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Abstract

In the recent years, there have been a growing interest in understanding and forecasting joint
travel-related decisions, that is, decisions taken by several individuals together, including
binding agreements. Such forecasting would first allow to predict the impact of policies aiming
at influencing this kind of behavior (for instance policies aimed at increasing car occupancy),
but also improve the forecasts in general, by taking into account the effect of spatial dispersion
of social contacts when choosing a joint leisure location, for instance.

A large number of attempts at simulating the state of transport systems have had a game theoretic
view: individuals are seen as agents getting a utility from their travel decisions, this utility
depending on the decisions of others (mainly via congestion). Game theory is aimed at defining
and studying solution concepts for such situations, that is, ways to predict probable outcomes
of such games. Most of the research in travel behavior forecasting relied on the equilibrium
family of solution concepts. In this setting, individuals are seen as selfish agents competing for
limited joint (capacity) resources.

Another field where game-theoretic concepts have had important impact is in the field of co-
evolutionary computation. An important stream of literature in this field in particular insists on
the importance of the game-theoretic solution concept explicitly or implicitly underlying the
search process, which will favor one solution or the other.

Equilibrium is not the only solution concept from game theory, and its applicability in the case
of decisions taken amongst emotionally related individuals, such as household members, is
dubious. In particular, the possibility of realizing binding agreements is excluded from such
formulation.





          

This paper uses a co-evolutionary algorithm, built using the MATSim software framework,
to investigate the usage of two different solution concepts for the problem of predicting intra-
household joint travel: (a) a “Group Utility” concept, classical in the research on household
decision-making, and (b) an “Absence of Blocking Coalition” concept, which allows to represent
selfish but coordinating players with arbitrary social network topologies.

The implementations of those solution concepts in MATSim are used on a scenario for the
Zurich area, to reveal their strengths and weaknesses.





          

1 Transport Systems, Joint Decisions, Game Theory

and Co-Evolutionary Computation: a Short Overview

This paper focuses on the comparison of two game-theoretic solution concepts for the household
joint planning problem, by their implementation in a co-evolutionary algorithm.

This first section aims at answering preliminary questions: why are joint planning decisions
important for transportation science (Section 1.1)? What do we understand by game theoretic
solution concept, and how can co-evolutionary computation help us (Section 1.2)? Finally, how
can we represent joint decisions in a game theoretic framework (Section 1.3)?

Section 2 then describes the implementation of a simulation system for two different solution
concepts, and Section 3 describes the simulation results and compares the two solution concepts
for realism.

1.1 Joint Decisions in Transport Systems

A current trend in transportation research considers the importance of explicit coordination

between individuals on travel behavior. This wide interest comprises several sub-topics: studies
usually focus either on intra-household coordination, or on coordination with extra-household
social contacts. Within those two approaches, one can then further separate empirical, statistical
work, aiming at better understanding coordination behavior, and simulation approaches, which
aim at bringing this understanding to the forecasting front.

Studies analysing intra-household coordination often use the classical random utility framework
extended to group decision making. A classical way to cope with the possibly conflicting
objectives of different members of the household is to specify a group level utility function.
For instance, Zhang et al. (2005, 2007) develop a model where time for different activity types
is allocated to household members, subject to time constraints (including equality of time
participation in joint activities), using a group level utility function formulated as a multilinear
combination of the individuals’ utilities; Kato and Matsumoto (2009) use a linear combination
of the utility functions of the household members as a group utility. The assumption behind this
kind of models is the existence of “utility transfers”: individuals accept to decrease their own
utility if it allows to increase the utility of others by a certain fraction of their loss. Bradley and
Vovsha (2005) focus on the “daily activity pattern” generation, with household “maintenance”
tasks (e.g. shopping) allocation and possibility of joint activities. To do so, they assume a layered





          

choice structure, choosing first a daily activity pattern for each member, and then assigning joint
and maintenance activities. Gliebe and Koppelman (2005) also base their model on the daily
activity pattern concept, choosing first a “joint outcome” (the sequence of individual and joint
activities), and then an individual pattern for each household member. Those models rely on
an enumeration of the possible household level patterns. Gliebe and Koppelman (2002) also
derived a constrained time allocation model, which predicts the time passed by two individuals
in joint activities. Rather than postulating a group level utility function, the models of those
authors specify a special distribution for the error terms of the individuals. In this setting, the
error term of the individuals are correlated so that the probability of choosing a given joint
output is the same for all individuals. Ho and Mulley (2013) also estimate models in which
members of the household perform choices constrained by the choice of a household level travel
pattern. The estimated models show high joint household activity participation on weekends,
and a high dependence of joint travel on trip purpose and household mobility resources. Those
results highlight the importance of representing joint household decisions, in particular when
going beyond the “typical working day”. Vovsha and Gupta (2013) formulate a time allocation
model for multiple worker households, which considers a positive utility for members of the
household to be home jointly, as it makes joint activities possible. The estimation results show
a significant influence of this kind of synchronization mechanism. Most models listed in this
paragraph are specific to given household structures; in particular, separate models need to be
estimated for different household sizes.

