
 

 

 

 

Optimization-based Clustering approach of 
heterogeneous networks with robust network 
components  

Mohammadreza Saeedmanesh, EPFL 
Nikolas Geroliminis, EPFL 

Conference paper STRC 2015  
  
 
 

STRC 

  

15 
th 

 Swiss Transport Research Conference   

Monte Verità / Ascona, April 15-17, 2015   



 

2 

Optimization-based Clustering approach of heterogeneous 

networks with robust network components 

Mohammadreza Saeedmanesh 

Urban Transport Systems Laboratory 

Ecole Polytechnique Fédérale de 

Lausanne GC C2 390, Station 18, 

Lausanne 1015, Switzerland 
 

Nikolas Geroliminis 

Urban Transport Systems Laboratory 

Ecole Polytechnique Fédérale de  

Lausanne GC C2 389, Station 18,  

Lausanne 1015, Switzerland 

Phone: +41-21-69-35397  

Fax: +41-21-69-35060  

email: mohammadreza.saeedmanesh@epfl.ch  
 

Phone: +41-21-69-32481  

Fax: +41-21-69-35060  

email: nikolas.geroliminis@epfl.ch 

Abstract 

Unpredictability of travel behaviors and high complexity of accurate physical modeling have 

challenged researches to discover implicit patterns of congestion propagation and distribution in 

large urban networks. However, real traffic data in urban cities reveals the spatial correlation of 

congestion in adjacent roads and its spatiotemporal finite propagation speed. Spatial data 

mining and clustering in particular can help us discover spatial patterns that may exist implicitly 

in distribution of congestion. In fact, clustering allows us to partition heterogeneous networks 

into homogeneous regions and identify boundaries. In addition, we are capable of chasing 

spatiotemporal growth of congestion which is crucial for real-time traffic control schemes 

specifically hierarchical perimeter control approaches. In this paper, we develop and solve a 

binary quadratic optimization model for partitioning heterogeneous networks taking into 

account contiguity and size constraints for clusters. The proposed approach utilizes set of 

distinct and robust homogeneous components in the network called ‘snake’. ‘Snake’ is a 

sequence of links created by adding new adjacent links iteratively based on their similarity to 

join previously added links. Hence, firstly, snakes corresponding to all different initial points 

grow in a way that they have the highest possible homogeneity. Based on robust behaviour 

observed in sub-regions with different level of congestion, we come up with the idea to select a 

sub-set of distinct and non-similar snakes which cover most parts of the network and reduce our 

search space. These robust components show potential connected clusters with similar traffic 

conditions in the network. Secondly, an optimization framework is designed to select sectors 

from different snakes and assign them as different clusters by minimizing heterogeneity index. 

This leads to quadratic binary optimization with linear constraints which can be solved with 

existing optimization solvers (e.g. GUROBI, CPLEX). Finally, a fine-tuning step is used to 

assign links that are not associated with any clusters to proper clusters. The proposed clustering 

framework is applied in heterogeneous real network and the promising obtained results reveal 

the ability of finding directional congestion within a cluster, robustness with respect to 

parameters’ calibration and its good performance for networks with low connectivity and 

missing data. 
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1. Introduction 

Large-scale urban traffic modeling aims to simplify micro-simulations of link-level traffic 

dynamics to have a better understanding of aggregated-level traffic behavior. This modeling 

could be utilized in development of efficient real-time traffic management and control 

schemes. In the link level, fundamental diagrams (FDs) express the relation between flow and 

density using free-flow and congested states for low and high values of density respectively 

(1). Early study toward extension of FD concept to network level with an optimum 

accumulation belongs to Godfrey (2) and later similar approaches were re-introduced by 

Herman and Prigogine (3). The first empirical verification about the existence of relation 

between aggregated traffic indicators was presented in (4). This research showed that by 

spatially aggregating the highly scattered plots of flow vs. density from individual detectors 

(e.g. 1 min data), the scatter almost disappeared and a well-defined MFD exists between 

space-mean flow and density. Existence of MFD was also reported using simulation data in 

(7)-(9) but definitely, real-life data can shed more light in this direction than computer 

simulations that try to approximate with a large number of parameters, individuals’ complex 

behaviors. 

