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Abstract

This article addresses the problem of the choice of departure time in cities subject to heavy
congestion. The model originally developed by Vickrey and extended by many authors was
developed for bottlenecks with constant capacity. While this assumption might be reasonable
for physical bottlenecks submitted to light congestion, empirical evidence shows that in urban
networks, the trip completion rate strongly depends on the density. Several analytical approaches
have been proposed to address this shortcoming, but they all rely on some simplifications. In this
work, the impact of some of these simplifications on the traffic flow dynamics is first evaluated
using simulation. Then, a heuristic is proposed to approximate the equilibrium with more
realistic assumptions and the results are compared with those that can be obtained with the
widely used Method of Successive Averages (MSA). While analytical solutions assuming a
constant capacity remain useful to design system optimum solutions, the heuristic proposed is
complementary and allows addressing the user equilibrium problem. This talk concludes by
presenting how this tool can be used to create strategies to alleviate peak-hour congestion in
urban areas.
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1 Introduction

Congestion during the peak hour on road networks represents a major part of the costs associated
to transportation and it is at the same time one of the costs that can be most easily reduced
with appropriate measures. However, designing such measures requires the combination of two
fields of transportation engineering that have historically been considered separately: temporal
demand modeling and congestion modeling.

On one hand, temporal demand modeling has mostly built on Vickey’s bottleneck model. This
model considers as given the knowledge of users’ desired arrival time, value of earliness, lateness
and travel time and aims at predicting their departure time, taking into account the resulting
congestion. There have been many extensions but they almost always assume a simple bottleneck
model with a capacity that is either a constant or a random variable, but does not depend on the
demand. However, it is widely accepted in transportation engineering that the capacity of most
facilities does depend on the demand, as evidenced by gridlock situations.

On the other hand, congestion modeling usually considers the inflow as given. At the very
local level, the fundamental diagram relating the speed to the density of vehicles is probably
the most widely used. However, the congestion observed during the peak hour is rarely a
local phenomenon: it propagates along the highway and over urban networks. Thus, modeling
the peak hour requires a network-wide approach. The most famous work on this issue is
probably METROPOLIS, the software developed by De Palma and his colleagues de Palma and
Marchal (2002). This software permits considering many different phenomena simultaneously
and has been used in many cities across the world. However, since it models every link of a
network individually, this approach is not only time-consuming but also requires a significant
amount of data. These reasons motivated the use of an alternative approach, based on the
Macroscopic Fundamental Diagram (MFD), an extension of the Fundamental diagram that
accurately describes the overall performances of a network. By dramatically reducing the
complexity of the network, the equilibrium can be approximated much more rapidly, which
potentially allows for in-depth sensitivity-analyses or for the design of congestion-reducing
measures.

The first part of this article introduces different models for both temporal demand and congestion
while the second part introduces a heuristic to approximate the equilibrium that takes advantage
of some ordering property of the equilibrium.





            

2 Modeling the dynamics of the peak hour

Modeling the dynamics of the peak hour requires modeling both the demand and the supply,
two topics that have traditionally been addressed separately. In agreement with the related
literature, this section introduces separately some models for both applications, highlighting
their advantages and limitations, before rapidly reviewing the literature combining both supply
and demands.

2.1 Vickrey’s bottleneck model

Vickrey (1969) introduced a simple framework to model the choice of departure time when
commuters need to pass a single bottleneck that has a constant capacity. If during some time
interval there are more commuters that want to pass the bottleneck than allowed by the capacity,
users start queuing and some of them do not arrive on time. This would then lead users to
change their departure time to reduce their travel time (caused by queuing) or their schedule
delay penalty (caused by an early/late arrival). The sum of the cost associated to travel time and
of the schedule delay penalty represents a personal objective function, that every user seeks to
minimize. Finding the equilibrium means finding a distribution of departure times such that,
given the decisions of all the other users, one cannot improve one’s cost by a change of departure
time.