Household level decision processes have also been modeled with approaches which significantly
differ from the classical random utility framework. Golob and McNally (1997) propose a
structural equation model, which predicts time allocation and trip chaining based on descriptive
variables of a household. Golob (2000) also used a structural equation model to model the
dependency of time allocations of the two heads (man and woman) of a household.

Building on those mostly utility-based empirical models, several studies considered the use
of optimization algorithms to generate households plans for simulation. They handle the
household scheduling problem by transforming it into a deterministic utility maximization
problem. The first of those approaches was introduced by Recker (1995). By extending
increasingly the formulation of the Pick-Up and Delivery Problem With Time Windows, a
well studied combinatorial optimization problem, he formulates the problem of optimizing
the activity sequence of members of a household as a mathematical programming problem.
However, due to the complexity of the problem, the full problem cannot be solved exactly by
standard operations research algorithms, and the activity durations are not part of the optimized
dimensions. Chow and Recker (2012) designed an inverse optimization method to calibrate the
parameters of this model using measured data. Also, the formulation from Recker (1995) was
later extended by Gan and Recker (2008) to introduce the effects of within day rescheduling





          

due to unexpected events. Another attempt to generate plans for households uses a genetic
algorithm, building on a previous genetic algorithm for individual plan generation (Charypar
and Nagel, 2005; Meister et al., 2005). This algorithm optimizes sequence, duration and activity
choice for a household, rewarding the fact for several members of the household to perform the
same activity simultaneously, in the way also used by Vovsha and Gupta (2013). Finally, Liao
et al. (2013) formulate the problem of creating schedules for two persons traveling together as
finding the shortest path in a “supernetwork”, and solve this problem using exact shortest path
algorithms. They however note that their model is specific to the two person problem, and that
extension to larger numbers of agents may prove to be computationally expensive. All those
approaches remained experimental, and were not integrated into multiagent simulation tools.

Some studies also tried to use the freedom given by simulation to depart from the pure utility
maximization approach. Thus came the development of rule based systems, which use behav-
iorally plausible heuristic rules to construct household plans. Miller et al. (2005) develop such a
model for household mode choice. The main difference with an individual mode choice model
is the consideration of household level vehicle allocation. In their model, individuals first choose
modes individually. If a conflict occurs, the allocation that maximizes the household level utility
is chosen. The members which were not allocated the vehicle will fall back on their second
best choice, and/or examine shared rides options. Arentze and Timmermans (2009) develop a
rule base model which relies on a simulated bargaining process within the household. Though
such models can easily represent complex decision processes, their calibration and validation is
cumbersome.

Apart from those studies on households, a stream of research focuses on understanding what
influence, if any, the characteristics of social networks have on travel behavior.

One of the main incentives to conduct such studies comes from the continuous increase of the
share of trips which are performed for leisure purpose (Schlich et al., 2004; Axhausen, 2005).
This fact represents a challenge for travel behavior modeling, as those trips are much more
difficult to forecast than commuting trips: they are performed more sporadically, and data about
those trips is much more difficult to collect. Understanding better how destination choice for
leisure trip is made is therefore essential to improve the accuracy of those forecasts.

A first important factor when considering travel are the spatial characteristics of social networks.
Carrasco et al. (2008) studied the relationship between individual’s socioeconomic characteristics
and the spatial distribution of their social contacts. This kind of empirical work allows to
specify and estimate models able to generate synthetic social networks, given sociodemographic
attributes and home location. An example of such a model, based on the results of a survey in
Switzerland, can be found in Arentze et al. (2012). This kind of model is essential if one wants





          

to include social network interactions in microsimulation model.

In parallel, various studies have been conducted with the idea that an important factor in leisure
trip destination choice, or activity duration choice, is the ability to meet social contacts. Examples
of empirical work include Carrasco and Habib (2009), Habib and Carrasco (2011) or Moore
et al. (2013). All those studies show a significant influence of social contacts on the spatial and
temporal distribution of activities. Based on an analysis of social network involvement and
role, Deutsch and Goulias (2013) advocate considering the role individuals play in different
social networks. Using latent class cluster analysis models to analyse the role of individuals in
the various social networks they are involved in, they find that “the decision-making role of an

individual can differ vastly across different social engagement types”. This is both good and bad
news for microsimulation: good news, because microsimulation approaches may be the only
way to represent such diversity for forecasting; bad news, because of the amount of complexity
that it adds to the simulation frameworks and the calibration procedure, with all the negative
effects that this can have on usability of the method and robustness of the results. Often, in this
field, less is more.