In previous work (5), homogeneous network structure was assumed as a preliminary condition 

to have well-defined MFDs. It was demonstrated using empirical data of Yokohama that 

homogeneity is not necessary condition and spatial distribution is a key point (10). Recent 

studies have also investigated the conditions under which low scattered diagrams exist. They 

show that networks with an uneven and inconsistent distribution of congestion may exhibit 

traffic states that are much too scattered to line along an MFD (6)-(11). In fact, they claim that 

outflow of the network is a function of both average and variance of link densities. 

In case of heterogeneously loaded cities with multiple centers of congestion, a possible way to 

take advantage of well-defined MFD is to partition network into a number of homogeneous 

smaller regions (12). The objectives of partitioning are to obtain (i) small variance of link 

densities within a cluster, which increases the network flow for the same average density and 

(ii) spatial compactness of each cluster which makes feasible the application of perimeter 

control strategies (13). The work in (13) has laid a solid foundation for static partitioning in 

grid-type networks with similar level of congestion on both traffic directions of the same road. 

It also requires a connected graph of the network with data and missing values or 

malfunctioning detectors might create difficulties in application of the method. Nevertheless, 

many congested urban networks in central business districts (CBD) of cities might experience 

strong directional flows during different times of the day, e.g. high demand for directions 

towards the CBD in the morning peak and the opposite during the evening. The network 

topology might not be symmetric (grid-type) but some areas might experience higher 

connectivity than others. The current paper tries to overcome the aforementioned difficulties 
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and develop a clustering methodology that (i) is able to find directional congestion within a 

cluster, (ii) is robust with respect to parameters’ calibration and (iii) has good performance for 

networks with low connectivity and missing data. 

Recent findings from the concept of MFD were important for modeling purposes, as details in 

individual links are not needed to describe the congestion level of cities. It can also be utilized 

to introduce simple control strategies to improve mobility in homogeneous city centers 

building on the concept of an MFD, like in (14), (15). The main logic of the strategies is that 

they try to decrease the inflow in regions with points in the decreased part of an MFD. 

The remainder of this paper is organized as follows: The clustering approach consisting of 

three consecutive steps of distinct snake space recognition, snake-segmentation and fine-

tuning is described in details in section 2. Section 3 analyses the quality of partitioning results 

in a real network and comparing results for different number of clusters. This paper concludes 

with a discussion about the results and ideas for further research. 

2. Methodological Framework 

Let us assume an urban network with uneven and inconsistent distribution of congestion 

which happens frequently over a day in networks with high demand. Our main objective is to 

partition a network with a large set of heterogeneous spatial objects into a number of spatially 

connected sub-regions while optimizing a homogeneity index of the derived regions. An ideal 

sub-region is a relatively homogeneous area unit defined by set of following criteria: (1) 

spatial connectivity which facilitates effective traffic management strategies; (2) it has 

minimum size that should not contain less than a certain number of links. In fact, 

homogeneity and contiguity constraint are two conflicting objectives that need to be taken 

into account at the same time. 

Based on aforementioned goals, our approach to deal with multi-objective problem is to 

consider heterogeneity as a main objective function and explicitly impose spatial connectivity 

as a constraint. To guarantee connectivity in the clusters, we limit our optimization search 

space to a subset of local homogeneous connected components. Hence, we first find best 

connected local components for each individual link in the network. Then, to limit the search 

space, a distinct set of components is specified, with respect to values of similarity, which can 

cover different parts of the network. Secondly, a binary quadratic optimization is solved in 

order to assign each link to one of the components in a way that a heterogeneity index is 

optimized. Finally an optimization based fine tuning step is applied to assign remaining links 

to proper clusters. Different steps of the proposed partitioning mechanism are described in 

details in the following sections. 
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2.1 Distinct snake-space 

The aim of this step is to find a subset of distinct local homogeneous regions in the network 

that cover main parts of the network. Output of this step will be utilized later as a search space 

in the optimization framework. To achieve this, first we look for all homogeneous local 

components around different roads in the network and based on a similarity measure, a 

distinct subset of them are chosen in a way that they cover different parts of the network. 

Basically, in the first step, a sequence of links is built iteratively for each individual link in the 

network with an objective to minimize the variance of all the chosen links density (or speed). 