With the appropriate assumptions, the evolution of the demand over time can be very simply
derived. Using the conventional assumptions and notations, let us assume that all users value
travel time with the same linear function (coefficient α) and also have the same piece-wise linear
schedule penalty function (with coefficient β for earliness and γ for lateness). The objective
function to be minimized for each user is:

C(t) = αtt(t) + βmax(t? − t − tt(t), 0) + γmax(t + tt(t) − t?, 0), (1)

where tt(t) represents the travel time if departing at time t, and t? represents the user’s preferred
arrival time. At equilibrium, dC

dt = 0. Thus, one can easily show that chosen departure times
leading to early arrivals are characterized by dtt

dt =
β

α
while those leading to late arrivals impose

dtt
dt = −

γ

α
. Thus, by assuming only linear cost functions, Vickrey (1969) showed that the

travel time should follow a triangular function during the peak hour. This result was later
extended to allow for relaxed hypotheses (e.g. heterogeneous users (Newell, 1987), existence of
unobserved variables (de Palma et al., 1983)), although these often prevent obtaining analytical
expressions.





            

Then, predicting the rate of departures and arrivals requires modeling congestion. For this
purpose, Vickrey (1969) assumed a bottleneck with a constant capacity. While this model
allowed him to obtain analytical results very simply, there are very few instances of isolated
bottlenecks with constant capacity in the real world.

2.2 Congestion modeling: the MFD

The idea of an MFD relating the total accumulation in a network to the average speed is quite old
(Godfrey, 1969). It has been reintroduced by Daganzo and Geroliminis (2008), and has attracted
a growing interest since Geroliminis and Daganzo (2008) presented the first empirical results
supporting this theory. In fact, real world measurements in the city of Yokohama showed two
important results. First, Geroliminis and Daganzo (2008) found that the speed v, or equivalently,
the production (P = nv), followed a well defined function of the accumulation n (the number of
vehicles currently driving in the network). This first result will be referred to thereafter as the
“production-MFD” or as the “speed-MFD”. Second, the ratio of the production divided by the
outflow was found to remain approximately constant throughout the measurement period. Thus,
there is also a well-defined relation between the outflow and the accumulation. This second
result will be referred to as the “outflow-MFD” and it allows us to formulate the following
differential equation:

dn
dt

(t) =
dI
dt

(t) − O(n(t)) (2)

where O(n) is the function described by the outflow-MFD and I(t) is the integral of the inflow
(also called the cumulative inflow). These findings motivated additional investigations and
although similar results were obtained (Buisson and Ladier, 2009), it appeared that the conditions
that led to the observation of a so well-defined MFD in the city of Yokohama in Geroliminis and
Daganzo (2008) were very specific and that similar results should not be expected everywhere. In
particular, a well-defined outflow-MFD should only be observed with slowly-varying inflows.

2.3 Applicability of the MFD for rapidly-changing conditions

2.3.1 Limitations of the outflow-MFD

As mentioned in the previous paragraph, the outflow-MFD is intrinsically limited to scenarii
with slowly-varying inflow. To illustrate this limitation, let us consider the following situation.
Assume that first, the inflow has a low value, much lower that the outflow at capacity. After
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Figure 1: Illustration of the behavior of the outflow-MFD under rapidly-changing conditions

some time, the system will reach a steady-state, i.e. the outflow will be equal to the inflow,
so that accumulation and travel time are constant. If then the inflow starts increasing, the
accumulation will increase, and if the steady-state was not in the congested domain of the
MFD, the outflow will increase as well, instantaneously. Thus, the experienced travel time
will temporarily decrease, before it starts increasing to account for more congestion. This
phenomenon is illustrated in Fig 1.

This un-natural behaviour results from the fact that the outflow-MFD is memory-less and does
not model the time spent in the network, or the distance traveled. Intuitively, a peak in the
inflow should increase the accumulation of vehicles instantaneously but the ouflow should start
increasing only later, when the new users will start finishing their trips.

2.3.2 Exact formulation

Based on the observation above, it is possible to derive an exact formulation of the outflow for
the dynamic case, assuming that the production-MFD (or, equivalently, the speed-MFD) remains
valid.

dn
dt

(t) =
dI
dt

(t) −

t∫
0

dI
dt

(τ) fl


t∫

τ

v(n(u))du

 dτ (3)

where n is the accumulation, I(t) is the cumulative inflow at time t, fl is the probability density
function (pdf) of the trip length, v(n) is the function defined by the speed-MFD and there are
no users in the network for t < 0. Note that a similar formulation was already mentioned as an





            

ideal model in a footnote by Arnott (2013) and is used in a working paper by Daganzo and Lehe
(2014).