However, the importance of social networks in travel behavior calls for at least a partial con-
sideration in simulation approaches. Frei (2012) for instance demonstrated in a simulation
experiment how considering social interactions in leisure location choice can help increase the
accuracy of predicted leisure trip distance distribution. Han et al. (2011) present experiments
of using social networks to guide activity location choice set formation in the FEATHERS
multiagent simulation framework. Using a simple scenario with 6 agents forming a clique, they
consider the influence of various processes like information exchange and adaptation to the
behavior of social contacts to increase the probability of an encounter. They do not, however,
represent joint decisions, such as the scheduling of a joint activity. The same kind of processes
have been investigated by Hackney (2009), using more complex network topologies, within the
MATSim framework, used in this paper. Ronald et al. (2012) and Ma et al. (2011, 2012) present
agent based systems which do integrate joint decision making mechanisms, based on rule based
simulations of a bargaining processes. They are not yet integrated into any operational mobility
simulation platform.

1.2 Game Theory, Co-evolutionary Computation and the
Simulation of Transport Systems

Game theory, as a theoretical framework to represent competition, has been used in many forms
in transportation research. One of the earlier examples, and probably one of the most influential,





          

is the Wardrop equilibrium condition in traffic assignment (Wardrop, 1952), which is simply
a Nash equilibrium of a specific congestion game. This equilibrium notion has then widely
spread in transportation research in general, and traffic assignment in particular, and doing an
exhaustive review is not the purpose of this paper.

Another field where game-theoretic concepts have had important impact is the field of co-

evolutionary computation (see Popovici et al. (2012) for a thorough introduction). Such al-
gorithms are an extension of evolutionary algorithms. Contrary to a classical evolutionary
algorithm, where a reproduction and selection process is performed, giving better survival prob-
ability to solutions maximizing a known, explicit fitness function, co-evolutionary algorithms
are based on a implicit fitness function: the fitness of a component depends on interaction with
other components, which are themselves part of the evolution process. Such components can
for instance be solutions and tests, or sub-solutions combined into a complete solution. As
emphasized by Ficici (2004), such algorithms are essentially game theoretic in nature, and
the solution concept used to select individuals surviving the selection process has a major
influence on the output of the algorithm. While seeming obvious once written, this fact took
some time to be that clearly stated, and Ficici (2004) claims that most (if not all) pathologies
exhibited by co-evolutionary algorithms come from “a general lack of rigor in our solution
concepts”. The practical implementation of a solution concept in a coevolutionary algorithm is
however no evident matter. As noted by Ficici et al. (2005), when they perform a theoretical
analysis of different selection methods in a coevolutionary context, “Coevolutionary dynamics

are notoriously complex. To focus on our attention on selection dynamics, we will use a simple

evolutionary game-theoretic framework to eliminate confounding factors such as those related

to genetic variation, noisy evaluation, and finite population size”. Those “confounding factors”
can however not be eliminated from an actual implementation of a coevolutionary algorithm,
and rigorously proving that a given algorithm actually implements a specific solution concept is
very tedious, if not impossible.

Even given those difficulties, this game-theoretic nature makes this kind of algorithm particularly
well-suited for solving problems defined over what Popovici et al. (2012) call an interactive

domain. A particular kind of problem over an interactive domain, which contains all the problems
this paper focuses on, is the compositional co-search problem kind. In short, a compositional

co-search problem is the combination of:

• domain roles 1 ≤ i ≤ N , played by entities x ∈ Xi, with Xi being named an entity set

• a potential solution set C, often a subset of X1 × . . . × XN , or a set of distributions over
the elements of X1 × . . . × XN (the compositional aspect)

• a solution concept, which defines S ⊂ C, the set of actual solutions, (the search aspect, as
opposed to the kind of problem where there is a global function to optimize)





          

The problem of multi-agent activity-based demand forecasting pertains to this class of problems:
each agent i has a set of physically feasible plans Xi, a system-wide solution is the allocation
of a daily plan to each agent in the system, and the quality of a daily plan depends on system
performance such as congestion or facility crowding, which depend on the daily plans of the
other agents. Solution concepts for this problem are based on a behavioral hypothesis, and
specify which transport system states are stable. More detailed descriptions of such solution
concepts can be found in Section 2.