It can be considered as a “snake” that starts from a link and grows by attracting the most 

similar adjacent links in each step. In the other words, a link with the closest value to the 

average of the values of the values in the snake is added iteratively. Obviously, this step needs 

graph information about connectivity as only adjacent links are added at each step. Evolution 

of the variance curves of these sequences with the size of the links reveals interesting non-

linear patterns. The fact that some parts of the graph are more similar than others can very 

well explain this observation. 

Based on the obtained sequences starting from all different links in the network, a subset of 

distinct local components are identified that potentially represents homogeneous sub-regions 

in different parts of the network. The main reasons of finding a distinct subset and reducing 

the search space are: (1) to avoid having repeated sequences that belong to the same local 

component; (2) to guarantee that selected local components are able to cover different parts of 

the network. To attain this, a measure of similarity is defined to determine and select distinct 

snakes using a similarity measure. As it was mentioned, the sequence of the numbers in the 

arrays not only represents the links with the close values, but also has some information about 

the spatial connections of the links. Based on these properties of the snakes, we propose a 

method that identifies snakes corresponding to the links that belong to different local 

homogeneous components. This has been done by putting more weight on the snakes that 

have more common links in the first steps and converge to each other. The similarity measure 

is defined as follows: 

𝑤(𝑖, 𝑗) = ∑ 𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡 (𝑆𝑖𝑘 , 𝑆𝑗𝑘)

𝑁

𝑘=1

                                                                                                                    (1) 

where 𝑆𝑖𝑘, 𝑆𝑗𝑘 are the subsets containing k first elements in the arrays of the snakes starting 

from links 𝑖 and 𝑗 respectively and ‘𝑁’denotes the total number of links in the network. In 

equation (1), function ‘intersect’ calculates the number of common elements between two 

subsets with equal size. To calculate the similarity matrix w(i, j) a snake runs for each link of 

the network with a size equal to the whole network. Then for each pair of links, the number of 

common links is estimated for all possible snake sizes and a cumulative metric based on 
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equation (1) is developed. Based on the similarity matrix, we find a subset of distinct snakes 

with an iterative approach as follow. Firstly, we find the pair which has the lowest similarity 

and then iteratively add one snake that has the lowest summation of similarities to all previous 

selected snakes. In this way, we guarantee that the network is well-covered by these snakes. 

2.2 Snake segmentation 

By the first step, a subset of snakes representing distinct local connected components has been 

obtained, in which contiguity constraints will be satisfied if optimal solution is chosen from 

segment of snakes. Hence, the problem is formulated in a way to minimize heterogeneity 

index by segmenting snakes. In this way, cluster connectivity is guaranteed and different 

constraint (minimum, maximum) on size of clusters could be defined. The problem is 

formulated as a quadratic binary optimization with linear inequality constraints. Different 

types of constraints are specified to impose connectivity, minimum size of clusters, and 

minimum number of links that should be covered by the clusters. Since we want to have at 

least a certain number of links to be included in clusters, it might happen that some links are 

assigned to more than one cluster. To avoid having many links belong to multiple clusters, a 

set of constraints is specified that illustrate the maximum allowable number of such links. In 

this part, we present the mathematical formulation of the proposed optimization framework 

for both predefined and unknown number of clusters. We first define the sets and indices used 

to describe the model as well as the variables and parameters (see table 1). Detailed 

mathematical optimization model is presented and its objective function and constraints are 

described afterwards.  

Table 1: Definition of parameters and sets 

𝑁 Number of links in the network 
𝑁𝑠 Number of distinct snakes in the subset  
𝑙 Set of all links in the network 

S Set of selected distinct snakes  

𝑁𝑚𝑖𝑛(𝑖) Minimum size of cluster 𝑖 
𝑁𝑚𝑎𝑥(𝑖) Maximum size of cluster 𝑖 

𝐴𝑖 Cluster 𝑖 

𝑥𝑖𝑗 Binary variable indicating if link j belongs to cluster 𝑖 or not 

𝑅𝑖(𝑗) Location of link j in snake 𝑖 
𝑥"𝑗 Binary variable indicating if link j is assigned to multiple clusters 

