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Abstract

We consider a complex waste collection problem, where the residents of a certain region dispose
of recyclable waste, which is collected using a fixed heterogeneous fleet of vehicles with different
volume and weight capacities, fixed costs, unit distance running costs and hourly driver wage
rates. Each tour starts and ends at one of several depots, not necessarily the same, and is a
sequence of collections followed by disposals at the available recycling plants, with a mandatory
disposal before the end of the tour. There are time windows and a maximum tour duration,
which is interrupted by a break after a certain interval of continuous work. Moreover, due to
the specificities of different collection regions, there are occasional site dependencies. The
problem is modeled as a mixed binary linear program and the formulation is enhanced with
several valid inequalities and elimination rules. To solve realistic instances, we develop a local
search heuristic, which currently embeds much of the functionality of the mathematical model.
The heuristic performs well, as indicated by an optimality gap of 2% compared to the exact
solution on small instances. Future work will see improving the model formulation to solve
larger instances to optimality and expanding the heuristic to include all of the features of the
model.
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1 Introduction

Solid waste collection is one of the most complex logistical problems facing any municipality.
In recent years, increased fuel prices and operational costs, environmental and health concerns
and the growing regulation burden have caused waste collection companies, both municipal
and private, to optimize their collection routes. According to various studies (e.g. Bhat, 1996,

Teixeira et al., 2004, Tavares et al., 2009), transportation costs represent between 70 and 80% of
all operational costs in waste collection. Therefore even small improvements in the collection
routes may lead to substantial savings, which directly affect household fees, municipal budgets
and the companies’ bottom lines.

This article proposes a solution to a complex waste collection problem, which can be described
as follows. The residents of a certain region dispose of recyclable material, such as glass, paper,
plastic and aluminum, in designated containers placed at collection points. Each collection point
can house up to several containers for a given material type. The waste collection company
operates a fixed heterogeneous fleet of vehicles with different volume and weight capacities,
fixed costs, unit distance running costs and hourly driver wage rates. A vehicle may be suited
for collecting more than one type of material, but only a single type is collected during a tour.

As shown in Figure 1, each tour starts and ends at one of several depots, not necessarily the
same, and is a sequence of collections followed by disposals at the available dumps. There is
a mandatory visit to a dump just before the end of a tour, i.e. a tour terminates with an empty
vehicle. Dumps are recycling plants, each accepting only certain types of material. There could
be multiple dumps for each type of material and they can be used when and as necessary during
a tour. We consider time windows on dumps and collection points, but not on depots. A tour is
limited only by the legal duration of the vehicle driver’s working day, which is interrupted by a
break after a certain interval of continuous work. Moreover, due to the specificities of different
collection regions, we consider site dependencies. Mountainous terrain and narrow streets, for
example, are unaccessible with big collector trucks.

The problem is modeled as a mixed binary linear program, which minimizes the number of tours
and their spatial and temporal costs. The model introduces several new features to the so-called
vehicle routing problem with intermediate facilities (Kim et al., 2006), including a realistic cost-
based objective function, multiple depots, a fixed heterogeneous fleet, site dependencies, and a
driver break that is not restricted by a time window but depends on when the vehicle started its
tour. Moreover, we include a relocation term in the objective function, which incentivizes, rather
than enforcing, the vehicle to return to the depot it started from—a situation that mimics the
case study we are considering. To solve instances of realistic size, we also develop a local search





        

Figure 1: Tour illustration
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heuristic designed specifically for the problem. Its performance is evaluated by comparison to
the optimal solution on small instances of 10 containers and varying time window tightness.
Preliminary results show that the heuristic performs favorably with an average optimality gap of
less that 2% and a runtime within 1 sec.

The remainder of this article is organized as follows. Section 2 is an overview of related problems
from the literature. Section 3 presents the mathematical model formulation. Section 4 describes
several classes of valid inequalities and elimination rules for the model and proposes a local
search heuristic for solving instances of realistic size. Section 5 offers some preliminary results
based on randomly generated instances. Finally, Section 6 concludes and outlines future work
directions.

2 Related Literature

In the literature on vehicle routing problems (VRP), the formulation most similar to ours is
known as the vehicle routing problem with intermediate facilities (VRP-IF). Beltrami and Bodin
(1974) use a simple extension of Clarke and Wright’s (1964) savings heuristic to solve a periodic
VRP-IF (PVRP-IF) applied to a waste collection problem in New York. Bard et al. (1998a) and
Bard et al. (1998b) consider a distribution context with replenishment facilities, in the latter
case integrated in an inventory management framework. Tung and Pinnoi (2000) solve a VRP
with only one intermediate facility applied to waste collection in Hanoi, Vietnam. Waste is
first collected using handcarts and then transported to collection points at specific intervals.
The collection process is therefore guided by inter-arrival time constraints and multiple time
windows. Angelelli and Speranza (2002b) apply a modification of Cordeau et al.’s (1997)
unified tabu search (TS) algorithm to a PVRP-IF with features such as service durations and a
maximum tour duration. In Angelelli and Speranza (2002a), this framework is used to analyze





        

the operational cost benefits of different waste collection policies in Val Trompia, Italy and
Antwerp, Belgium.

Kim et al. (2006) include time windows and a driver break in the collection VRP-IF. Compared
to Angelelli and Speranza (2002b), their problem is non-periodic. Yet, they explicitly consider
tour compactness and workload balancing. Their solution approach, an extension of Solomon’s
(1987) insertion algorithm followed by simulated annealing, leads to a significant reduction in
the number of tours and substantial financial savings at a major US waste collection company
(see Sahoo et al., 2005). Kim et al. (2006) are also the first to propose a set of 10 benchmark
instances for the VRP-IF, involving up to 2092 stops and 19 intermediate disposal facilities. The
multi-objective genetic algorithm of Ombuki-Berman et al. (2007), the variable neighborhood
tabu search of Benjamin (2011) and the adaptive large neighborhood search (ALNS) of Buhrkal
et al. (2012) are tested on these instances. Compared to Kim et al.’s (2006) results, these
algorithms improve average distance by approximately 15% and use fewer vehicles. Buhrkal
et al.’s (2012) approach also leads to a distance improvement of 30-45% at a Danish waste
collection company.