2.3.3 Impact on the dynamics

The exact formulation defined above and the outflow-MFD define two different dynamical
systems. The response of these two systems to a peak in the demand was evaluated and
compared by discretizing the differential equation 2 and 3 and the results are presented in Fig. 2.
As shown in Fig. 2(a), the inflow was defined such that it first increased steadily to reach a steady
state, and then a sinusoidal peak in the demand was applied, before returning to the initial low
inflow. The 2nd order polynomial model that was used for the speed-MFD is displayed in Fig.
2(b), while the outflow-MFD was simply obtained by multiplying the speed by the accumulation
(we then have a 3rd order model) and by dividing by the trip length. The analysis of Fig. 2(c)
highlights how, for the same demand, the two dynamical systems described above can react
differently. Note that the exact formulation leads to a much higher maximum accumulation
and that therefore, the dynamics imposed by the outflow-MFD underestimate the risk of heavy
congestion. In terms of outflow, the exact formulation leads to the anti-clockwise hysteresis
observed in Fig. 2(d). Note that a clock-wise hysteresis has been reported by multiple authors
on real measurements of the production-MFD so the hysteresis reported here would most likely
be at least partly canceled out by other phenomena, such as a spatial heterogeneity in the density
in the offset of congestion.

2.3.4 Combining Vickrey’s demand model with congestion modeling

The most well-known work combining Vickrey’s demand model with a more realistic demand
model is most likely METROPOLIS, the software developed by De Palma and his team (de Palma
and Marchal, 2002). METROPOLIS is an event-based simulator that was designed for large
networks and has already been applied to different cities over the world. The simulator models
both the choice of departure time and the route choice. Before each iteration (each day), agents
choose a departure time based on the travel time experienced on the previous days by all
users (perfect information is assumed). During their trip, agents choose the next link at each
intersection based on the current conditions. Then, the travel time on each link is a function
of the current conditions on this link only. Note that since the flow is directed on each link, it
makes perfect sense that later arrivals should not impact the travel time of earlier agents (unlike
in the MFD, in which users travel in all directions). This numerical approach is quite general
since it allows considering non-linear cost functions and different types of users and still remains
quite efficient, thanks to its event-base simulator. However, it inherits from the networks their
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Figure 2: Comparison of the dynamics obtained with the outflow-MFD and with the exact
formulation given by Eq. 3. (a): inflow over time ; (b): speed-MFD used ; (c):
comparison of the resulting accumulations over time ; (d): comparison of the outflow
obtained with the exact formulation and of the outflow predicted by the outflow-MFD,
for the accumulation obtained with the exact dynamics.

complexity. Consequently, finding an equilibrium is time consuming, which may be a barrier
for an in-depth analysis or for the design of congestion-reducing measures. Finally, such an
approach requires modeling the entire network and having a precise picture of the origins and
destinations, which makes its implementation heavy.

To better understand the impact of congestion on the choice of departure times, it was chosen
in this work to use the MFD to model congestion, thus greatly reducing the complexity of the
task. Geroliminis and Levinson (2009) and Arnott (2013) already suggested such an approach
and even proposed a constructive and an analytical solution respectively. Nevertheless, this
required again some strong hypotheses. Indeed, in order to derive an explicit expression of
the accumulation from the travel time function obtained by Vickrey (1969), Geroliminis and
Levinson (2009) used the instantaneous travel time at the arrival at work (when the user exits
the network), defined by tt(t) =

n(t)
O(n(t)) . Arnott (2013) took a different approach, modeling

the arrival of a user during an interval dt as a Poisson process, with probability v(n)dt
L . While

both these expression are valid in steady state, they still have no “memory” and cannot model
rapidly-evolving situations.





            

3 Approximating the equilibrium numerically

3.1 Problem description

Finding a distribution of departure times that leads to the equilibrium is a difficult problem.
Before designing actual algorithms, one might first study analytically the existence and/or
uniqueness of such an equilibrium. To give this problem a form that is more tractable, it is
common to assume that the number of users is so big that the inflow, outflow and accumulation
can be considered as continuous functions on the space of real numbers (this is known as the
fluid approximation). With such an assumption and with a bottleneck of constant capacity,
Smith (1984) and Daganzo (1985) showed respectively the existence and the uniqueness of an
equilibrium for strictly convex and continuously differentiable schedule delay penalty functions.
Thus, under reasonable conditions, there is a unique equilibrium in the simple case of a bottleneck
with constant capacity but this result has not been extended yet to more general congestion
models and intuition tells us that uniqueness would be difficult to obtain with an MFD.