𝑥′𝑗 Binary variable indicating if link j is assigned to at least one cluster 

𝑎′ Minimum percentage of links that should be associated to clusters 

𝑎′′ Maximum percentage links that could be associated to multiple clusters 

𝑑(𝑙𝑖, 𝑙𝑗) Normalized distance (dissimilarity) between values of links 𝑖 , 𝑗  

𝜀 A number between 0 and 1 
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2.2.1 Unknown number of clusters 

min∑Dissim. (𝐴𝑖 , 𝐴𝑖)

𝑁𝑠

𝑖=1

+∑∑Sim. (𝐴𝑖 , 𝐴𝑗)

𝑁𝑠

𝑗=1
𝑖≠𝑗

𝑁𝑠

𝑖=1

=∑∑∑𝑑(𝑙𝑖 , 𝑙𝑗)

𝑁𝐴𝑖

𝑘=1

𝑁𝐴𝑖

𝑗=1

𝑁𝑠

𝑖=1

+∑∑∑∑(1 − 𝑑(𝑙𝑚, 𝑙𝑛))

𝑁𝐴𝑗

𝑛=1

𝑁𝐴𝑖

𝑚=1

𝑁𝑠

𝑗=1
𝑖≠𝑗

𝑁𝑠

𝑖=1

=∑∑∑𝑥𝑖𝑗𝑑(𝑙𝑖 , 𝑙𝑗)𝑥𝑖𝑘

𝑁

𝑘=1

𝑁

𝑗=1

𝑁𝑠

𝑖=1

+∑∑∑∑𝑥𝑖𝑚(1 − 𝑑(𝑙𝑚, 𝑙𝑛))𝑥𝑗𝑛

𝑁

𝑛=1

𝑁

𝑚=1

𝑁𝑠

𝑗=1
𝑖≠𝑗

𝑁𝑠

𝑖=1

                                       (2) 

(𝑎)   ((∑𝑥𝑖𝑗
𝑗

) − 𝑅𝑖(𝑗) + 𝜀) − 𝑁𝑥𝑖𝑗 < 0     (𝑏) ((∑−𝑥𝑖𝑗
𝑗

) + 𝑅𝑖(𝑗) − 𝜀) + 𝑁𝑥𝑖𝑗 −𝑁 < 0    ∀𝑖𝜖𝑆, 𝑗𝜖𝑙   (3) 

(𝑎)  ((∑𝑥𝑖𝑗
𝑖

) − 1 + 𝜀) − 𝑁𝑠 𝑥
′
𝑗 < 0           (𝑏)  ((∑−𝑥𝑖𝑗

𝑖

) + 1) + 𝑁𝑠 𝑥
′
𝑗 − 𝑁𝑠 < 0                ∀𝑗𝜖𝑙           (4) 

 ∑𝑥′𝑗 ≥ 𝑎′ × 𝑁

𝑗

                                                                                                                                                                       (5) 

(𝑎)    ((∑𝑥𝑖𝑗
𝑖

) − 1 − 𝜀) − 𝑁𝑠 𝑥"𝑗 < 0           (𝑏)   ((∑−𝑥𝑖𝑗
𝑖

) + 1) + 𝑁𝑠 𝑥"𝑗 − 𝑁𝑠 < 0              ∀𝑗𝜖𝑙           (6) 

∑𝑥"𝑗 ≤ 𝑎" × 𝑁

𝑗

                                                                                                                                                                       (7) 

𝑥𝑖𝑗 − 𝑥𝑖𝑗𝑖
∗ − 𝜀  < 0 {∀𝑖, 𝑗|𝑅𝑖(𝑗) ≤ 𝑁𝑚𝑖𝑛(𝑖)} , 𝑗𝑖

∗ = {𝑗|𝑅𝑖(𝑗) = 1}                                                                          (8) 

∑𝑥𝑖𝑗 ≤ 𝑁𝑚𝑎𝑥(𝑖)

𝑗

                                                                                                                                               ∀𝑖 ∈ 𝑆          (9) 

The problem formulation is described in Eq. (2)-(9). The objective function (Eq. (2)) consists 

of the summation of intra-dissimilarity and inter-similarity of clusters that need to be 

minimized. Note that number of terms in the objective function should not be changed by the 

size and number of clusters in order to have precise and fair comparison. Hence, both intra-

dissimilarity and inter-similarity functions should be included in the objective function with 

the same order of magnitudes. This is the reason why normalized similarity and dissimilarity 

functions (between 0 and 1) are used in the objective function.  