A closely related problem is the multi-depot VRP with inter-depot routes (MDVRPI) proposed
by Crevier et al. (2007). It is non-periodic, no time windows or driver breaks are considered and,
in the general case, depots and intermediate facilities coincide. The authors use the adaptive
memory (AM) principle of Rochat and Taillard (1995) and decompose the problem into multi-
depot, single-depot and inter-depot subproblems which are solved using Cordeau et al.’s (1997)
TS. A solution to the MDVRPI is obtained through a set covering problem and optimized by a
modified version of the TS.

Crevier et al. (2007) observe that when vehicles are stationed at several depots, inter-depot routes
occur infrequently possibly because they are rarely economical. Hence, they create two sets of
MDVRPI instances with 48 to 288 customers and a fixed homogeneous fleet stationed at one
depot, with the rest of the depots acting only as intermediate facilities. These instances are used
by Tarantilis et al. (2008) and Hemmelmayr et al. (2013) who propose, respectively, a hybrid
guided local search and a variable neighborhood search (VNS) with a dynamic programming
procedure for the insertion of the intermediate facilities in the tours. The former apply the
MDVRPI framework to a distribution problem, while the latter to a solid waste collection
problem. Both articles report small improvements over the results of Crevier et al. (2007)
with computation times of only several minutes, even for the largest problems. In addition,
Hemmelmayr et al. (2013) apply their approach to a PVRP-IF faced by a real waste collection
company and obtain a 25% reduction in the routing cost.

Most of the above research concerning intermediate facilities puts unrealistic assumptions on





        

the vehicle fleet. For example, Kim et al. (2006) and the related papers on the VRP-IF assume
an unlimited homogeneous fleet. The PVRP-IF (Angelelli and Speranza, 2002b) and MDVRPI
(Crevier et al., 2007) approaches also assume a homogeneous fleet, albeit limited. However, in
industry vehicle fleets are rarely homogeneous. Taillard (1996) was the first to formally define
the heterogeneous fixed fleet VRP (HFFVRP). Being a generalization of the vehicle fleet mix
problem (VFMP) (e.g. Golden et al., 1984, Salhi et al., 1992), the HFFVRP is NP-hard and
more difficult than the classical VRP or the VFMP.

Taillard’s (1996) solution approach relies on heuristic column generation with AM. The TS
of Taillard (1993) is used to solve an unlimited homogeneous fleet VRP for each vehicle type,
with the resulting tours stored in the AM. At each iteration, tours are extracted from the AM
favoring those belonging to better solutions, which are then used as a starting point for the
TS to obtain another solution. The new tours are added to the AM and dominated tours are
removed. Vehicle assignment costs are calculated at each iteration. Finally, the HFFVRP is
solved as a set partitioning problem on the tours in the AM. Taillard (1996) adapts the eight
largest VFMP instances of Golden et al. (1984) to the HFFVRP by removing the vehicle fixed
costs and specifying the number of vehicles of each type and their variable costs. More than a
dozen authors compete by proposing solutions to these instances and modified versions thereof.
Some of the best heuristic approaches are due to Penna et al. (2013) and Subramanian et al.

(2012), the latter also being the fastest. The only fully exact method, which also proves the
optimality of seven of the eight best known solutions (BKS), is that of Baldacci and Mingozzi
(2009).

Despite the marked research interest it sparked, aside from several case studies and general-
izations, the HFFVRP setup of Taillard (1996) is limited in the sense that it does not include
some important features such as multiple depots, site dependencies, time windows, driver breaks
and maximum tour duration, all of which are present in our waste collection problem. Cordeau
et al. (2001) were the first to develop a unified TS heuristic for the VRP with time windows
(VRPTW) as well as two of its generalizations—the periodic VRPTW (PVRPTW) and multi-
depot VRPTW (MDVRPTW). The proposed heuristic is an adaptation of Cordeau et al.’s (1997)
TS for the non-time window constrained versions of the problems without any major structural
and parametric modifications. In Cordeau and Laporte (2001), the same heuristic is also adapted
to the site-dependent VRPTW (SDVRPTW).

The presence of time windows leads to some complications in handling maximum tour duration.
Cordeau et al. (2004) propose a simple refinement of the TS presented in Cordeau et al. (2001)
for handling several classes of VRPTW with maximum tour duration constraints. The idea is
based on forward time slack, a concept introduced by Savelsbergh (1992). Forward time slack
keeps track of waiting times and the maximum time a service can be delayed without violating





        

time windows on the tour, thus reducing travel time. This idea is adapted to the specifics of the
TS which permits infeasible intermediate solutions. Forward time slack is also exploited by
Polacek et al. (2004), whose VNS performs slightly better on the same test problems. Contrary
to the HFFVRP, however, the last-mentioned problems consider a homogeneous vehicle fleet.

Relatively few authors extend the heterogeneous fixed fleet concept to multiple depots, and
many that do it formulation- or methodology-wise, use homogeneous fleet test instances. Dondo
and Cerdá (2006) consider a pickup and delivery MDVRPTW and present a reactive mixed
integer linear programming (MILP) algorithm that seeks an improvement of the current solution
within a feasible region around it. At each iteration, the solution space is restricted by certain
pre-assignments of vehicles to depots and to nodes and fixed relative node orderings in some
tours, which eliminates many binary variables—an idea similar to large neighborhood search
(LNS). Dondo and Cerdá (2007) describe a hybrid cluster-based optimization approach for the
same problem. The fleet size is a decision variable but the resulting mix as well as the vehicle-
to-depot and vehicle-to-tour assignment becomes an input to the improvement procedure of
Dondo and Cerdá (2009). It explores a large neighborhood of the current solution by performing
node exchanges among nearby tours and node reordering in each tour. Manageable MILP
formulations are developed for both procedures and a spatial decomposition scheme is used to
reduce the problem size. Most of the computational tests in the above articles, however, are
performed on the single-depot homogeneous fleet instances of Solomon (1987), often failing to
reach the BKS even with significant computational effort.