In order to address this problem numerically, one should define an objective function that
characterizes the equilibrium. One could for instance consider as an objective function the total
number of users that are not happy with their departure time (i.e. that could reduce their cost by
unilaterally changing their departure time). Alternatively, one could calculate how different the
preferred and current departure times are for each individual and use as an objective function
the sum of these differences over all individuals. This second approach was chosen in this work
because it was found to be much more stable numerically (i.e. small changes in the departures
have small impacts on the objective function).

Finally, the optimization method should somehow mimic the day-to-day adaptation of real
drivers to changing conditions in order to identify a feasible equilibrium. Since there is no
closed-form expression of the objective function, the derivatives of the objective function are not
accessible. However, one can evaluate the travel times with the current departure rate function
and identify how all users are likely to modify their departure time. In order to ensure some
stability, most authors have adopted the method of successive averages (MSA), or some variation
of this method - see e.g. Peeta and Mahmassani (1995) or de Palma and Marchal (2002). Applied
on the departure time decisions, the MSA consists in updating the decisions of only a fraction of
the population (for instance 5% or 100

n %, where n is the iteration number). When the MSA is
applied on the travel times, the decisions of all the agents are updated but the travel times that
are used for their decision are obtained by averaging the last observation (with a weight equal
for instance to 5% or 100

n %) and the previous average. Note that it is also possible to apply MSA





            

both on the travel times and on the departure times.

3.2 Evaluation of travel times through discretization

Before introducing the First-Wished-First-Passed, we rapidly explain how the travel times can
be evaluated for a congestible facility that satisfies the First-In-First-Out (FIFO) property by
discretizing Eq. 3.

Let us consider some discretized time t = 0, 1, 2, ..., tld, ...tend, where tld is the last time that can
be chosen for a departure and tend is such that all users have finished their trips. Since users
differ by their desired arrival time, they can be denoted by i = 1, 2, ...ni such that if i < j then
user i wishes to arrive earlier than user j. In the following, we will often use the same index i to
refer to the individual and to her departure time. We will denote a choice of departure times for
all individuals by the vector

−→
d of size 1 × ni such that di is the departure time of individual i.

Given the departure times at iteration n denoted by
−→
d (n), Eq. 3 can be discretized and the

accumulation and outflow can be computed for each discretized time of a single day. Then, using
the FIFO assumption, if we denote by I(t) the cumulative inflow and by A(t) the number of users
that have been served at time t (i.e. the cumulative outflow), the travel time of the user entering
the network at time t is simply given by A−1(I(t)) − t (cf. Fig. 2). Note that A is assumed to be
invertible here, which is always true as long as the network is not empty or in a gridlock situation
(these two extreme situations are not considered here). With this method, one can only measure
the travel time for departure times that were actually used. In order to ensure that all travel times
are known to update the decisions from one day to the next, a constant but negligible inflow was
added to each departure time that can be chosen (from t = 0 to t = tld). These fictional users are
then simply ignored when choosing departure times. Non-fictional users will be referred to as
“active” users. Thus, the vector −→tt (n) having for components the travel times at iteration n and
for the times t = 0, 1, 2, ..., tld can be calculated. With these notations, updates methods such as
MSA or the heuristic introduced in the next section aim at properly defining

−→
d (n + 1) based on

−→
d (n) and −→tt (n) and potentially also −→tt (m), m < n.

3.3 First-Wished-First-Passed property

This subsection builds on the work of Daganzo (1985), who showed that for a bottleneck of
constant capacity, there cannot be more than one equilibrium and that in this equilibrium, drivers
leave in the wished departure order. We will denote this property of the equilibrium by FWFP





            

(First-Wished, First Passed), after Daganzo (2013).

First, although Daganzo (1985) was specifically concerned with the bottleneck model, it should
be noted that in the original paper, the proof of the following Departure Time Lemma only
requires the congestion model to be FIFO and the schedule delay penalty functions to be identical
for all users and strictly convex.

(Daganzo, 1985) Departure Time Lemma. If there is equilibrium:

w′ > w′′ ⇒ l′ ≥ l′′,

where (l′,w′) are the actual and desired departure times for an individual, and (l′′,w′′) are the

same variables for another one.