Constraints (3a) and (3b) ensure that connected segments of different snakes are selected as 

initial clusters. Since, snakes grow by adding adjacent links iteratively, connectivity is 

guaranteed if 𝑛 first consecutive cells are selected from a candidate snake. Constraint (5) 

ensures that a certain percentage of the links in the network should be at least assigned to one 

cluster. To achieve this, a binary auxiliary variable (𝑥′𝑗) is defined in constraints (4a) and (4b) 

for each individual link to specify if it is selected at least in one of the snakes or not. To have 

a minimum percentage of links associated to clusters, it is likely that some links are repeated 
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in multiple clusters. Binary auxiliary variable (𝑥"𝑗) in constraints (6a) and (6b) indicates 

whether a link is assigned to multiple clusters or not. Constraint (7) restricts the number of 

links that associated with more than one cluster. Constraints (8)-(9) ensure that clusters have a 

size between minimum and maximum values that are denoted by 𝑁𝑚𝑖𝑛 and 𝑁𝑚𝑎𝑥 respectively. 

𝑁𝑚𝑖𝑛 is normally defined by the user while 𝑁𝑚𝑎𝑥 can be determined based on the variance of 

obtained snakes. For instance, we can consider sharp increasing jumps in the evolution of the 

variance as a truncation point for that snake. Nevertheless, in this work, we assume a fixed 

number as a maximum allowable size for all the snakes. 

2.2.2 Fixed number of clusters 

In this approach, number of desired partitions in the network is assumed to be known as a pre-

defined value. There are three main reasons that we are interested in partitioning network into 

certain number of clusters. Firstly, it allows us to compare our results with other clustering 

approaches for different number of clusters. Secondly, it allows us to keep number of clusters 

constant over a period of time where clustering framework is applied dynamically. Finally, 

since this framework has a fine-tuning step to assign remaining links, it is possible that 

optimal solution of the current step does not lead to a best solution after final step. Hence, we 

keep track of the best results corresponding to different number of clusters and minimum 

coverage rate (𝑎′) in the current step. Basically, for all different combinations of arrays in the 

distinct sub-space, an optimization problem is solved. In each optimization, the first links in 

the arrays are automatically assigned to the clusters to satisfy minimum size of clusters and 

decision variables are limited to the rest of the links in the arrays. The problem formulation is 

described in Eq. (10)-(15):  

min∑

(

 
 

∑ (𝑥𝑖𝑗𝑑(𝑙𝑖 , 𝑙𝑗)𝑥𝑖𝑘)
{𝑗|𝑅𝑖(𝑗)>𝑁𝑚𝑖𝑛(𝑖)}

{𝑘|𝑅𝑖(𝑘)>𝑁𝑚𝑖𝑛(𝑖)} )

 
 

𝑁𝑠

𝑖=1

+∑∑

(

 
 

∑ 𝑥𝑖𝑚(1 − 𝑑(𝑙𝑚, 𝑙𝑛))𝑥𝑗𝑛
{𝑗|𝑅𝑖(𝑗)>𝑁𝑚𝑖𝑛(𝑖)}

{𝑘|𝑅𝑖(𝑘)>𝑁𝑚𝑖𝑛(𝑖)} )

 
 

𝑁𝑠

𝑗=1
𝑖≠𝑗

𝑁𝑠

𝑖=1

+ 

∑2×( ∑ 𝑥𝑖𝑗 × ( ∑ 𝑑(𝑙𝑗 , 𝑙𝑘)

{𝑘|𝑅𝑖(𝑘)≤𝑁𝑚𝑖𝑛(𝑖)}

+ ∑ ( ∑ (1 − 𝑑(𝑙𝑗 , 𝑙𝑛))

{𝑛|𝑅𝑚(𝑛)>𝑁𝑚𝑖𝑛(𝑚)}

)

𝑁𝑠

𝑚=1
𝑚≠𝑖

)

{𝑗|𝑅𝑖(𝑗)>𝑁𝑚𝑖𝑛(𝑖)}

)

