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Abstract

In this paper, we analyse how personalisation during processing of multi-day GPS and ac-
celerometer data can improve the quality of the produced travel diaries. The main focus is on
trip purpose detection using random forests. Two main approaches are followed. First, the
effect of person-based input features is shown, in particular distance to home and work improve
classification result (median accuracy + 3.8 %). Second, it is analysed how usage of annotated
data improves prediction. Most strategies like selecting the best classifier out of many, have
no effect. But, improvements are possible if the classifier is learned including some of the
participant’s annotated data (median accuracy + 5.5 %).
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1 Introduction and related work

In transportation research, GPS tracks often in combination with accelerometer data are used
amongst other data sources to reconstruct diaries automatically, hence, complementing or
replacing traditional travel diaries. One major goal is to use these diaries to reduce the burden
of respondents which would also allow to survey longer time periods. More precisely, the
prepared diaries as well as a visualisations of GPS tracks support people in recollecting their
daily schedule. Ideally, participants only need to confirm the diary they are presented. In
practice, when conducting a GPS-based survey (Montini et al., 2013) we made the experience
that it was participant-dependent how well the daily schedule was recognised. Concerning the
reconstructed diary, we showed at least for trip purpose detection that the accuracy that is the
share of correctly detected purposes also highly varies between participants (Montini et al.,
2014). Consequently, the potential reduction in response burden varies as well.

The goal of this paper is to analyse if and how personalisation during processing of multi-day
GPS and accelerometer data can improve the quality of the produced travel diaries, mainly
focusing on trip purpose detection. For the analysis we consider applications for GPS processing
where some of the available data is annotated. This is for example the case for travel surveys,
where participants can be asked to at least correct some of their schedule. Having annotated data
is not granted, as position data is more and more often collected as a side product, for example
on smartphones as part of a navigation application.

In the literature, two main groups of imputation routines can be found both for trip purposes
and mode detection. First, there are rule-based systems. For trip purposes they rely mostly
on the position of the activity, its timing, and land use data (e.g. Moiseeva et al., 2010; Bohte
and Maat, 2009; Stopher et al., 2008; Wolf et al., 2001) . For mode detection the rules use
speed measures, stage criteria such as duration and also proximity to e.g. bus stops or roads
(e.g. de Jong and Mensonides, 2003; Stopher et al., 2005; Chung and Shalaby, 2005; Bohte and
Maat, 2008; Marchal et al., 2011). As a next step fuzzy logic approaches were employed that
also account for the fact that the boundaries between modes are overlapping (Tsui and Shalaby,
2006; Rieser-Schüssler et al., 2011).

Second, there are machine learning approaches. For trip purpose detection the focus is more on
the activity itself and less on position. Most commonly used are decision trees (e.g. Oliveira
et al., 2014; Lu and Zhang, 2014; Deng and Ji, 2010; Griffin and Huang, 2005). But also other
approaches are tested, Oliveira et al. (2014) compare a decision tree and a nested multinomial
logit model. Liao et al. (2007) achieve good results using hierarchical conditional random fields.
Lu and Zhang (2014) compare three algorithms on two datasets: decision tree, support vector





        

machine and metalearner. And in Montini et al. (2014) we employ random forests. Machine
learning is also used for mode detection e.g. Stenneth et al. (2011) use random forests with
good success and Zheng et al. (2008) as well as Moiseeva et al. (2010) use Bayesian inference
models.

The remainder of this paper is structured as follows. First, the underlying dataset and the
classifier (random forests) are introduced as well as the evaluation method. In the results section
different approaches to personalisation are tested. To conclude results are interpreted and an
outlook on future work is provided.

2 Method

The method of trip purpose detection is described in detail in Montini et al. (2014), for com-
pleteness the most important topics are repeated here. One difference is that compared to the
previously mentioned paper the random forest implementation we use is FastRandomForest
based on the WEKA data mining tool (Hall et al., 2009) instead of the Matlab version (Tree-
Bagger). The Java implementation is included in our open source GPS data and accelerometer
processing framework (POSDAP, 2012).

The employed method is based on multi-day GPS and accelerometer data for survey respondents
living in the same region. To exploit the multi-day nature of the data, activities are clustered
into locations using hierarchical clustering. Clusters are created for single persons but also for
the complete set of activities as several respondents might frequent the same public locations.
Classification variables, called features, are then derived for location clusters.

