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Abstract

To date, travel demand generation for microscopic traffic flow simulation focuses mostly on
reproducing daily life behavior. This stands in contrast to the significant part of traffic volume
caused by journeys related to activities not usually undertaken in daily life. The paper investigates
the possibilities of extending an existing approach (continuous target-based planning) to cover
some of these exceptional activities.

A microscopic continuous target-based model applies the idea of agents which want to fulfill
individual targets by execution of the corresponding activities. The targets can be diverse (e.g.
they can describe a desired frequency or percentage of time for a execution of a specific activtiy)
and are extracted from real life surveys. Simulations using this model generate continuous
activity and travel diaries where the decisions of the agents are based on heuristics to achieve
the given targets. Such simulations usually produce data for a few weeks and thus take only
daily life activities into account.

This paper discusses the possibilities to extend the continuous target-based approach in order
to generate long term travel demand including journeys which are not part of daily life (e.g.
going on holidays). The proposed extensions include new low-frequenced targets with higher
travel times than daily life targets. Additionally, we introduce a new heuristic for the activity
decision procedure. Validation results as well as the runtime analysis show that the extensions
are promising for the further development of a long term travel demand simulation.

Keywords
continuous target based model; long term simulation; long distance travel demand; microscopic
travel demand simulation; C-TAP





        

1 Introduction

Microscopic travel demand simulations simulate the (traveling) behavior of virtual agents
individually. The approach proposed by Balmer (2007) is the following: agents choose a daily
schedule for their behavior and execute it. The execution results are reported and the agents
can replan their schedule based on the execution results of all agents. This procedure is iterated
until a stochastic user equilibrium with consistent travel demand is reached (Nagel and Flötteröd
(2009)). Due to high computational complexity and memory issues (all current schedules have
to be maintained) a reasonable simulated period is a single day. This is not sufficient for the task
of long distance travel demand generation.

In case of long distance travel demand it is necessary to simulate a long period of travel behavior,
because long distance trips are usually rare and take more time than short distance trips. We will
use the Continuous Target-based Activity Planning (C-TAP) simulation which is proposed by
Märki in Märki (2014). It is shown that this approach is able to reproduce individual behavior of
six weeks (Märki et al. (2012b)). We will modify this model in order to simulate long distance
trips over a long period. The goal is the generation of travel demand data for a whole year. A
secondary goal is the minimization of the number of parameters used for the calibration of the
model.

The remainder of this paper ist structured as follows: first, we present the C-TAP model and the
adjustments needed for the long term simulation. After that, we focus on the activity planning
model as this is the main modification for the long term simulation. This is followed by a section
on simulation results, where we validate the model and also present some considerations on
runtime behavior. We conclude the paper with an outlook on future tasks.

2 Related Work

The target-based approach is related to the need based theory which was introduced by Arentze
and Timmermanns (Arentze and Timmermans (2006)). They developed also a model for activity
generation with the assumption of utilities described as dynamic function of needs (Arentze
and Timmermans (2009)). Märki proposes to use targets instead of needs as an explanation
of human behavior (Märki et al. (2012a)). He validated his model in Märki et al. (2012b) for
short distance travel generation using a six-week continuous travel diary provided by Löchl et al.
(2005).





        

Long distance trips have been also the focus of recent literature. The travel behavior have been
analysed several times, e.g. for the UK and the Netherlands (Limtanakool et al. (2006)). Some
statistical long distance travel demand models have been developed (e.g. Erhardt et al. (2003)) as
well as used for traffic forecast (e.g. Beser and Algers (2002)). But using a continuous simulation
approach for long distance travel demand generation is not a well known approach.

3 Continuous Target-Based Model

We will now introduce a microscopic travel demand model, which is used to generate long term
and long distance travel demand. The core of this microspcopic model is built up of agents
representing virtual people. In contrast to iteration-based models (like the one used by Balmer
(2007)) a continuous planning model does not iterate to a steady state, but generates continuously
an activtiy schedule without any replaning. One of the main advantages is the ability of the
simulation to generate arbitrarly long activity plans in linear runtime (linear in simulated time).
Thus, it is more useful to generate long term travel demands.

The Continuous Target-based Activity Planning (C-TAP) simulation model presented in this
section was introduced by Märki in Märki et al. (2012a) and further developed in Märki et al.
(forthcoming) and Märki et al. (2013) We will explain in this section the main ideas of C-TAP,
namely the targets, activities and their interaction in the algorithm. Additionaly, we will present
the modifications of the default model, which are necessary for a long term simulation. We call
the modified model Long-Term-C-TAP.