𝑁𝑠

𝑖=1

       (10) 

 

(𝑎) (( ∑ 𝑥𝑖𝑗
{𝑗|𝑅𝑖(𝑗)>𝑁𝑚𝑖𝑛(𝑖)}

) +𝑁𝑚𝑖𝑛(𝑖) − 𝑅𝑖(𝑗) + 𝜀) − 𝑁𝑥𝑖𝑗 < 0            

(𝑏) (( ∑ −𝑥𝑖𝑗
{𝑗|𝑅𝑖(𝑗)>𝑁𝑚𝑖𝑛(𝑖)}

) −𝑁𝑚𝑖𝑛(𝑖) + 𝑅𝑖(𝑗) − 𝜀) + 𝑁𝑥𝑖𝑗 − 𝑁 < 0 

∀𝑖, 𝑗|𝑅𝑖(𝑗) > 𝑁𝑚𝑖𝑛(𝑖)                      (11) 
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(𝑎)  (( ∑ 𝑥𝑖𝑗
{𝑖|𝑅𝑖(𝑗)>𝑁𝑚𝑖𝑛(𝑖)}

) + ( ∑ 1

{𝑖|𝑅𝑖(𝑗)≤𝑁𝑚𝑖𝑛(𝑖)}

) + 𝜀) − 𝑁𝑠 𝑥
′
𝑗 < 0             

(𝑏) (−( ∑ 𝑥𝑖𝑗
{𝑖|𝑅𝑖(𝑗)>𝑁𝑚𝑖𝑛(𝑖)}

) − ( ∑ 1

{𝑖|𝑅𝑖(𝑗)≤𝑁𝑚𝑖𝑛(𝑖)}

) + 𝜀) + 𝑁𝑠 𝑥′𝑗 − 𝑁𝑠 < 0

                           ∀𝑗 ∈ 𝑙               (12) 

∑𝑥′𝑗 ≥ 𝑎′ × 𝑁

𝑗

                                                                                                                                                                    (13) 

(𝑎)  (( ∑ 𝑥𝑖𝑗
{𝑖|𝑅𝑖(𝑗)>𝑁𝑚𝑖𝑛(𝑖)}

) + ( ∑ 1

{𝑖|𝑅𝑖(𝑗)≤𝑁𝑚𝑖𝑛(𝑖)}

) − 1 − 𝜀) − 𝑁𝑠 𝑥"𝑗 < 0             

(𝑏) (−( ∑ 𝑥𝑖𝑗
{𝑖|𝑅𝑖(𝑗)>𝑁𝑚𝑖𝑛(𝑖)}

) − ( ∑ 1

{𝑖|𝑅𝑖(𝑗)≤𝑁𝑚𝑖𝑛(𝑖)}

) + 1 + 𝜀) + 𝑁𝑠 𝑥"𝑗 − 𝑁𝑠 < 0

                    ∀𝑗 ∈ 𝑙              (14) 

∑𝑥"𝑗 ≤ 𝑎" × 𝑁

𝑗

                                                                                                                                                                     (15) 

The objective function (Eq. (10)) has both quadratic and linear terms. The quadratic term 

refers to the similarity and dissimilarity of the unassigned links (decision links) to each other 

while the linear term considers the similarity and dissimilarity of unassigned links to the pre-

assigned links. Constraints in Eq. (11) - (15) are equivalent to the ones presented in Eq. (3) - 

(7). 

2.3 Fine-tuning 

After completing the first two steps, a fine tuning approach is applied to all feasible optimal 

solutions of previous step to assign the remaining links to proper clusters. As there are some 

links that are repeated in more than one cluster, we should reassign them only to one cluster in 

this step. At the same time, since we want to keep connectivity inside clusters, we define the 

biggest connected component, consisting of the links that only assigned to one cluster, as a 

core of that cluster. Hence, links that either belong to none of the clusters or to multiple 

clusters are considered as decision variables in the fine-tuning step. Decision variables and 

parameters used in the current optimization step are defined in table 2 as follows: 

Table 2: Definition of parameters 

𝑁 Number of disassociated links (remaining links) 
𝑁𝑠 Number of clusters 
𝑥𝑖𝑗 Binary variable showing that j connects to cluster 𝑖 or not 