2.1 Data Set And Features Selection

The GPS data set used for evaluation was collected in and around the city of Zurich in Switzerland
and is described in more detail in Montini et al. (2013). Each of the 156 respondents collected
approximately one week of second-by-second GPS and accelerometer data using a dedicated
GPS device. Respondents were randomly selected from an address pool and they are also
reasonably representative for the study area. Respondents were asked to correct an automatically
generated travel diary including transport mode and trip purpose on the survey homepage. As
the quality of these corrections varies, all were double checked by the survey team. Since
the participants were asked for their home and work addresses, the trip purposes being home,
working and mode transfer could mostly be imputed by survey personnel. All other purposes are





        

only available if respondents filled in the diaries. The very first activity of the survey period is
removed for each participant, because – due to the cold start problems and unclear first handling
of the device – the GPS signal can be very far off the actual location.

In total, 6938 valid activities including a 28.54 % share of mode transfers were reported. The
other surveyed purposes are being home (22.33 %), working (11.82 %), shopping and services
(9.61 %), recreational activities (9.77 %), picking up or dropping off someone (2.77 %), business,
that is, work-related activities outside work place, (3.32 %) and finally other activities (2.62 %).
The remaining 9.22 % of activities have no reported type. Therefore, this data was left out when
training and testing the classifier. For the clustering on the other hand, this data are used, as even
if the type is unknown, the location and duration provide additional information.

For the mode detection 6990 stages with corrected transport mode are available. The reported
modes are: driving by car (41.9 %), walking (30.0 %), biking (8.7 %), going by train (8.1 %),
taking a tram (5.4 %) or a bus (4.3 %) and using an other mode (1.6 %).

For trip purpose detection, around 40 potential features were tested and of those seventeen were
selected based on a feature importance analysis (Montini et al., 2014). The features are specific
to persons, activities and clusters (per person as well as per data set) and are listed in Table 1.
Home and work locations to calculate distances were asked for in the questionnaire, but these
could also be learned from the data. The transport modes as well as the split in activities and
stages is not imputed. The walk duration percentage is calculated using accelerometer data,
which allows to detect walk with high probability.

Table 1: Features used for trip purpose detection. Categorical features are marked in the cat
column, the cluster-specific features are all numeric.

person-based cat activity-centered cat cluster-specific
age - duration - mean duration
education level X start time - standard deviation of durations
income X day of week - occurrences per surveyed day
marital status X walk duration percentage - percentage of weekdays

distance to home - number of persons per cluster
distance to work -
arrival transport mode X

leaving transport mode X





        

Table 2: Features

stage-centered mode-specific person-based
duration median speed mean walk speed
start time 95th-percentile speed mean bike speed
(distance to public transport stop)2 standard deviation speed
number of GPS points per second median accelerometer measure

95th-percentile accelerometer measure

Table 2 shows the features used for mode detection, the mode-specific features are mostly the
same as for our previously used fuzzy rule system (Rieser-Schüssler et al., 2011). Addition-
ally, stage-centered variables such as duration as well as person-based speeds are used. The
accelerometer measure is the moving window standard deviation of the accelerometer length,
and according to the feature importance measure of the random forest it is the most important
feature.

2.2 Classifier: Random Forests

For trip purpose as well as for transport mode imputation, decision trees, that is a set of rules
learned by a machine and executed in a given order, were already used with good success (e.g.
Griffin and Huang, 2005; Deng and Ji, 2010; Lu et al., 2012). Using a random forest, that is a set
of decision trees also called ensemble of trees, is therefore, a natural step. Random forests were
introduced by, and is a trademark of Breiman (2001). The underlying concept is comprehensible,
and more importantly it performs well in a variety of problems. They are also very popular,
as they are easy to train and tune (Hastie et al., 2009). Breiman (2001) showed that random
forest do not overfit even if more trees are added. A further advantage is that good results can
be maintained even if data are missing, as they are estimated internally (Breiman and Cutler,
2013).

Technically, random forests work as follows. Each decision tree in the ensemble has one vote
that counts for classification. The class with most votes, is the classification result. In a regular
decision tree a data set is split using the feature that results in the best split. Using the same data
to learn a tree, results in the same tree. But, in a random forest different votes are needed, and
correlation between trees should be reduced to obtain best classification. To achieve that, on the
one hand, each tree is learned from a different subset of the training data. On the other hand, at





        

each split in the tree a random subset of features is considered. Each tree is fully learned, that is
splits will be created until all training data are correctly classified.

The tuning parameters of random forests are therefore, the number of features m that are
randomly selected when deciding on the best split as well as the number of trees per forest.
In Montini et al. (2014) it is shown that for trip purpose detection the differences in accuracy
are very small when varying m. In the case of 17 features used, the best results are obtained
with m = 7, therefore this value is used for trip purpose. For mode detection the default values
given by m = f loor (

√
nr f eatures) are used. For all analyses 200 trees are learned per random

forest, as they provide good results in reasonable time.

