13.17*10°

Accessible empl.
Accessibility-weighted centrality opportunities 22350 9646 28651

Public transp. density: 5km
radius Stops/ sg. km 1.33 0.89 1.28

3.3 AADT transformation

The particularity of using count data as the dependent variable in the context of linear regression
models, stems from their non-negative character which can lead to a number of shortcomings
(Winkelmann, 2008). In this case, models accounting for it should be employed such as Poisson
or negative binomial regression models, or the dependent variable should be transformed to
conform to the assumptions of normality and/ or homoscedasticity of variance (Osborne, 2010).
Based on that, the Box-Cox transformation (Box and Cox 1964) is applied on the AADT data
in order to allow the estimation of linear regression models. The transformation form is
presented below while the identified & value for the AADT data is found to be equal to 0.222.

Yé—1 0
Yy =47 ¢*0 (19
InY,E=0
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Given the high correlation of the centrality variable with the AADT, we choose to apply an
identical Box-Cox transformation to it in order to maintain their strong linear relation in the
model. The histogram of the AADT values before the transformation is presented in Figure 3
(left side), while on the right side the box-plot of the transformed centrality quantiles are plotted
against the transformed AADT values to show their strong linear correlation.

Figure 3 Histogram of AADT and box-plot of accessibility-weighted centrality quantiles
with respect to AADT
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It should be noted that the involved data processing, models estimation, and network processing
are undertaken with the statistical programming language R (R Development core team, 2011),
making use of different available packages (igraph (Csardi and Nepusz, 2006); spdep (Bivand
et al., 2005); gstat (Pebesma, 2004)).

4. Model estimation - Results

In this section, a set of different models is estimated and evaluated in order to draw safe
conclusions on both the newly constructed variable and also on models’ capabilities. In addition
to models already tested in the literature, the family of spatial simultaneous autoregressive
(SAR) models is tested as well. An assessment of models predictive accuracy and comparison
to the output of a traditional four-step model is conducted to show to what extent such models
can constitute a trustworthy alternative.

13
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Three variations of OLS models are estimated serving a twofold purpose. At first, to examine
the ability of different sets of variables to capture long-distance trips that occur on a nationwide
network within a direct demand model formulation and thus draw conclusions concerning this
aspect. The particularity of the long-distance trips is that spatial density variables fail to capture
due to their inherent incapability to take into account the directionality and the mechanism that
governs the demand. More specifically, the first model includes the spatial density of population
in a 20 kilometres radius to resemble the travel demand patterns in a medium scale. The second
model, includes in addition the stress centrality variable where the importance of the links is
quantified. Last, in the third OLS model the aforementioned variables are replaced with the
accessibility weighted centrality variable which simultaneously quantifies both the network
structure and the directionality and magnitude of travel demand. Furthermore, the spatial
density of population in a shorter radius than before (10 kilometres) is included as well to
capture more localized demand patterns that the constructed variable fails to capture
sufficiently.

Secondly, to serve as the comparison benchmark and also for examining the existence of spatial
autocorrelation in the residuals and thus justify if the need for the estimation of spatial
regression models arises. The spatial autocorrelation is calculated in terms of the Moran’s |
measure which shows that there is statistically significant autocorrelation of 0.21. The
implication of this, as mentioned before, is that the estimates are biased and inconsistent since
more (or less) explanatory power is attributed to them than it should. The estimated coefficients
for the different OLS models are presented in Table 2. In addition, the models have been tested
for heteroscedasticity by making use of the appropriate tests (Breusch and Pagan, 1979;
Goldfeld and Quandt, 1965) and no strong indication of it was found.

In summary, the OLS coefficients of the functional class variables have the expected order of
magnitude, while the impact of the number of lanes and the functional class is in line with
expectations. The demand relevant variables, have positive impact and they are statistically
significant. It should be mentioned that they centrality value with the distance decay function
as a relationship of the travel time distance is found to be slightly more statistically significant,
and thus the one employed. The OLS model with the accessibility-weighted centrality variable
has the highest fit among the models, in terms of adjusted R-squared and Akaike Information
Criterion.