3.1 Behavioral Targets

The core idea of C-TAP is the usage of behavioral targets, which represent the motivation of the
agents to perform an activity. Examples of long distance and long term motivations are holidays,
e.g. an agent might have the motivation to go on holidays for two weeks twice a year.

There are several options to define targets. In the following we present the types of targets
proposed by Märki:

• percentage-of-time target: indicates how much relative time within an observation window
an agent would like to spend on a specific activity.

• frequency target: indicates how often an agent would like to execute a specific activity
within an observation window.





        

• duration target: indicates how much time an agent would like to spent for a single
execution of a specific activity.

Note that the first two target types include a definition of an observation window. Obviously,
just any two of the three target types are usually necessary to describe the motivation of the
agents.

3.2 Activities

For each target we define a corresponding activity and a corresponding state value. The level of
satisfaction is measured mainly by the quadratic difference of state value and target value. This
measurement is called discomfort and its influence within the model is described in detail in
section 4. The state values of targets with observation windows increase during the execution of
the relevant activity, respectively decrease during non-execution. In the C-TAP simulation the
state value is the result of a convolution of the acitivity execution pattern with an exponential
kernel, which is restricted to the length of the observation window. As the goal of C-TAP is the
generation of travel demand an activity definition should also include one or more locations and
travel times, where the activity can be executed. In the current work we will focus on activities
which have influence on exactly one target.

3.3 Core Algorithm

We explain also roughly the core algorithm of the simulation, which is shown in algorithm 1.

Algorithm 1 Core C-TAP Algorithm (Pseudo Code)
while simulation end not reached do

for all agent with no activity do
state ← UpdateAgentState(agent)
next Activity ← MakeDecision(agent, state)
agent .execute(next Activity)

end for
nextTimeStep = minimum( all execution endpoints)
proceed to nextTimeStep

end while

The main procedure is a continuous iteration over points of time. Every time an agent finishes
the execution of an activity the function MakeDecision computes the next activity based on





        

its current state. After that, the activity is executed until the computed execution end. Activity
execution also includes traveling to the location of the activity. Recording this trips generates
the travel demand. The simulation stops after a predefined stopping condition is reached. This
condition is usually a time period, which has to be simulated. In case of long term simulations a
time period of one year is reasonable. There is one important question remaining, namely the
implementation of the MakeDecision function, which describes the activity planning. This
question is the main topic of section 4.

3.4 Modifications for Long-Term-C-TAP

Our object is the generation of long distance travel demand. So we are not interested in every
short trip, but just in those trips with long distances. We propose to use aggregated activties, e.g.
we introduce a single activity representing daily life, which includes all short daily journeys like
traveling to work, shopping, etc. In comaprison to Märki (2014) this is a higher abstraction level
of activites.

The C-TAP simulation is mainly used to generate travel demand for a few weeks, e.g. in Märki
et al. (2012b) six weeks were simulated in order to reproduce a travel diary. We are interested in
larger scales and run the simulation for a full year. You can find the results of these simulations
in section 5.

4 Activity Planning

The main challenge of a continuous agent-based simulation is the modeling of activity decisions.
We present in this section the approach of C-TAP as well as our own approach we use for the
Long-Term-C-TAP simulation.

4.1 C-TAP Decision Model

First we present the main ideas of the C-TAP decision model due to Märki et al. (2012a). The
core of the decision process is the discomfort value

D(t) =

n∑
k=1

( f k
target (t) − f k

state(t))2 ∗ w, (1)





        

where n is the number of targets and w a bandwidth normalization factor. The function f k
target (t)

describes the target value of a given point of time t, while f k
state(t) describes the state value at t.

The discomfort function is used to define the discomfort reduction DR of an activity execution:

DR(tes, tee) = D(tes) − D(tee), (2)

where tes is the execution starting time and tee the execution end time.