2.3 Evaluation: Per Person

The main application of automated GPS travel diaries where correction or confirmation data is
available are travel surveys. So when using a classifier to classify one participant’s data it will
be based on previously collected data of other people. To simulate this situation the analysis
presented in the following section is done per person. When evaluating classifiers it is crucial
that two different subsets are used one, the training data to learn the classifier, and two, the test
data set to measure performance.

In the context of this paper creation of the training and test data sets is based on a selection
of persons and not on a selection of individual observations (that is activities for trip purpose
detection and stages for mode detection). In particular, the test data set always contains data
of one person only, in some cases a subset of the persons’s data is incorporated in the training
data and only the remaining activities or stages are used for testing. In all cases 10 different
classifiers are learned per person, the reported accuracy of one person’s data is therefore the
mean of 10 runs.

3 Results

The main focus of the results lies on trip purpose detection. Some results for mode detection are
presented in the last subsection.

First, base runs using all 17 features (Table 1) are evaluated to establish how well random
forests perform per person. For the personalisation strategies, presented in the second part of
this section, subsets of the available data is used to generate different classifiers. To be able to





        

compare it to this base scenario it is run for different numbers of persons in the training data set.
In Figure 1 it is clearly shown that classification is better the more data is used. The slope starts
to flatten, therefore, the used data set is just about big enough to get a realistic estimation of how
well purposes are detectable.

Figure 1: Median accuracy of the per person mean accuracy for different number of persons in
the training set
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These base scenarios already include some personalisation as socio-demographic variables are
included, their effect is shown in the first subsection. Next, different strategies are tested how
the knowledge of already annotated personal data can be included.

3.1 Personalisation Using Person-Specific Input Features

To show the effect of person-specfic input featues a classifier is learned excluding all person-
based features as well as distances to home and work location. These distances are included in
the second scenario and finally, the socio-demographic attributes are added in the third scenario.
To create 10 different classifiers for each person, all other persons are randomly split into 10
groups, the 10 training sets then consists of 9 of these 10 groups. Results are illustrated in Figure
2. The mean of the accuracy of the 10 validation runs varies among participants between 25.3 %
and 100 % with a median of the mean accuracies of the classifier without person-based data of





        

71.1 %, inclusion of the person-specific features improves the results to 74.9 %. The per person
standard deviation of accuracy are very similar for all runs, for the scenario with all features the
mean is around 2.3 % but goes up to 8.7 % for the person with highest variation within the 10
runs.

Figure 2: Distribution of mean accuracies per person for different feature sets in trip purpose
detection.
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It has to be considered that the number of reported days, the validity of corrections and the
trip purposes varies amongst participants. The split of trip purposes has probably the biggest
influence on the spread of accuracies. As reconstruction of the diary is easier if a participant is
e.g., only at home and at work. This influence is also illustrated in Figure 3 which depicts the
mean accuracy per person versus the per person share of the three best predicted purposes, that
is: being home, working (or studying) and changing the mode.

3.2 Personalisation Based On Corrected Data

For trip purpose detection 4 strategies to personalise classification based on data corrected by
participants are tested:

i Select best: selection of one classifier out of many based on performance on a subset of a
person’s data

ii Group: group participants first and learn a different classifier for each group
iii Include person data: include some of the person’s data when learning the classifier
iv Overrule: overrule the classifier when the location is already known





        

Figure 3: Mean accuracy of 10 runs for each person plotted against the share of easiest detected
trip purposes
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All strategies are subsequently described in more detail, but it is shown in Figure 4 that only
inclusion of personal data improves predictions.

In the select best approach, for every person 10 random forests are evaluated on a subset of the
person’s data (selector data). The classifier that performs best on the selector data is then used to
produce the results on the test data. The underlying hypothesis is, that some classifiers work
better for one person’s data then other classifiers and that this classifier is consistently better
on this person’s data. To create 10 different classifiers to select from, each classifier is learned
on different person-subsets consisting of 100 persons. The selector data is fixed between the
runs and consists of two randomly picked days. The mean standard deviation of the 10 test
runs of the base scenario with around 100 persons is 3.2 % therefore, there is some potential to
select a better classifier. But as shown in Figure 4 accuracies are not increased. Furthermore,it
was tested if only selecting weekdays would yield better results, assuming they contain more
information, but it did not.

The idea behind grouping participants is that some of them have more similar diaries than others,
hence a classifier built using similar persons should be more successful. First, participants are
grouped based on all socio-demographic properties using a hierarchical clusterer. The classifiers
are then learned without the socio-demographic features. Classification success is the same as





        

Figure 4: Distribution of mean accuracies per person for all strategies. The vertical are the
medians of the base runs with 50 (left) and 130 (right) persons respectively.
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when not grouping. Second, participants are split into three groups of the same size based on
the mean duration of all their activities. And finally, 86 participants were grouped as ’mostly
using car’, 35 as ’mostly using public transport or bike’ and 32 as ’using both’. Neither of
the groupings had any effect on the accuracies. In Figure 4 the results of the groups based on
activity duration are shown. At first it looks like grouping even decreases accuracy, but it has to
be considered that only 50 persons are used per group to learn the classifier. Hence, comparing
it to the base classifier with 50 persons (left vertical line) shows that the grouping just does not
influence results.