14
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Table 2 Estimated coefficients for the different OLS models

OoLS OLS stress centr.  OLS acc.weighted
Indep. Variables Estimate Sign.  Estimate Sign.  Estimate Sign.
Intercept 21.35 *** 8.97 *** 13.83 ***
Major road -5.24 *** -3.37 *** -3.657
Rural major road -6.59 *** -4.44 F** -4.55 **x
Two-lane road 5.81 *** 4,93 *** 3.719 *xx
Three-lane road 10.88 *** 8.97 *** 6.917 **=
Ln Population density: 10 km - - 1.65 #**
Ln Population density: 20 km 1.71 *** 1.27 *** -
Ln Public transp. density: 5km 123 *** 1.81 *** -
Acc.weighted centrality (box-
e g y( ] ] 0.233 ,,,
Ln Stress centrality - 0.98 *** -
Adjusted R 0.839 0.857 0.875
Akaike Inf. criterion 2108 2061 2006
Moran's | (network distance) 0.13 *** 0.19 *** 0.2 ***
No. of observations 398

Signif. codes: 0 “***°0.001 “*** 0.01 ‘*> 0.05°.> 0.1 "1

Based on the Moran’s I measure results, the estimation of spatial error and lag models
necessitates in order to account for the autocorrelation issues. Driven by this, three spatial
weight matrices are constructed based on Euclidean distance, and network cost, both in terms
of time and distance, in order to evaluate the direction that correlation occurs. The identification
of the spatial extent of autocorrelation in the OLS residuals is used as an indicator to define the
extent of the neighborhood. In particular, for the Euclidean and the network distance, the
Moran’s I measure exhibits that the autocorrelation exists up to a radius of 20 and 30 kilometers
respectively. In the case of network time, the autocorrelation remains significant up to a radius
of 25 minutes of free-flow travel time. The last part of the construction of the spatial weight
matrices is to determine the weight that should be assigned to each neighboring location. Based
on the Moran’s I measure, we conclude that the inverse distance metric along with a
normalization of the sum of the weights of the neighboring locations to one, is the more
appropriate to capture the spatial structure. Making use of the robust form of the Lagrange
Multiplier diagnostics for spatial dependence (Anselin, 1988b), we conclude that the spatial
dependence exists in the error term, hence the spatial error model is the appropriate model.
Nevertheless, the spatial lag model is evaluated as well to test its predictive accuracy. The
estimated coefficients for the spatial regression models are presented in Table 3.

15



16" Swiss Transport Research Conference May 18-20, 2016

Table 3 Estimated coefficients for SAR models

Sp. Error netw. dist.  Sp. Lag netw. dist.

Indep. Variables Estimate  Sign. Estimate Sign.
Intercept 14,10 *** 12,28 ***
Major road -3.68 *** =371 *x*
Rural major road -4.73 *** -4.45 ***
Two-lane road 3.06 *** 3.50 ***
Three-lane road 5.98 *** 6.74 ***
Ln Population density: 10 km 1.50 *** 1.34 ***
Acc.weighted centrality (box-

COX) 0.27 *** 0.23 ***
lamda 0.51 *** -

rho - 0.11 **
Akaike Inf. criterion 1963 2000
Moran's | measure 0.01 0.15 ***

Signif. codes: 0 “***° (0.001 “*** 0.01 ‘“** 0.05 > 0.1 ‘"1

The same patterns as in the OLS model can be observed in the estimated coefficients of the
spatial models, with the spatial autoregressive and autocorrelation parameters found to be
statistically significant. In terms of goodness-of-fit measures, the Akaike information criterion
shows that the spatial error model outperforms both the OLS and the spatial lag model.

The next model estimated corresponds to the GWR, which aims to resolve spatial heterogeneity
issues and it is calculated by taking into account an adaptive bandwidth. The corresponding
results are presented in Table 4.