It is then no wonder that such algorithms were used when implementing travel demand forecast-
ing tools. An important example is MATSim, which is used in this paper, and is described in
more details in Section 2.1.

1.3 Joint Decision and Game Theory

Although the outcome of any game is a decision “joint” in some way (the decision of a player
depends on the decisions of the other players), this work uses a more restrictive definition
of what is a joint decision. A joint decision, as we understand it here, is a set of interlinked
decisions by several players, requiring the usage of explicit coordination, or binding agreements.
Including such possibility in a game theoretic framework requires a shift in solution concept.

This can be illustrated by a classical game, called the House Allocation Problem (Schummer
and Vohra, 2007). This game consists of n players and n houses. Moreover, each player has its
individual ordering of the houses, from the most preferred to the least preferred, and players
prefer being allocated alone to any house rather than in the same house as somebody else. The
strategy of a player is the house it chooses to live in.

An interesting feature of this game is that any one-to-one allocation of players to houses is a
Nash Equilibrium: no player can improve its payoff by unilateraly changing its strategy, as it
would require choosing an occupied house. This result however contradicts basic intuition about
the stability of such an allocation. In this particular case, a more realistic solution concept is the
Absence of Blocking Coalition: given a one-to-one allocation of houses to players, a blocking
coalition is a set of players which could all be better off by re-allocating their houses among
themselves.

It is to be noted that both solution concepts correspond to rational agents, i.e. agents having a
preference ordering over outcomes. What differentiate both solution concepts is the degree of
communication which is hypothesized: in a Nash Equilibrium, for a given player, the strategies
of the others are taken as given; in an Absence of Blocking Coalition, players have the possibility





          

to “negotiate” a change of strategy with other players, which will be accepted only if all agents
in the negotiation are better off after the re-allocation. In this work, we consider that a Nash
Equilibrium corresponds to individual decisions only, whereas the blocking coalition concept
allows what we phrase joint decisions.

Experimental data, however, tends to indicate that individuals are not as rational as the clas-
sical game theoretic models assume: in laboratory game-playing, players’ behaviors exhibit
systematic discrepancies with the game theoretic predictions. In particular, along with the
profit-seeking behavior, it seems most individuals are inequity averse, in two ways (Fehr and
Schmidt, 1999):

1. individuals having the impression to be unfairly treated will attempt to punish the players
considered as selfish, even if it implies decreasing their objective (often monetary) payoff;

2. individuals having the impression to get an unfairly better payoff than the others will tend
to decrease their objective payoff, if it allows to make the discrepancies between payoffs
smaller — though this effect is much smaller than the previous one.

Other research, in particular on the special class of games called social dilemmas — the games
were there exist strategy profiles where all players are better off than at equilibrium — also
revealed that some competitive players actually try to maximize the difference between self and
partner, rather than maximizing their own payoff (Kollock, 1998).

Other authors, in particular Rabin (1993) or Falk et al. (2003), model those observations using a
“kindness” concept: what matters would be not the material difference of payoffs, as in (Fehr
and Schmidt, 1999), but the intention which led to the outcome: individuals tend to be mean to
whom they consider being mean to them, and kind to whom they consider being kind to them.

Another way to model seemingly irrational cooperation is with the introduction of iterations (?).
In this setting, players are assumed to repeat the same game over and over. Each iteration has
decreasing payoff, and the strategy chosen in a given iteration depends on the past plays of the
other player. An interesting feature is the fact that in the iterated prisoners dilemma, the “tit for
tat” strategy (collaborate until the opponent defects, and then defect forever) is a best response to
itself, leading to an equilibrium where the two player eternally cooperate. Intuitively, this kind of
model is able to represent some kind of “trust”: players will collaborate to ensure future action
of the other player. Leaving with the bounty will increase the payoff for a particular iteration, but
the resulting decrease in payoff for the rest of the game is greater than the immediate increase.

This kind of result, though not resulting from what we called a joint decision, is to be kept in
mind when modeling joint behavior, as individuals involved in a group decision making process
may attempt to achieve a fair agreement — in particular when the members of the group are





          

members of the same household or close friends.

2 Joint Decision Problem: Formulation, Solution

Concepts and Algorithms

The previous section showed the importance of what we called joint decisions in mobility
behavior. It also exemplified how one can use game theoretic concepts to model the transportation
system, and how “joint decisions” can be accounted for in a game theoretic framework.

Building on those insights, this section presents an operational co-evolutionary algorithm
designed to model joint mobility decisions and search an approximate solution to the resulting
game. Two solution concepts are presented: one specific to the simulation of intra-household
coordination, the other applicable to social networks of arbitrary topologies. The corresponding
evolutionary operators allowing to solve one or the other solution concept are presented.