Including personal data when learning the classifier is straight forward. The person’s data is
split into a test and a training set. The training set consists of a given number of days that are
randomly selected. All other persons are added to the training set. Results are compared for 1
randomly selected day and 3 randomly selected days where 1 day does not improve classification,
3 days on the other hand increases the median to 80.0 %. Besides the number of days to be
selected for training also the weights of the person’s data was varied but did not have a relevant
effect as shown in the next section for the mode detection.

To implement overruling the persons’s data is also split into test and training set. The classifier
is learned on all training data (including the person’s). But when classifying the test data, it is
checked whether the person’s training data includes an activity that was clustered into the same
location. If this is the case the random forest is overrule and trip purpose is set to the one of the





        

activity in the training set. If training test set contains several activities at the same location with
different purposes the purpose of the activity with the most similar duration is selected. Overall,
overruling performs worse than the random forest. In total 36627 classifications were made, of
those almost 50 % (17671) are overruled and of those 79 % were not necessary, 8 % are not
helpful that is both the overrule and the random forest predict different but wrong purposes. 9 %
of the overrules are counter-productive that is the random forest is correct, especially home and
mode transfer points are falsely corrected. And only 4 % (648) of the overrules are correct.

3.3 Personalisation For Transport Mode Detection

As for trip purposes the performance of the mode detection is analysed for different feature sets.
Compared to using only the mode-specific features (Table 2) adding the stage-centered features
improves the median of classification from 83.9 % to 85.8 %. Adding the person-based features
has no effect on accuracies.

Since including person data has a positive effect on trip purpose detection it is also tested for
transport mode classification. The number of days that are included in the training data is varied
between 1 and 3 and the weights given to the person’s training data is also varied (1, 10, 100).
Unfortunately, compared to classification without including a person’s data, there is no effect at
all, as can be seen in Figure 5.

Figure 5: Mean accuracies of 10 runs per person including personal training data. Varying
number of training days of the person to be classified as well as different weights.
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4 Conclusion and Outlook

The base scenario shows that quite a lot of data is necessary to achieve good results for trip
purpose detection in general. For a classifier learned on data of 20 persons, which are approxi-
mately 100 person days, the median accuracy is around 4 % lower than for a classifier learned
on 100 persons. The base scenario also shows that including the distance to home and work is
important (3.8 % increase of median accuracy).

The main conclusion of this paper is, that it is worth collecting annotated data from participant’s
in a multi-day or even multi-week survey, as a median accuracy of 80.0 % is achieved if three
days of personal data are included in the training set, this corresponds to an increase of 5.5 %
compared to the base scenario. If processing of the collected data is done after the survey, this
is straight forward. For continuous processing during surveys, the classifier should be updated
whenever newly corrected data is available.

All other personalisation strategies tested in this paper did not have an effect on accuracies.
Grouping participants seemed like a good idea, but in essence when thinking in rule-based
systems, this is just adding another rule at the beginning of the decision process. This contradicts
the idea of decision trees, where the best possible split at any point is found automatically. To
conclude, outsmarting the machine did not work. Instead of grouping people according to a new
variable, probably the easiest and most successful way is to add it to the feature set and make
sure that it is not counter productive.

To select the best classifier out of many the hope is that for each person a random grouping is
found that performs better than an average classifier. First results are not promising. Maybe
more classifiers with higher diversity would be necessary, but to achieve that, more training
data is needed. A similar approach that could be tested, is to use subsets of activities instead of
creating classifiers from a subset of persons.

For mode detection, the next step is to add more person-dependent features, such as mobility
tool ownership. Another step in direction of learning would be to impute the mode for a group
of matched trips. Trip matching might be especially interesting for more sparse data, where gaps
could be filled with knowledge from similar trips.

To conclude, one week of smartphone data is not enough to highly personalise trip purpose
detection routines. Especially the variance between participants is still very high and therefore,
per person analysis of automatically processed data is a bit problematic. The next step is to
apply the classifiers learned here in a 6 week smartphone study that will be soon conducted in
Vienna as well as Dublin. This study will allow us to analyse transferability of the classifier,





        

that is how well it performs in a different survey context and in different countries. Further, the
6-week survey period might be sufficient to do personalisation based on weekly-rhythms.
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