Table 4 Estimated coefficients for GWR model

Indep. Variables Min. 1st Quantile Median 3rd Quantile Max.
Intercept -1.04 9.26 12,51 15.22 30.46
Major road -11.02 -5.57 -3.84 -1.88 3.77
Rural major road -14.95 -7.29 -4.32 -1.93 3.44
Two-lane road -3.25 0.37 2.90 5.07 9.68
Three-lane road -0.65 2.31 5.21 9.89 15.42
Ln Population density: 10 km -0.51 1.22 1.70 212 3.09
Acc.weighted centrality (box-

COX) 0.06 0.23 0.29 0.35 0.56
Local R square 0.748 0.891 0.929 0.941  0.9725

Interestingly, the statistics of the constructed centrality variable’s coefficient show that it has
relatively low variation over space, providing further evidence on its ability to approximate
interregional demand patterns.
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The negative binomial regression results are not reported, but the estimates exhibit the same
patterns as in the OLS model. In this particular case, the untransformed AADT and centrality
variables are employed.

4.1 Evaluation of predictive accuracy of models

The developed models are evaluated in terms of their predictive accuracy, both for in-sample
and out-of-sample. For the out-of-sample, an 80% share of the count locations are randomly
chosen and used for the estimation of the model while the remaining 20% is used for the
validation part. Given the relatively low number of observations, the out-of-sample predictive
accuracy of the model exhibits variation. In order to account for it, a number of 100 replications
is performed to draw safe conclusions and the corresponding mean values are reported.

The following five accuracy measures are calculated in order to allow the evaluation to take
place. Mean percentage error (MPE) and mean absolute percentage error (MAPE) are easily
interpretable measures, having the main disadvantage though that they are influenced by
outliers. Symmetric mean absolute percentage error (SMAPE) is a similar measure which has
the advantage that it corrects for outlier’s influence. Median absolute percentage error
(MdAPE) has the advantage that it is not influenced by outliers and can provide an overview of
the distribution of the errors in conjunction with MPE. Mean squared error (MSE) because of
the quadratic term is influenced heavily by the outliers. An overview of the employed accuracy
measures is given by Makridakis and Hibon (1995), where they conclude that for forecasting
purposes MSE and SMAPE are the preferable measures. It should be noted that AADT
predicted values are back-transformed before the calculation of the measures. The formulas of
the accuracy measures are given below with Y, the predicted value, while the results are reported
in Table 5.

17—,
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MAPE 12 "W 00 (16
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n —~
1% -7
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A comparison of the accuracy measures reveals similar patterns for both in-sample and out-of-
sample. In particular, among the variations of SAR models, the ones that employ a spatial
matrix based on network distances metrics yield slightly better results, highlighting the
importance of using network over Euclidean distances. Among the kriging models, all of them
yield similar results although it can be concluded that the one with the spherical semivariogram
has slightly better accuracy.

The negative binomial model yields the results with lower predictive accuracy, providing
support to the argument of the necessity of transforming the dependent variable that does not
conform to the assumptions of normality.

Among the estimated models, GWR has the highest in-sample and out-of-sample accuracy. In
terms of SMAPE, all models besides negative binomial regression yield similar out-of-sample
results. Moreover, taking into account the fact that GWR and kriging models are aimed for
interpolation purposes, it can be concluded that the spatial error model gives similar results,
while having the advantage that it can be applied for forecasting purposes since its parameters
are unbiased and consistent. Interestingly, OLS out-of-sample accuracy is slightly better than
spatial error model, which is not the case in-sample.

A comparison with the Swiss national model’s, which corresponds to the state-of-practice four-
step model used for AADT estimation, exhibits that the national model outperforms the
estimated direct demand models in terms of predictive accuracy. In summary, national transport
model has higher accuracy than the other models but at the same it has to be pointed out that it
has been calibrated against the count data and it requires much more data and complicated
models. In addition, a potential source of introduced bias might have resulted from not
accounting for international commuters which can lead to underestimation of AADT close to
the borders, an aspect which is taken into account in the national model.
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Table 5 In-sample and out-of-sample predictive accuracy of estimated models