Second, in the very common case in which the schedule delay penalty functions are still identical
for all users but only convex (piece-wise linear for instance), it can be shown that if there exists
at least one equilibrium, then there exists also at least one equilibrium that verifies the FWFP
condition:

Proposition. Assume users differ only by their desired arrival time and that the schedule delay

penalty function common to all users is convex. Assume
−→
d is a choice of departure times for all

users such that there is an equilibrium.

If di > d j and i < j, the departure times of users i and j can be exchanged and it is still an

equilibrium.

The proof of this result is proposed in Appendix. It is directly inspired from a proof of Daganzo
(2013) in a work on the System Optimum, that shows that swapping such users does not increase
the social cost.

As a consequence of this property, one can restrict the search for an equilibrium to the sets
of departure times for which the FWFP property is verified. The following iterative heuristic
was developed to start from a solution that verifies the FWFP property (but is far from the
equilibrium) and iteratively modify it while keeping conformity to the FWFP property.

In simple terms, this heuristic seeks to improve the global satisfaction by changing the departure
times of those that block the most unsatisfied users since these unsatisfied users cannot be moved
directly to their desired departure time without breaking the FWFP property. Note that other
choices could have been made concerning the users for which the decisions should be updated
and concerning the step size. Other similar strategies were tested and this one turned out to be
both robust and quite efficient.





            

Algorithm 1 FWFP heuristic

initialize
−→
d (0) s.t. it satisfies the FWFP property

iteration = 0
while iteration < MaxIteration do

iteration = iteration + 1
Evaluate −→ttn with the method described in Section 3.2
Find for each active user the new preferred departure time and the associated gain
Find the indexes k1, k2, ...kK of the K active users with the biggest potential gain and their
preferred arrival times w1,w2, ...wK
−→
d (n + 1) =

−→
d (n)

for i=1...K do
if wi < dki(n) then

Find the smallest index j such that wi < d j(n)
d j(n + 1) = d j(n) − 1

else
Find the biggest index j such that wi > d j(n)
d j(n + 1) = d j(n) + 1

end if
end for

end while

Note also that if users differ not only by their desired arrival time but also by their values of α,
β, γ, then the property does not stand. Thus, it is assumed in this work that users differ only
by their desired arrival time. In practice, the previous heuristic could be applied on different
subgroups of users such that the values of α, β, γ are the same for all users of a group.

In addition to the general heuristic described above, some simple techniques were adopted to
improve the convergence. First, to avoid cycling phenomena, randomness was included in the
choice of the K active users with the biggest potential gain for both MSA and the FWFP heuristic.
In practice, the probability of being chosen was defined to be proportional to the potential gain
raised to some high power (8 for instance). Second, when two departure times have equal or very
similar costs, there is no reason to choose one rather than the other. Therefore the choice was
made with a logit model in the MSA approach, as suggested in de Palma et al. (1983), except
that in our application the scale parameter was chosen very small in order to obtain results that
are consistent with Vickrey’s theory (Vickrey, 1969) and to avoid an excessively flat peak hour.
Such a technique was not compatible with the FWFP heuristic but instead, we allowed moving
only a fraction of the users with the same desired arrival time. Finally, the maximum number of
changes K can be adapted over iterations. To obtain the following results, K was progressively





            

decreased as the number of iterations increased and as the objective function decreased.

3.4 Convergence results

In this subsection, MSA and the FWFP heuristic are first tested on a simple bottleneck model
with constant capacity for which the analytical solution is known. Then, the two heuristics are
tested on a MFD with light and heavy congestion. In all cases, the iterative search was started
with free-flow travel times (0 for the bottleneck model) for all departure times.

3.4.1 On a bottleneck with constant capacity

The two heuristics were run 10 times for 600 iterations each on a bottleneck model with a
symmetric trapezoidal distribution of the desired arrival time. The evolution of the objective
function over the iterations is represented in Fig. 3 (a). Overall, the FWFP heuristic greatly
outperformed MSA even though it is somehow slower at the beginning. MSA was found to be
extremely unstable, regardless of the different parameters involved (the degree of randomness in
the choice of the changes and the number of changes per iteration).