Bettinelli et al. (2011) present a branch-and-cut-and-price algorithm for the heterogeneous fleet
MDVRPTW, which can be used both as an exact method and as heuristic column generation.
On VFMP sets with one and two depots modified from Liu and Shen (1999), the exact approach
struggles on problems with more than 25 nodes, while heuristic column generation obtains
competitive results. Of the four smallest MDVRPTW instances of Cordeau et al. (2001) with
fixed homogeneous fleet, only the first two, with 48 and 96 customers, are solved to optimality.
Other VRP formulations involving multiple depots and a fixed heterogeneous fleet can be
found in Bae et al. (2007), Jeon et al. (2007) and Wang et al. (2008). Goel and Gruhn (2008)
describe a non-traditional formulation of a pickup and delivery problem applied to air-cargo
road transportation. Requests arrive continuously and are treated at a given time step with a
simultaneous decision on which ones to accept and how to route them using a heterogeneous
fixed fleet currently servicing other requests. The authors develop a VNS and an LNS and apply
them to instances with hundreds of vehicles and requests and a computation time limit of 1
min. Goel (2010) develop an efficient column generation approach for the same problem which
outperforms both heuristics with respect to available computation time.

In the last decade or so, the advances in computing power and the development of fast and





        

efficient metaheuristics have made it possible to tackle larger and richer vehicle routing problems.
Pisinger and Ropke (2007) use the ALNS of Ropke and Pisinger (2006) to solve several classes
of vehicle routing problems, including the VRPTW, the multi-depot VRP (MDVRP), the site-
dependent VRP and the open VRP. Each problem variant is appropriately transformed into a rich
pickup and delivery problem with time windows, site dependencies, a fixed heterogeneous fleet,
and customer visit precedences. At the master level, the search is guided by simulated annealing
and at each ALNS iteration an algorithm is chosen to destroy part of the current solution, and
another one to repair it. The choice depends on the score the algorithm receives based on past
performance, hence the adaptive nature of the search.

Pisinger and Ropke (2007) test their ALNS with a single parameter setting on 486 benchmark
instances from various problem classes and improve 183 BKS. In particular, they find 15 new
BKS for the 33 MDVRP instances in Cordeau et al. (1997) within 4 min of computation time.
The latter, however, are based on fixed and unlimited homogeneous fleets and contain no time
windows. Baldacci and Mingozzi’s (2009) unified exact approach is also tested on nine of
the unlimited fleet MDVRP instances with 50 to 160 customers and two to four depots. They
obtain ties or slight improvements compared to Pisinger and Ropke (2007) and prove optimality
in seven cases. However, their computation times are almost triple. Baldacci and Mingozzi
(2009) develop and solve eight more problems with between 150 and 199 customers, three to
four depots and an unlimited fleet. For these instances, upper bounds are set by the authors’
implementation of the TS algorithm of Cordeau et al. (1997). Optimal solutions are obtained for
seven of the eight problems, and in only one case is the optimal solution slightly better than the
upper bound. Moreover, the implementation of Cordeau et al.’s (1997) heuristic is on average
25 times faster than the exact approach.

Ceselli et al. (2009) present a rich heterogeneous fixed fleet MDVRP with many non-traditional
constraints such as multiple capacities (volume, weight, value), incompatibilities between goods,
vehicles, depots and customers, order splitting, multiple tours per day and the possibility of
the last daily tours being open tours. The goal is the minimization of a complex hierarchical
fee-based cost function. The authors develop a column generation approach where the master
problem is a set covering formulation and each column represents a feasible vehicle duty. The
pricing step is a resource-constrained elementary shortest path problem, which is solved using
the bidirectional bounded dynamic programming algorithm of Righini and Salani (2008) by
encoding the constrains in terms of suitable resources. Ceselli et al. (2009) remark that, to their
knowledge, the only other similar richly constrained problem is the one of Xu et al. (2003). The
goal of the latter, however, is finding the most efficient fleet composition.





        

3 Formulation

To our knowledge, the MDVRPI is the only multi-depot framework considering intermediate
facilities. Nonetheless, the spirit of our formulation is much closer to that of Kim et al. (2006),
who consider time windows and a driver break. Similarly, in our case depots and intermediate
facilities do not coincide. Therefore, unlike in Crevier et al. (2007), trips to the intermediate
facilities are bound to occur even when we have vehicles starting from different points. Kim
et al. (2006) do not provide a mathematical model, but one is presented in Sahoo et al. (2005).
We should also mention the model of Bard et al. (1998a) who consider satellite facilities in
a distribution context, but no time windows and a homogeneous fleet. As most authors, we
consider the treatment of a single waste material type at a time.

Formally, we define the problem on a directed multigraph G(O ∪ D ∪ P, E), where O is the set
of depots, D is the set of dumps, P is the set of containers, and E = (i, j : i, j ∈ O ∪ D ∪ P, i , j)
is the edge set, with which is associated an asymmetric distance matrix Π, where πi j is the
length of edge (i, j). Each vehicle may have a different average speed, which results in a vehicle
specific travel time matrix Tk, where τi jk is the travel time of vehicle k on edge (i, j). Each
point has a single time window [λi, µi], where λi and µi stand for the earliest and latest possible
start-of-service time. Start of service after µi is not allowed and if the vehicle arrives before λi it
has to wait. Since depots are not directly associated with time windows, we consider dummy
time windows [0,∞] for them. Service duration for each point is denoted by εi, and the pickup
quantity volume and weight by ρv

i and ρw
i , respectively. Service duration at depots and the pickup

quantity volume and weight at depots and dumps are fixed at 0.

There is a fixed heterogeneous fleet K, with each vehicle defined by its capacity in terms
of maximum volume Ωv

k and weight Ωw
k , a fixed cost φk, a unit-distance running cost βk and

an hourly driver wage rate θk. There is a maximum tour duration of H corresponding to
the maximum daily work duration, and a break of duration δ must be taken after η hours of
continuous work. Site dependencies are described by a binary parameter αi jk whose value is 1 if
edge (i, j) is accessible for vehicle k, and 0 otherwise.