The decision procedeure is subdivided into several steps. The first step is to maximize the
product of DR(tes, tee) · L A(tee) for every available activity. More precisely, the idea is to find
the tee maximizing the product. Here L A is a look-ahead value, which is used to measure future
execution options. Märki proposes the Brent optimization algorithm (Press et al. (2007), 496-
499) to solve this maximization problem. The next step consists of multiplying the maximized
product with an execution time ratio tee−tes

tee−tt s
and an optional random term (1 + ε ), where tts is

the starting time of the travel. This results in a heuristic function

HF (tts, tes, tee) = DR(tes, tee) · L A(tee) ·
tee − tes

tee − tts
· (1 + ε ). (3)

After computing all maximal HF-values for all considered activities the agent will execute the
activity, which yields the highest HF-value.

Märki also suggests to use a preprocessing step, where the simulation performs a preselection
of the most promising activities. Note that an important factor is missing in our explanation,
namely the effectiveness, which is useful to describe external effects.

4.2 Long-Term-C-TAP Decision Model

We use another approach for the decision model, because in case of aggregated, long term
activities as explained in subsection 3.4 we need a bigger planning horizon. In other words we
want the agents in the simulation to plan more than one activity in advance. This is reasonable,
because long distance journeys are usually planned in advance. Additionally, the number of the
decision computations might decrease and therefore also the runtime might decrease. For the
time being we propose a decision model, which provides decisions for the next two activities.
This includes of course also the decisions about the duration of these two activities. We will
not focus on the discomfort reduction of the considered activity execution as described above,
but on the overall discomfort D(t). Thus, our goal is the minimization of D(t). In contrast to
the C-TAP model, the future value of f k

state is not anymore dependent on the execution time





        

of a single activity, but on the execution times of two activities. Additionally, the state value
of the non executed activities decreases, which also includes the travelling time between the
activities. We use two helping functions g1 and gt to compute the state values after the execution
of two activites. Assuming that t0 is the current simulation time and the two activities, which
are considered to be executed are a and b, the future state value f k

state can be computed by:

gk
1 (t0, t1) =


I NCk ( f k

state(t0), t1) i f k = a

DECk ( f k
state(t0), t1) otherwise

(4)

gk
t (t0, t1, tt ) = DEC(gk

1 (t0, t1), tt ) (5)

f k
state(t0, t1, tt , t2) =


I NCk (gk

t (t0, t1, tt ), t2) i f k = b

DECk (gk
t (t0, t1, tt ), t2) otherwise

(6)

As above, k is the target id. Furthermore, t1 and t2 are the considered execution times and tt

is the (constant) travel time between the two activities. All t∗ are expected to be nonnegative.
DEC(s,u) is the state value resulting after decreasing due to non-execution of the correlated
activity over the time u with the starting value s. I NC(s,u) is the respective state value after
increasing. Note again that this defintions holds for all targets which imply state values, namely
all targets with observation windows. The discomfort of duration targets is of course only
dependent on a single execution time.

You can find an illustration of the state value function in figure 1. The state value corresponding
to the activity, which is considered to be executed first, increases during t1 and decreases during
travel time and t2 (figure 1 a)). The state value of the second target/activity increases during t2

and decreases otherwise (figure 1 b)). Finally, all other state values decrease during the whole
considered period (figure 1 c)). The important value in our case is not the absolute state value but
the discomfort which is the quadratic difference of the state value and the target. Possible (static)
target values are plotted in the graph as green dotted lines. The sum of all quadratic differences
at the end of the second activity execution is the overall discomfort we want to minimize.

As the starting time t0 is fixed and the traveling time between two activities tt is assumed to be
constant the state value computation after two activities is dependend on two values (t1 and t2).
Also the projected discomfort after the executions depends on these two values. Our goal is now
the computation of the optimal, dicomfort minimizing execution times for any available pair of
activities. This leads to

(
n
2

)
=

n·(n−1)
2 two-dimensional minimization problems. In our case the

number of available activities n is small, because we use aggregated activities. We solve the
minimization problem for every activity-pair using a version of a discrete grid method (Powell
(1998)). For a higher number of activities a preselection similar to the preselection described in





        

Figure 1: Illustration of the state value function
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the last subsection might be necessary.

The procedure during the simulation is the following. After solving all minimization problems
we choose the execution time pair, which leads to the lowest discomfort. Then we assign the
first activity to the agent and let him execute this for the computed duration. After the execution
we do the next decision computation step. The agent might now also choose not the activity,
which was proposed initially by the last decision. He might even choose to keep doing its current
activity for some time.