Model MJAPE MPE MAPE MSE SMAPE
> OLS 27.62 16.02 4341 4.19E+07  0.088
§ OLS stress centr. 24.73 1411 3951 3.57E+07  0.082
3 OLS acc. weighted 2408 1179 35.88 3.43E+07  0.076
2 Negative binomial 26.89 2348 44,57 5.10E+07  0.084
13 Sp. error: Eucl. distance 21.39 1141 3456 295E+07  0.073
E Sp. error: Netw. distance 20.38  10.57 33.04 2.72E+07  0.070
3 Sp. error: Netw. fftt 20.43  10.63 33.28 2.75E+07  0.070
g' Sp. lag: Netw. distance 21.29 1151 3521 3.30E+07  0.075
i GWR 16.92 7.43 25,65 1.85E+07  0.056
- National model (4-step) 4.78 573 14,65 3.85E+06  0.031

OLS 28,50  15.98 44.07 4.53E+07  0.090
§ OLS stress centr. 25.88  13.99 40.34 3.83E+07  0.084
5 OLS acc. weighted 25.95 1326 39.31 3.81E+07  0.082
§ Negative binomial 27.05 23.89 4562 4.46E+07  0.086
2 Sp. error: Eucl. distance 2541  13.67 39.31 3.79+07  0.082
% Sp. error: Netw. distance 25.60 13.76 39.28 3.79E+07  0.082
%’_ Sp. error: Netw. fftt 25,55 1335 39.16 3.79+07  0.082
2 Sp. lag Netw. distance 26.34 1340 39.60 3.83e+07  0.083
% Kriging: Spherical 25.34 1284 38.24 3.56E+07  0.080
o Kriging: Gaussian 2547 1286 38.26 3.56E+07  0.080
X Kriging: Exponential 2595 1326 39.31 3.81E+07  0.082
O GWR 25.52 9.68 36.86 3.60E+07  0.080

National model (4-step) 4.82 584 1439 3.66E+06  0.030

Attempting a comparison with the results of a similar scale study (Selby and Kockelman, 2013)
where kriging models were estimated and the MAPE was calculated to be close to 60%. The
difference in the magnitude of the accuracy can be attributed to a great extent to the inclusion
of the centrality measures. In the case of the study conducted by Lowry for a community
network though, the reported MdAPE values of 28%, are slightly larger but of similar
magnitude with our results.

5. Conclusions

In the present paper a direct demand modelling approach for AADT prediction on a nationwide
network is presented. It is exhibited that the inclusion of network theory-based variables in the
model formulation can lead to a significant enhancement on the predictive accuracy. In
addition, a methodology for expanding the stress centrality index to align with travel demand
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modelling aspects is presented and evaluated, providing some concrete evidence in favour of
it.

In addition to the already tested models in the literature, it is shown that while GWR has the
highest predictive accuracy its underlying assumptions make it more appropriate for
interpolation purposes. In contrast, spatial error and OLS models have the potential to be
applied for forecasting purposes as well since they are estimated parameters are unbiased and
consistent. Given this consideration, spatial error model and OLS can be used within a structural
equation framework to make statements about the speed and the AADT on a link level,
accounting for both their well-known interdependencies and the spatial autocorrelation (Sarlas
and Axhausen, 2015a). These two constitute the minimum requirements for the transport project
appraisal.

At last, a comparison of models predictive accuracy to the output of a traditional four-step
model is conducted to show that direct demand models can constitute a trustworthy alternative
to more advanced, but definitely more data demanding and computationally burdensome
models. Conceptually, it is arguable that a simplified approach cannot exhibit the predictive
accuracy and the sensitivity of the existing approaches (four-step or agent-based models).
However, the higher sensitivity might allow to address more issues, but then raises the issue if
the forecast is better, as there are more independent variables to forecast/fix. Furthermore, it
cannot be overlooked that when it comes to the appraisal of public transport projects, as
Flyvbjerg et al. (Flyvbjerg et al., 2005) argue, the quality of the demand forecasts has not been
improved over the years even though more complex and advanced models have been employed.

The developed methodology can be easily applied to different scales of network, where a finer
zonal analysis level and the identification of clusters of trip production and attraction can be
used. Moreover, it requires only publicly available socioeconomic data and can utilize different
available networks (e.g. Open street map).
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