In addition, we introduce the following binary decision variables: xi jk = 1 if vehicle k traverses
edge (i, j), 0 otherwise; bi jk = 1 if vehicle k takes a break on edge (i, j), 0 otherwise; yk = 1
if vehicle k is used, 0 otherwise. Three groups of continuous variables, Qv

ik, Qw
ik and S ik, are

defined to track the cumulative volume and weight and the start-of-service time at point i for
vehicle k. For modeling purposes, we duplicate the set O as O′ and O′′, the sets of origins and
destinations, respectively, and for notation purposes we set N = O′ ∪ O′′ ∪ D ∪ P. Moreover,
we assume that each dump in the set D is replicated as many times as the maximum number of





        

dump visits by any vehicle k, which in a realistic case would not be more than a few times. This
is necessary since S ik cannot take several distinct values at the same dump i visited by vehicle k.
Finally, M is a big number.

Min f =
∑
k∈K

φkyk + βk

∑
i∈N

∑
j∈N

πi jxi jk + θk

∑
j∈O′′

S jk −
∑
i∈O′

S ik


 (1)

s.t.
∑
k∈K

∑
j∈D∪P

xi jk = 1, ∀i ∈ P (2)∑
i∈O′

∑
j∈N

xi jk = yk, ∀k ∈ K (3)∑
i∈D

∑
j∈O′′

xi jk = yk, ∀k ∈ K (4)∑
i∈N

xi jk = 0, ∀k ∈ K, j ∈ O′ (5)∑
j∈N

xi jk = 0, ∀k ∈ K, i ∈ O′′ (6)∑
i∈N\O′′

xi jk =
∑

i∈N\O′
x jik, ∀k ∈ K, j ∈ D ∪ P (7)

xi jk 6 αi jk, ∀k ∈ K, i ∈ N \ O′′, j ∈ N \ O′ (8)

Qv
ik 6 Ωv

k, ∀k ∈ K, i ∈ P (9)

Qw
ik 6 Ωw

k , ∀k ∈ K, i ∈ P (10)

Qv
ik = 0, ∀k ∈ K, i ∈ N \ P (11)

Qw
ik = 0, ∀k ∈ K, i ∈ N \ P (12)

Qv
ik + ρv

j 6 Qv
jk +

(
1 − xi jk

)
M, ∀k ∈ K, i ∈ N \ O′′, j ∈ P (13)

Qw
ik + ρw

j 6 Qw
jk +

(
1 − xi jk

)
M, ∀k ∈ K, i ∈ N \ O′′, j ∈ P (14)

S ik + εi + δbi jk + τi jk 6 S jk +
(
1 − xi jk

)
M, ∀k ∈ K, i ∈ N \ O′′, j ∈ N \ O′ (15)S ik −

∑
m∈O′

S mk

 + εi − η 6
(
1 − bi jk

)
M, ∀k ∈ K, i ∈ N \ O′′, j ∈ N \ O′ (16)

η −

S jk −
∑
m∈O′

S mk

 6 (
1 − bi jk

)
M, ∀k ∈ K, i ∈ N \ O′′, j ∈ N \ O′ (17)

bi jk 6 xi jk, ∀k ∈ K, i, j ∈ N (18)∑
j∈O′′

S jk −
∑
i∈O′

S ik

 − η 6


∑
i∈N\O′′
j∈N\O′

bi jk

 M, ∀k ∈ K (19)

λi

∑
j∈N\O′

xi jk 6 S ik 6 µi

∑
j∈N\O′

xi jk, ∀k ∈ K, i ∈ N \ O′′ (20)∑
j∈O′′

S jk −
∑
i∈O′

S ik 6 H, ∀k ∈ K (21)





        

xi jk, yk, bi jk ∈ {0, 1}, ∀k ∈ K, i, j ∈ N (22)

Qv
ik,Q

w
ik, S ik > 0, ∀k ∈ K, i ∈ N (23)

The objective function (1) minimizes the spatial and temporal costs of the routing schedule.
Constraints (2) impose that each collection point should be served exactly once by one vehicle.
Equations (3) ensure that each vehicle tour starts at an origin, while equations (4) stipulate
that there is a trip from a dump to a destination. Constraints (5) and (6) forbid returning to
an origin or leaving a destination. Flow conservation is ensured by constraints (7) and site
dependencies are enforced by constraints (8). Inequalities (9) and (10) capacitate, respectively,
the cumulative volume and weight on the vehicle at each point, while equations (11) and (12)
reset them to zero at the dumps, origins and destinations. Keeping track of the cumulative
volume and weight on the vehicle is achieved by constraints (13) and (14). Constraints (15)
calculate the start-of-service time at every point, including service duration and a possible break
duration. Inequalities (16), (17) and (18) calculate the edge on which a break should be taken
while inequalities (19) ensure that the break is actually taken if the vehicle tour is longer than
the maximum continuous work limit η. Time window restrictions are captured by constraints
(20). Constraints (21) provide that all points must be visited within the maximum tour duration.
Finally, (22) and (23) establish the variable domains.

The above formulation introduces several extensions to the model of Sahoo et al. (2005),
including multiple origins and destinations, multiple capacities, site dependencies, a maximum
tour duration, a richer objective function capturing the costs faced by a realistic firm, and the
elimination of the constraints calculating the necessary number of disposal trips for each vehicle.
The break is modeled in a way similar to Buhrkal et al. (2012) but without imposing a hard
time window. In fact, constraints (16) to (19) can easily be modified to include multiple breaks
after each η duration depending on regulation. The resulting formulation is reminiscent of a
location-routing problem since we are looking both for the vehicles’ origins and destinations,
and their optimal routing. However, by a simple modification of constraints (3) we can fix the
vehicles’ origins. Regarding the destinations, we prefer to keep the current notation due to the
fact that our case study includes a wide service area with a mix of urban and rural regions and
it is not always optimal for a vehicle to return to the depot it started from. However, we can
provide an incentive to the latter by modifying the model as follows:

Min f = Objective (1) + Ψ
∑
k∈K

∑
i∈O′

∑
j∈O′′

(
βkπ ji + θkτ jik

)
zi jk (24)

s.t. Constraints (2) to (23)∑
m∈P

ximk +
∑
m∈D

xm jk − 1 6 zi jk, ∀k ∈ K, i ∈ O′, j ∈ O′′ (25)

zi jk = {0, 1}, ∀k ∈ K, i ∈ O′, j ∈ O′′ (26)





        

where constraints (25) require that the variable zi jk should be equal to 1 if i and j are, respectively,
the origin and destination of vehicle k. Obviously, if i and j do not represent the same point,
there will be a positive distance and travel time between them. This is captured by the objective
(24) which, in addition to (1), minimizes the cost of returning from j to i. The coefficient Ψ

determines the importance of the new objective function term.