5 Results

5.1 Model Validation

Survey Data We use an existing long term survey about long distance journeys from the
INVERMO project (Chlond et al. (2006)). The survey is divided into four subsurveys covering
in total one year. For simplicity we assume that the interviewed persons reported their journeys
continuously for one year, although it was not the case. It is reasonable because the time periods
of the subsurveys are a disjoint cover of a full year, i.e. every season of the year is reported in
one of the subsurveys. We focus on all journeys with just two subtours and all necessary details
reported.





        

Data Enrichment Just 2367 of the 6593 reported trips have accurately reported traveling times.
Most of the other trips have just the traveling days reported. We use the conditional mean
imputation (Little and Rubin (2002), sec. 4.2) to fill the missing values. For each missing value
of traveling time we look in the survey for all traveling times with the same travel purpose, the
same travel mode and a similar travel distance and use the mean of this values for the imputation.
Finally, we extract 1944 persons, who reported in in total 6444 long distance journeys.

Calibration We want to minimize the number of parameters for our simulation. So we aggre-
gate the journeys for every person based on the travel purpose. This results in 3456 combinations
of persons with travel purposes (there are 9 different purposes reported). Afterwards we create
for any person a virtual agent with two targets for every traveling purpose reported by this person.
The first target is a static percentage-of-time target which is set to the respective relative time
the agent spent on this purpose. The second target is a duration target defined by the average
duration spent by the agent on this purpose (excluding traveling time). Additionally, we create a
percentage-of-time target and a duration target with a big bandwitdh for the daily-life activity.
Finally, we simulate one year of long distance traveling with the described parameters.

Validation We want to validate the quality ouf the presented Long-Term-C-TAP simulation,
i.e. we want to find out, if the simulation is able to reproduce the traveling behavior of the
interviewed people. We measure the quality by extracting two meaningful values from the
survey and compare them to the corresponding values from the simulation output. The first
value is the number of trips within one year grouped by agent and traveling purpose, e.g. does
the virtual agent go on holidays as often as the person he is simulating. The other compared
value is the average trip duration, which is again grouped by agent and traveling purpose.

Figure 2 shows a histogram of the difference between number of the agent trips in the simulation
and the number of the reported trips in the survey. You can see, that often the number of trips
is reproduced perfectly (1802 times) and in 2629 cases (which is 76% of all cases) there is a
difference of at most one, which is also still reasonable due to a randomness effect included
in the simulation. But you can also see that there are also many agents doing more trips than
reported. This is the result of the heterogeneity of the reported trips within a group of trips with
the same traveling purpose. For example, one of the interviewed persons reported two different
work-related trips: one short trip (short traveling and short duration) and another long trip.
Because of the shorter traveling time the virtual agent is trying to achieve the percentage-of-time
target by executing many short trips.

In case of the average trip duration we can find similar results. In figure 3 the difference values





        

Figure 2: Histogram of the difference between sampled number of trips and simulated number
of trips

sampled trips − simulated trips
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(in hours) are plotted in a boxplot, where we dropped the outliers. The mean as well as the
median is equal to zero here. We can also see again that the difference is in most cases is low (62
% of all absolute difference values are below 8h). The high remaining number of big differences
is again explained by the heterogeneity of the trips within the used survey.

Validation of the Model with Disaggregated Targets As we described above the Long-Term-
C-TAP simulation generates trips which are homogeneous among specific purposes and agents.
We modify the input data in order to achieve a better reproduction of the trips reported in the
INVERMO survey. In case there are reported trips with a high deviation in activity duration
(at least 24 hours) we subdivide the relevant travel purposes into several purposes, namely
one purpose per each 24-hour activity duration block. This increases of course the number of
agent-purpose combinations. Now there are 4781 of those combinations. Again we compare
the differences in number of trips resticted to a specific purpose and agent (figure 4) and the





        

Figure 3: Boxplot of the difference between sampled average trip duration and simulated average
trip duration without outliers

−
20

−
10

0
10

20
30

sa
m

pl
ed

 a
ve

ra
ge

 d
ur

at
io

n 
−

 s
im

ul
at

ed
 a

ve
ra

ge
 d

ur
at

io
n 

[h
]

difference in average trip duration (figure 5).

The results improved significantly by using the subdivided targets. The number of trips is now
reproduced exactly in 3091 cases and differs to the sampled number by at most one in 4167
cases (87 %). Also the trip durations are now reproduced well. The average durations of the
simulated trips are now closer to the average durations of the sampled trips. The difference of
these two numbers is below 8 hours in 4211 cases (88 %). The improvement can be shown by
the comparison of the unmatched cases. The number of unmatched trips (deviation more than
one) decreases with the usage of disaggregated targets from 827 to 614. Another indicator for
the improvement is the bandwidth of the difference within the average trip duration. Without
outliers the difference is always within a few minutes.