𝑁𝑖 Number of links associated to cluster 𝑖 at the beginning 

𝑟𝑖,𝑗 Distance of disassociated link j to cluster 𝑖  

𝑐𝑖𝑗 
Binary parameter indicating if links 𝑖 and 𝑗 are adjacent 

meaning that they are connected to the same intersection.  
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This approach utilizes the same objective function as presented in Eq. (10). To ensure 

connectivity, for each disassociated link in order to be connected to a cluster, it has to have at 

least one adjacent link closer to that cluster that has been assigned to it. This has been 

achieved using constraints written in Eq. (16) for each individual disassociated links.   

𝑥𝑖𝑗 ≤ ∑ 𝑥𝑖𝑚

{
𝑐𝑗𝑚=1

𝑟𝑖,𝑚<𝑟𝑖,𝑗 
}

                                                                                                                                             (16) 

3. Case study and results 

It would be challenging to investigate the proposed method in a large network with hierarchical 

structure and complex connectivity since the way traffic evolves and congestion propagates is 

much different from the simulated network. The case study is the megacity of Shenzhen which 

is a major city in the south of Southern China’s Guangdong Province, situated immediately 

north of Hong Kong. The dataset contains network structure and daily GPS data of taxis for 

one month. Average speed of each links is used as a representative values which computed 

using map-matching algorithm. Upper part of Shenzhen, which has about 2000 links, is 

analyzed in this study, since more data is available for that part and the speed estimation is 

more reliable. Fig. 1a shows the upper part of the network and estimated value of speed for 

different links are depicted as a gray scale image in Fig. 1b. Note that this network has no grid 

structure with many hierarchical components and different spatial connectivity, which makes 

the application of the methodology challenging. 

Figure 1:     (a) Shenzhen network,   (b) Grey scale speed profile of different links 
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(b) 

 

We apply proposed clustering algorithm in Shenzhen network during the peak period of 
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space consisting 8 distinct snakes are obtained in the first step and an optimization is solved 

for each combination of 2 to 4 snakes in the second step (fixed number of clusters). The 

values for the parameters applied in the model are presented in Table 3. 

Table 3 

𝑁𝑚𝑖𝑛 200  
𝑁𝑚𝑎𝑥 2000 
𝑎′ 0.8 - 0.7 - 0.6 

𝑎" 0.05 

The results of the clustering method with histogram of speeds for different clusters are 

depicted in Fig. 2. By comparing average values of speed in different clusters presented in 

Table 4, we could easily see that our method has the ability to differentiate between clusters 

with different speed values. The partitioning process produces a series of different partitioning 

with different number of clusters. Hence a metric is used to evaluate different partitioning and 

estimate the optimal number of clusters (Eq. (17)). 

𝑇𝑉 = ∑ 𝑁𝑖 × 𝑣𝑎𝑟(𝐶𝑖)

#𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 
𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑠

𝑖=1

                                                                                                                                           (17) 

where 𝑁𝑖 is the size of cluster 𝐶𝑖.  

Figure 2:     (a) Shenzhen network,   (b) Grey scale speed profile of different links 
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Table 3: Average values and standard deviations of link speeds for different clustering 

results [m/s] 

Mean/Standard 

deviation 
Blue Red Cyan Green TV(× 104) 

2 10.42/2.51 7.86/1.57 - - 0.98 

3 8.03/1.69 11.29/2.60 8.44/1.64 - 0.87 

4 7.79/1.56 10.10/1.68 11.48/3.00 8.10/1.67 0.84 

4. Conclusion and future work 

A three step optimization framework model for partitioning a heterogeneous network into 

connected homogeneous sub-regions was developed and tested in a large-scale real-world 

network. The proposed model takes into account the dependencies between adjacent links, value 

of the links and size of clusters in three steps. The main advantage of the proposed method is that 

it could deal with networks with different structures changing from perfect grid to the networks 

with low connectivity. Moreover, it could capture very well directional congestion which happens 

in many in different direction in morning and evening peak hours. The estimated method can be 

utilized in perimeter control which works based on the concept of MFDs to improve network 

performance since homogeneous clusters have low scatter MFDs. 
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