4 Solution Approach

The vehicle routing problem is well known to be NP-hard (see e.g. Garey and Johnson, 1979).
Being a generalization thereof, our waste collection problem is even harder to solve. Moreover,
realistic instances involving 50 or more containers and several depots, dumps and vehicles will
translate into thousands of binary variables and tens of thousands of constraints. Therefore, for
such cases we propose a heuristic approach based on local search. To evaluate the quality of the
heuristic, we benchmark the solutions it provides to those obtained by the model presented in
Section 3 on small problem instances. In what follows here, we develop several classes of valid
inequalities and elimination rules which help improve the root relaxation of the mathematical
formulation and fix many binary variables, thus speeding up the branch and bound process.
Afterwards, we explain the main ideas behind the local search algorithm.

4.1 Valid Inequalities and Elimination Rules

The first set of rules is used to set to zero binary variables linked to impossible traversals.
Constraints (27) eliminate the possibility of loops. In a similar fashion, constraints (28), (29) and
(30) forbid traveling from an origin to a dump or destination, from a container to a destination,
and from a dump to another dump, respectively.

s.t. xiik = 0, ∀k ∈ K, i ∈ N (27)

xi jk = 0, ∀k ∈ K, i ∈ O′, j ∈ D ∪ O′′ (28)

xi jk = 0, ∀k ∈ K, i ∈ P, j ∈ O′′ (29)

xi jk = 0, ∀k ∈ K, i ∈ D, j ∈ D : i , j (30)

The presence of time windows allows us to fix time-window infeasible traversals. Constraints
(31) express the fact that if by servicing point i as early as possible vehicle k cannot service
point j within its time window, then points i and j cannot be serviced by the same vehicle k, i.e.
edge (i, j) is not traversed by vehicle k. These first two sets of rules can also be used to eliminate





        

all the big M constraints (13, 14, 15, 16, 17, 19) for such variables as they become trivial.

s.t. xi jk = 0, ∀k ∈ K, i ∈ P ∪ D, j ∈ P ∪ D : λi + εi + τi jk > µ j (31)

The third set of rules serves for restricting the start-of-service time search space. This set of rules
has a significant impact on the lower bound of the objective function (24), given the way tour
duration is minimized. Rule (32) imposes a minimum difference between the start-of-service
time at the origin and destination for each used vehicle. The right-hand side of the inequality
represents the minimum-duration tour composed of one origin, one container, one dump and
one destination. Then rules (33) and (34) calculate the latest possible start and earliest possible
finish of each tour.

s.t.
∑
j∈O′′

S jk −
∑
i∈O′

S ik > min
m1∈O′
m2∈P
m3∈D

m4∈O′′

(
τm1m2k + εm2 + τm2m3k + εm3 + τm3m4k

)
yk, ∀k ∈ K (32)

S ik 6 max
m∈P

(µm − τimk) yk, ∀k ∈ K, i ∈ O′ (33)

S jk > min
m∈D

(
λm + εm + τm jk

)∑
m∈D

xm jk, ∀k ∈ K, j ∈ O′′ (34)

If the problem involves subsets of identical vehicles, the presence of symmetry can substantially
reduce the effectiveness of the model. For example, there are two ways to assign two tours to
two identical vehicles, both producing the same value of the objective function. If we have two
tours and three identical vehicles, the number of permutations is six. To remove the symmetry,
we can use so-called symmetry breaking constraints. Let K′ ⊂ K represent a subset of identical
vehicles and let k′g ∈ K′, where g ∈ 1, . . . , |K′| introduces a simple ordering of the elements of
K′. Then for each subset K′ we apply constraints (35) or (36). These constraints specify that the
first vehicle in K′ executes the tour with the highest waste volume (weight), the second vehicle
executes the tour with the second highest waste volume (weight), etc.

s.t.
∑
i∈P

∑
j∈P∪D

ρv
i xi jk′g >

∑
i∈P

∑
j∈P∪D

ρv
i xi jk′g+1

, ∀g ∈ 1, . . . ,
(
|K′| − 1

)
(35)∑

i∈P

∑
j∈P∪D

ρw
i xi jk′g >

∑
i∈P

∑
j∈P∪D

ρw
i xi jk′g+1

, ∀g ∈ 1, . . . ,
(
|K′| − 1

)
(36)

The last two rules are concerned with the dump visits. With (37) we impose that a dump may
be visited at most once by a vehicle. With (38), on the other hand, we set for every vehicle
the maximum number of trips from dumps to containers, which is one less the total number of
dumps. A dump visit is thus reserved for the final trip in each tour. We stress again here that
each physical dump is replicated in the model as many times as the maximum number of dump





        

visits by any vehicle k.

s.t.
∑
i∈P

xi jk 6 1, ∀k ∈ K, j ∈ D (37)∑
i∈D

∑
j∈P

xi jk 6 |D| − 1, ∀k ∈ K (38)

4.2 Local Search

The heuristic we develop for the problem is based on the idea of local search, which is a
systematic exploration of the immediate neighbors of an incumbent solution through a set of
predefined neighborhood operators. In our approach, all changes applied to a tour preserve
feasibility. In part, this is motivated by the fact that a tour can contain several dump visits. Once
we start exploring infeasible neighbors, we may successively violate the vehicle capacities at
numerous points linked to disposals at different dumps. A penalty term proportional to the
number of visited infeasible solutions will start driving the search towards feasibility again.
However, even only considering capacity feasibility, the tour will have to recover it at numerous
points, which could be very cumbersome. Moreover, such a technique will involve much
additional parameter tuning (see e.g. Cordeau et al., 2001).