The described preprocessing step during the target generation induces better validation results
of the Long-Term-C-TAP simulation. But the number of the targets also increased during this





        

Figure 4: Histogram of the difference between sampled number of trips and simulated number
of trips with subdivided targets
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step. This might lead to higher runtimes.

5.2 Runtime Results

Additionally to the validation results we also want to present a statistic about runtimes. Most
of the runtime during the (Long-Term-)C-TAP simulation is spent for the computation of the
decision process. As this is the main change of our model compared to the standard model, one
might expect some differences in runtime.

We used the same input and created the same targets as above for the runtime evaluation and
simulated 100 days with the C-TAP simulation as well as with the Long-Term-C-TAP simulation
described in this work. Both simulations were running on the same machine with 4 CPUs of
1200 MHz and 8 GB RAM. Both simulations use parallelization (4 processes) for the decision





        

Figure 5: Boxplot of the difference between sampled average trip duration and simulated average
trip duration with subdivided targets and without outliers
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computation.

The results presented in table 1 show that the decision model of the Long-Term-C-TAP induces
a much smaller runtime than the default C-TAP model. The reason for the tremendous gap is
also shown in the table, namely the number of decision computations. The presented C-TAP
model without further adjustments tends to produce activities with small durations, even though

Table 1: Runtime Results

Overall Runtime [h:min:s] Optimization Steps

C-TAP 19:05:31 7451489
Long-Term-C-TAP 00:01:14 19764





        

the activity might last for a long time. In that case agents decide again and again to continue
their current activity. This process generates a lot of decision steps. Although the decision
computation of the Long-Term-C-TAP might be slower, it generates usually long-duration
decisions.

The difference in runtime might look huge, but one has to recognize that we did not use the full
model proposed by Märki (2014). Some core ideas like effectiveness functions and dynamic
targets are missing in our simulation runs. So the runtimes are not comparable. Still they give
you a hint how to overcome the big amount of parameters needed by the full C-TAP simulation
and still produce suitable travel demand in reasonable runtime.

6 Future Work

We have shown a validation of the model in the last section. One can easily recognize that there
is still a lot of space for improvements. The main ideas for an improvement of the model are
presented here.

Improve Optimizer First of all, the two-dimensional optimizing step within the decision model
is implemented using a simple local search. The optimization problem is well-defined. So a
faster implementation might be found, e.g. using an algorithm with derivative evaluation.

Improve Calibration of Targets The validation has shown that the preprocessing step of
subdividing targets is helpful to achieve a better reproduction of the reported travel demand.
But still some of the trips are not reproduced accurately. So another approach during the target
calibration might be used.

Seasonal Effects The Long-Term-C-TAP simulation does not use any information about the
seasonal effects on long-distance journeys, e.g. there exist time periods (school holidays) with a
higher probability of a holiday trip. These effects could be simulated by using either dynamic
targets or an effectiveness function, which describes the impact of activity on the state value
given a point of time and a location (both ideas are taken from Märki (2014)).

Location Choice At the moment the location choice of Long-Term-C-TAP is just based on
the traveling time. This leads to the problems described in the validation analysis. The activity





        

decision should be linked to a location choice, because different locations should have different
impact on the agents. For example, the seasonal effects described above might differ between
locations.

Mode Choice Furthermore, the traveling mode is an issue, which is not taken into account in
this work. Our goal is the generation of travel demand and thus the mode choice should be also
considered.

Budget Restrictions Usually a long distance trip and especially the location choice depends
on the available monetary budget. On the one hand holidays might be expensive at some
locations, on the other hand most of the work-related trips are not payed by the traveling person
itself. Also the mode choice is supposed to be budget restricted.

7 Conclusion

This paper presents the idea to use a continuous target-based activity planing model to simulate
long distance travel demand within a full year. We adapted an approach initially used for short
term simulations and presented a modification of the core module, namely the decision module.
The validation of the model has shown that the simulation performs well for the majority of the
used input data. But still there are some problems to solve, if the input data is not homogeneous.
Possible solutions might be found in the future work we presented in the last section. Finally,
the runtime improvement in comparison to the default model is big and justifies the proposed
modifications.
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