3.4.2 On a MFD with light congestion

The two heuristics were then run 5 times for 1000 iterations each on a MFD with light congestion
(the maximum inflow was 5% bigger than the maximum possible outflow during a short time),
with the same distribution of desired arrival times as for the bottleneck. The evolution of the
objective is represented in Fig. 3 (b). Surprisingly, MSA was found to be much more stable
with an MFD and it converged in average faster than the FWFP heuristic. One can explain this
improvement by a “stabilizing” effect on the MFD. Indeed, while with the bottleneck model
users are sensitive only to the number of users that arrived before them, in the MFD users are
sensitive to the number of users throughout all the time they travel. If, with a bottleneck, user i

“jumps” over user j (i.e. i switches his departure time from before j to after j , or vice versa), the
cost of j is greatly impacted, which might trigger a chain reaction. With the MFD however, the
cost of j would be just slightly impacted since both users will still be traveling simultaneously
in the network most of the time.
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Figure 3: Convergence results of MSA and of the FWFP heuristic on: (a) a bottleneck for 10 ap-
proximation processes, (b) an MFD submitted to light congestion for 5 approximation
processes, (c) an MFD submitted to heavy congestion for 2 approximation processes.

3.4.3 On a MFD with heavy congestion

Finally the two heuristics were run only twice with heavier congestion level (the maximum
inflow was temporarily 10% bigger than the maximum possible outflow). The MSA was only
run for 500 iterations since it entered a cycle and could not exit it. As the FWFP heuristic was
still progressing after 500 iterations, it was run for 1000 iterations. The results are displayed in
Fig. 3 (c). Note that in these conditions, MSA is unable to find the equilibrium while the FWFP
is slightly unstable but can still approximate the equilibrium much more accurately.

4 Conclusion and future work

The article investigated the possibility to approximate the dynamic equilibrium during peak
periods in urban areas with an MFD and a numerical approach. It was shown that with traditional





            

assumptions, the decision space can be greatly reduced and a heuristic taking advantage of this
property was proposed. This heuristic obtained better results on unstable networks such as a
single bottleneck model or an heavily congested MFD, where the traditional MSA did not find
any equilibrium. With an MFD submitted to lighter congestion, both algorithms converged to
the equilibrium and MSA was generally faster. Thus, MSA remains useful for stable conditions
but the heuristic proposed seems more promising for unstable networks. This heuristic could
potentially be used to design congestion reducing measures or analyze the impact of different
factors.

Future research should be carried out on the topic to test the heuristic with several classes of
users that differ also by their values of α, β, γ and to compare the results with those that can be
obtained analytically with less realistic hypotheses (Arnott, 2013, Geroliminis and Levinson,

2009).
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A Proof of the proposition

Proof. Let us denote by C(d, k) the cost for user k when her departure time is d. C(d, k) =

αtt(d) + p(d + tt(d) − k) where tt(d) is the travel time for a departure at time da and p(x) is the
schedule delay penalty when arriving x time units after the preferred arrival time (if x < 0, |x| is
the advance). The function p is convex and should reach its minimum for x = 0. Let

−→
d be a

choice of departure times for all users such that there is an equilibrium, and assume that there
are users i and j such as di > d j and i < j (i.e. j has a preferred arrival time that is later that i’s
preferred arrival time).

The equilibrium assumption imposes that

αtt(di) + p(di + tt(di) − i) ≤ αtt(d j) + p(d j + tt(d j) − i)

⇔ α(tt(di) − tt(d j))) ≤ p(d j + tt(d j) − i) − p(di + tt(di) − i) (4)

αtt(d j) + p(d j + tt(d j) − j) ≤ αtt(di) + p(di + tt(di) − j)

⇔ α(tt(d j) − tt(di))) ≤ p(di + tt(di) − j)) − p(d j + tt(d j) − j) (5)

By combining Eqs. 4 and 5

p(d j + tt(d j) − j) − p(di + tt(di) − j)) ≤ p(di + tt(i) − j) − p(d j + tt( j) − j) (6)

Let h(x) = p(x− i)− p(x− j). Since p is convex, p′′ is positive and since x− i > x− j, p′(x− i) >
p′(x − j) so h is increasing. Besides, the queuing system is FIFO so di + tt(di) > d j + tt(d j).
Hence:

h(di + tt(di)) > h(d j + tt(d j))

⇔ p(d j + tt(d j) − j) − p(di + tt(di) − j)) ≥ p(di + tt(i) − j) − p(d j + tt( j) − j) (7)

Eqs. 6 and 7 impose that

p(d j + tt(d j) − j) − p(di + tt(di) − j)) = p(di + tt(i) − j) − p(d j + tt( j) − j)

which imposes that C(i, di) = C(i, d j) and C( j, di) = C( j, d j) so users i and j can be exchanged
and they are still at equilibrium.
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