A solution to our problem is considered feasible if it satisfies three criteria. First, start-of-service
times should respect time windows, where applicable. Secondly, the solution has to have a
feasible duration, i.e. its duration should be shorter than or equal to the maximum tour duration
defined by H in Section 3. These two criteria may be thought of as expressing temporal feasibility.
Thirdly, the volume and weight capacity of the vehicle may not be violated at any point in the
tour. This can be ensured by inserting appropriate visits to the available dumps.

Every insertion or removal of a point from a tour, and every application of a neighborhood
operator requires the recalculation of start-of-service and waiting times for all or part of the
points in the tour. Consider a tour serviced by vehicle k ∈ K, for brevity tour k, represented
as an ordered sequence of points 1, . . . , n indexed by i. The calculation begins by setting the
start-of-service time at the origin, S 1k, as early as possible. For each subsequent point i, S ik is
tentatively calculated as the sum of the start-of-service time at point i − 1, the service duration at
point i − 1, and the travel time from i − 1 to i, i.e. S ik = S (i−1)k + εi−1 + τ(i−1)ik. If the maximum
continuous working time limit η expires between the end-of-service time (start-of-service time
plus service duration) at points i − 1 and i, i.e. if S (i−1)k + εi−1 6 S 1k + η and S ik + εi > S 1k + η ,
we need to insert the required break before servicing point i, which is achieved by incrementing
S ik by the break duration δ. Finally, if S ik violates the lower time window bound λi, in other





        

Figure 2: Temporal feasibility algorithm

Data: tour k as a sequence of points 1, . . . , n after the insertion or removal of a point or the
application of a neighborhood operator

Result: start-of-service times, waiting times and temporal feasibility of tour k

set S 1k to earliest possible;
for i = 2 . . . n in tour k do

S ik = S (i−1)k + εi−1 + τ(i−1)ik;
if S (i−1)k + εi−1 6 S 1k + η and S ik + εi > S 1k + η then

S ik = S ik + δ;
end
if S ik < λi then

wik = λi − S ik;
S ik = λi;

else
wik = 0;

end
end
if S ik 6 µi,∀i then

for i = n . . . 2 in tour k do
S ′(i−1)k = S (i−1)k;
S (i−1)k = min (S (i−1)k + wik, µi−1);
w(i−1)k = w(i−1)k +

(
S (i−1)k − S ′(i−1)k

)
;

wik = wik −
(
S (i−1)k − S ′(i−1)k

)
;

end
w1k = 0;
if S nk − S 1k 6 H then

tour k is temporally feasible;
else

discard tour k as duration infeasible;
end

else
discard tour k as time-window infeasible;

end

words if S ik < λi, we introduce waiting time wik at point i equal to the difference λi − S ik, and
update S ik to λi. Once all S ik have been determined, we check if upper time window bounds





        

µi are respected for all i. If this is the case, we apply forward time slack reduction on the tour,
otherwise we discard the tour as time-window infeasible.

Forward time slack, as described by Savelsbergh (1992), keeps track of the maximum amount
each start-of-service time can be delayed without violating time windows on the tour. Under the
assumption that we initialize S 1k as early as possible and introduce waiting times due to time
windows, pushing S 1k forward may, in extreme cases, eliminate all waiting. Realistically, we
will obtain a tour whose duration is at most that of the original tour. The idea is very similar to
the concept of slack in the Project Evaluation and Review Technique (PERT), which indicates
how much a task in the project can be delayed without causing any delay in subsequent tasks.

To apply forward time slack reduction, points on the tour are examined sequentially in reverse
order. If there is waiting at point i, there could be a non-zero slack at point i − 1, because
pushing S (i−1)k forward may eliminate or reduce waiting at i. We can push S (i−1)k forward by
the amount of waiting at i, or until we reach the upper time window bound at i − 1. The last
operation is expressed as S (i−1)k = min (S (i−1)k + wik, µi−1), and it entails an update of w(i−1)k and
wik to factor in the potential increase of waiting at i − 1 and decrease of waiting at i. Let S ′(i−1)k

denote the original start-of-service time at point i − 1, i.e. before slack reduction. Then, waiting
at i − 1 will be increased by the difference between S (i−1)k and S ′(i−1)k, and waiting at i will be
reduced by the same difference. Finally, we need to artificially put w1k = 0. Forward time slack
reduction preserves time-window feasibility. Therefore, after the procedure it only remains to
check if the tour’s duration is feasible. If it is the case, we accept the tour as temporally feasible,
otherwise we discard it as duration infeasible. Figure 2 is a schematic depiction of the procedure
for calculating start-of-service and waiting times, and verifying temporal feasibility.

The last feasibility criterion, concerning capacity, is much more straightforward. At each point
of the tour, we calculate the cumulative volume and weight loads, Qv

ik and Qw
ik, on the vehicle,

resetting both to zero if the point is a dump. If, for any point i, Qv
ik > Ωv

k or Qw
ik > Ωw

k or a dump
is not visited immediately before the destination, we discard the tour as capacity infeasible.

4.2.1 Construction

Tour construction is performed sequentially with the goal of minimizing the objective function
(24). Initially, all containers belong to the pool of unassigned containers P, and all vehicles to
the pool of unassigned vehicles K. A seed tour is created by assigning the cheapest sequence
of origin, container, dump and destination to the cheapest available vehicle. We assume here
that, even in the presence of time windows, each container can participate in at least one feasible
seed tour sequence and that the smallest vehicle’s capacity is sufficient to service the largest





        

container when the latter is full. Such an assumption should hold in any realistic scenario. It is
not a particularity of the heuristic approach but is also assumed by the mathematical model. All
assigned vehicles and containers are removed from their respective unassigned pools.

Once a seed tour k has been created, it is expanded using a simple feasibility preserving greedy
insertion heuristic. At each iteration, we insert container i ∈ P at the position j in the tour that
would yield the smallest increase in the tour’s objective value. The point at position j, as well
as all subsequent points, are shifted to the right. As already mentioned, we require that such
insertions should produce a feasible tour. If no more feasible container insertions are possible
and if infeasibility would result from capacity violation, we insert a dump using the same logic,
otherwise we terminate the tour. In addition, we require that the dump cannot be inserted as an
immediate predecessor or successor of another dump on the tour or just after the origin depot.
Unlike in the mathematical model, here we do not need to copy a dump object as many times as
it can be visited during a tour.

Finally, to avoid a meaningless increase in the objective function, we require that after a dump
insertion there should be a predefined number of feasible container insertions. If this condition
does not hold, the last inserted dump is removed and the tour is terminated. Tour construction
stops when either the pool of unassigned containers or the pool of unassigned vehicles is
empty.

4.2.2 Improvement

Tour improvement makes use of four neighborhood operators—single-tour swap and 2-opt and
inter-tour swap and reinsert. Single-tour operators are applied to points or collections of points
belonging to the same tour, while inter-tour operators are applied to points belonging to two
different tours. All operators are feasibility preserving. If the application of an operator would
result in an infeasible tour, it is not carried out. Figure 3 depicts possible improvements resulting
from the application of each of the operators. The interrupted gray edges form parts of the tours
before the application of the operators. The resulting improved tours are given in solid black
edges.

Consider a tour as an ordered sequence of points represented by 1, . . . , n and two points, i and j,
belonging to the tour, where i + 1 < j − 1. A single-tour swap disconnects i − 1 from i, i from
i + 1, j − 1 from j, and j from j + 1, and reconnects i − 1 to j, j to i + 1, j − 1 to i, and i to j + 1.
A single-tour 2-opt operator, on the other hand, disconnects i − 1 from i, and j from j + 1, and
reconnects i− 1 to j, and i to j + 1, thus reversing the orientation of the section i, . . . , j, inclusive
of i and j.





        

Figure 3: Neighborhood operators
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To illustrate the inter-tour operators, consider two tours k1 and k2, a point i in k1 and a point j in
k2. The inter-tour swap operator applies the same logic as the single-tour one, except that here
points i and j belong to different tours. With the inter-tour reinsert operator, point i is removed
from tour k1, thus connecting i − 1 directly to i + 1. It is then inserted in k2 at the position of
point j, which is achieved by disconnecting j − 1 from j, and reconnecting it to i, and then
connecting i to j.

Tour improvement itself is an alternation between single-tour and inter-tour improvement. Each
single-tour operator is applied for maxOpIter iterations and maxOpNonImpIter non-improving
iterations from the last visited cheapest incumbent. Moreover, each operator is applied to the i

and j that would result in the best feasible neighbor of the incumbent. Therefore, we change the
operator in one of three cases—(a) we reached the maximum number of iterations, (b) the maxi-
mum number of non-improving iterations or (c) the operator cannot produce feasible neighbors
of the incumbent. To prevent cycling and encourage diversification towards less explored areas
of the search space, a solution with the same objective value is not admitted more than once
for a given number of iterations. The couple of single-tour operators is applied successively
for maxIter iterations and maxNonImpIter non-improving iterations. Tour improvement can
make a tour a candidate for more container insertions if unassigned containers remain in the





        

pool. New insertions are attempted before switching back from single-tour 2-opt to single-tour
swap.

When all tours have been constructed and improved, inter-tour swap and reinsert are applied
exhaustively on all tour combinations using the same logic with the same iteration limiters,
where this time an operator is applied to the two tours and two points that would produce the
best feasible neighbor of the tour schedule. After the application of an inter-tour operator, both
affected tours are individually improved. In some cases, one of the tours may need one fewer
dump visits, in which case instead of being simply improved it is dissolved and recreated from
scratch.

5 Case Study

Our case study considers a French waste collection company, which operates more than 2800
containers located at 820 collection points spread out over a large rural and peri-urban area of
approximately 2000 km2. Each container holds one of three types of recyclable material—paper,
glass or plastic/aluminum. Most containers are equipped with level sensors that transmit the
volume of waste in the container via the GSM network. The weight of the respective waste type
is calculated through a conversion algorithm. The distance matrix between all depots, dumps and
collection points has been calculated with the OsmSharp1 routing library on OpenStreetMap2

data.

To assess the quality of the local search heuristic, we compare its results to the optimal ones
produced by the mathematical model on small instances. The instances are constructed randomly
but based on real underlying data. We create five instances, each made up of 10 containers
of the same waste material type, one depot and one dump. The original instances include
no time windows. Two additional copies of each instance are therefore created, one with
wide time windows and one with narrow time windows. Wide time windows are created by
randomly assigning to each container a time window of [8:00, 12:00] or [12:00, 18:00] with
equal probability. Narrow time windows are created in the same fashion and are represented by
the intervals [8:00, 11:00], [12:00, 15:00] and [15:00, 17:00]. In addition, we restrict the tour to
a maximum duration of eight hours with a one-hour break after four hours of continuous work.
It takes five min to service a container and 10 min to empty the vehicle at a dump.

Regarding the vehicles, for each instance we create two homogeneous trucks with volume and

1See http://www.osmsharp.com, accessed on April 20, 2014.
2See http://download.geofabrik.de, accessed on April 20, 2014.




























Table 1: Comparison between the local search heuristic and the Gurobi MIP solver on random instances
maxOpIter = 100, maxOpNonImpIter = 13, maxIter = 100, maxNonImpIter = 1

Heuristic Solver

Instance Tours Objective Runtime (sec.) Objective Lower bound MIP gap (%) Relaxation Runtime (sec.) Opt gap (%)

i1 1 214.849 0.170 214.849 214.837 0.006 11.250 375.562 0.000
i1_tw 1 284.016 0.070 252.825 252.825 0.000 95.627 4.038 12.337
i1_ntw 2 428.539 1.093 394.817 394.817 0.000 179.195 0.922 8.541
i2 1 249.317 0.042 249.317 249.317 0.000 58.791 400.032 0.000
i2_tw 1 257.583 0.050 257.582 257.582 0.000 119.750 2.306 0.000
i2_ntw 2 460.635 0.756 439.769 439.769 0.000 235.777 2.420 4.745
i3 1 240.133 0.051 240.133 76.004 68.349 14.926 1000.000 0.000
i3_tw 1 245.457 0.070 245.457 245.457 0.000 45.625 2.894 0.000
i3_ntw 2 444.589 0.641 444.589 444.589 0.000 76.527 2.446 0.000
i4 1 138.643 0.077 138.643 138.643 0.000 4.077 521.509 0.000
i4_tw 1 140.204 0.030 140.204 140.204 0.000 4.077 7.660 0.000
i4_ntw 1 179.537 0.043 179.537 179.537 0.000 23.208 2.849 0.000
i5 1 220.770 0.070 220.770 129.834 41.190 37.889 1000.000 0.000
i5_tw 1 233.211 0.050 233.211 233.211 0.000 83.942 3.501 0.000
i5_ntw 2 405.622 0.848 405.622 405.622 0.000 106.033 3.051 0.000




























Table 2: Comparison between the local search heuristic and the Gurobi MIP solver on selected random instances
maxOpIter = 350, maxOpNonImpIter = 37, maxIter = 100, maxNonImpIter = 1

Heuristic Solver

Instance Tours Objective Runtime (sec.) Objective Lower bound MIP gap (%) Relaxation Runtime (sec.) Opt gap (%)

i1_tw 1 252.825 0.410 252.825 252.825 0.000 95.627 3.487 0.000
i1_ntw 2 394.817 3.399 394.817 394.817 0.000 179.195 0.916 0.000
i2_ntw 2 439.769 3.080 439.769 439.769 0.000 235.777 2.309 0.000





        

weight capacity sufficient to ensure that the containers in all instances can be collected with only
one dump visit before the end of the tour in the absence of time windows. We assume that a
vehicle k’s fixed cost φk is five times its unit distance running cost βk, and its driver wage rate is
10 times βk.

All tests were carried out on a 2.60 GHz Intel Core i7 PC with 8 GB of memory running a 64-bit
Windows 7. The local search heuristic was coded in Java and the mathematical model was solved
using the Gurobi 5.6.2 MIP solver warm-started, for each instance, with the solution obtained
by the heuristic. Table 1 presents the results of the comparison for the 15 instances, where "tw"
in the instance name stands for time windows, and "ntw" for narrow time windows. The second
column displays the number of tours constructed. Then, for the heuristic, the table reports the
objective value and runtime in seconds achieved for the parameters in the table subtitle. For the
solver, it reports, in addition, the lower bound, MIP gap and root relaxation. The solver time
limit was set to 1000 sec. The last column in the table is the heuristic’s optimality gap relative to
the objective found by the solver within the time limit. Since there are no random components
in the heuristic, all results are presented for one single run.

The table reveals that our local search heuristic performs reasonably well with an average
optimality gap of 1.7% and a runtime of a fraction of a second, except for the instances with
narrow time windows, where it still remains in the order of 1 sec. There is a non-zero optimality
gap for only three instances, all of which contain time windows. The presence of time windows
also appears to increase the heuristic’s runtime, probably because of slower convergence due to
many more infeasible neighbors in the improvement stage. Looking at the results for the solver,
we can observe the opposite phenomenon with runtime negatively correlated to the presence
of time windows and their tightness. This is explained by the fact that time windows allow for
many binary variables to be fixed to zero, thus greatly reducing the search space for branch and
bound. For two instances without time windows, the solver is unable to prove optimality within
1000 sec. This is due to the poor values of the root relaxation, undoubtedly the result of the big
M constraints in the mathematical formulation. Finally, Table 2 shows that at the expense of
more iterations the heuristic can reach the optimal solutions to the instances that have a non-zero
optimality gap in Table 1.

6 Conclusion

This article proposed a mathematical model and a local search heuristic for a complex solid
waste collection problem, which can be viewed as a generalization of the vehicle routing problem
with intermediate facilities (Kim et al., 2006). We add several new features such as a realistic





        

cost-based objective function, multiple depots, a fixed heterogeneous fleet, site dependencies,
a start-of-tour dependent driver break, and a relocation cost, which incentivizes, rather than
enforcing, the vehicle to return to the depot it started from. The performance of the local
search heuristic was evaluated by comparison to the optimal solution on small instances of
10 containers and varying time window tightness. Preliminary results show that the heuristic
performs favorably with an average optimality gap of less that 2% and an runtime of less than 1
sec.

Future work will focus on several topics, the first of which is an attempt at reformulation of the
mathematical model, especially the big M constraints. Currently, the root relaxation provides
a very weak bound which, in the absence of time windows, leads to very slow convergence of
the branch and bound process. A promising direction proposed in the literature is to express
some of the big M constraints, for example the capacity constraints, as flows. Here the approach
has to be adapted to the particular fact that capacity in our problem can be renewed by a visit
to a dump. At any rate, the ability to solve larger and more complex instances to optimality is
important in terms of providing more meaningful benchmarks for the performance of the local
search heuristic.

Secondly, there are several important improvements to be added to the current local search
heuristic. When a seed tour is created, its origin and destination are no longer changed during
the construction and improvement stage. Once inserted, neither are the dumps that are visited
during the tour, unless an inter-tour swap exchanges two different dumps from two different
tours. Since a problem may contain several available depots and dumps, the construction and
improvement stages of the algorithm need to examine whether the growth and improvement
of the tour would benefit from depot or dump reassignments. Regarding the heterogeneity of
the vehicles, the design of new and efficient inter-tour operators is an important next step in
ensuring a good vehicle-to-tour assignment. Last but not least, a thorough sensitivity analysis of
the heuristic parameters needs to be carried out.

Finally, however much the mathematical formulation can be improved, it would not be suitable
for solving real world instances involving tens or hundreds of containers as well as several
depots and dumps. In these cases, we can benchmark the heuristic solutions against the current
state of practice at the French waste collection company where, since recently, all executed
tours are being logged together with the amount of material emptied from each container. Such
comparisons will allows us to asses the heuristic’s added value to the company.
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