2.1 MATSim: a Co-Evolutionary Algorithm for the Simulation of a
Transportation System

This work builds on MATSim, an actively developped open-source software using a co-
evolutionary algorithm to simulate individual’s daily mobility behavior.

MATSim is an open source simulation framework which provides a platform for running
multiagent, large scale travel behavior simulations (MATSim, 2013). Is has been used and
validated in several areas, including whole Switzerland (Meister et al., 2010), Berlin (Germany)
and Singapore (Erath et al., 2012).

The MATSim process uses a co-evolutionary approach to search for an approximation of a
stochastic user equilibrium, where the expected utility of the daily plan of individuals is optimal
given all other individuals’ choices.

The basic modeling idea is that individuals associate a utility value to their day, which increases
with the time spend performing activities and decreases with the time spent traveling. Different
parameters can be used for different modes or activity types, using the functional form from
Charypar and Nagel (2005). Travel time is influenced by other agents via congestion.





          

The search problem resulting from those hypotheses can be formalized as a compositional

co-search problem, as introduced in Section 1.2:

• for each agent i, the entity set Xi represents the set of physically feasible daily plans. In
practice, what is explored is actually a subset of this universal choice set, defined as the
set of plans which can be created by iteratively applying evolutionary operators on an
initial plan.

• the potential solution set C ⊆ X1 × . . . × XN is simply X1 × . . . × XN , the set of all
possible combinations of individual daily plans.

• the solution concept, which defines the set of solutions S ⊂ C, is akin to the Nash
Equilibrium concept, with important differences. Nash Equilibria would be the states
where no agent can improve the utility it derives from its day, given the exact choice of
the other agents — which requires perfect and complete knowledge. This is a strong
requirement, both behaviorally and computationally: rather than a Nash equilibrium,
the solution concept embedded in MATSim considers imperfect knowledge and random
behavior. This solution concept has been described as an Agent-Based Stochastic User

Equilibrium by Nagel and Flötteröd (2009), formalized as “a system state where agents

draw from a stationary choice distribution such that the resulting distribution of traffic

conditions re-generates the choice distribution”. That is, the solutions are the states which
are part of the stationary state of a dynamical system, where agents have probabilistic
responses to the state of the system, itself resulting from their decisions. Alternatively,
one could define the solution as the stationary distributions themselves.

Figure 1: The MATSim iterative process

Initial
Demand

Mobility
Simulation

Scoring Output

Evaluation

Replanning

The co-evolutionary algorithm used by MATSim to solve this problem is an emulation of a
learning process, suggested by the essentially dynamic solution concept (Nagel and Marchal,
2006). Using the formalization of the problem above and iterative learning analogy, the
specification of the algorithm is quite natural: each agent will perform an evolutionary algorithm
to optimize its own daily plan, the fitness of which will be evaluated by executing all daily plans
on the network to evaluate the resulting state of the transportation system. The steps of this
process, represented on Fig. 1, are the following:





          

1. Initial demand All agents have an initial daily plan, which will serve as a starting point
for the iterative improvement process. Some characteristics of the plans are left untouched
during the simulation, and should therefore come from data or external model. This is
typically the case of long term decisions, such as home and work locations, or decisions
involving a larger time frame than a single day (e.g. do the weekly shopping or not).

2. Mobility simulation Plans of all agents are executed concurrently, to allow estimating
the influence of the plans of the agents on each other. This step typically uses a queue
simulation to simulate car traffic, which gives estimates of the congested travel time.
Simulation of bus delays due to congestion and bus bunching can also be included.
Together with the next step, this step constitutes the evaluation stage of the co-evolutionary
algorithm.

3. Scoring The information from the simulation is used to estimate the score of each in-
dividual plan. This information typically takes the form of travel times and time spent
performing activities; experiments also included information such as facility crowding
(Horni et al., 2009). The functional form is the one used by Charypar and Nagel (2005). It
uses a linear disutility of travel time, and a logarithmic utility of time passed performing
activities. Different parameters can be defined for each mode/activity type.
This gives the score from a single interaction. The fitness of the daily plan (entity of
the algorithm) can then be updated, as (1 − α) fold + α fnew, with α ∈ [0.5, 1] being
the learning rate. The lowest the learning rate, the more the fitness of a plan will be
close to an average fitness over the evaluated interactions. While this is consistent with
the hypothesis that individuals react to the expected state of the transport system, most
applications use a learning rate of 1, which results in more reactive agents, and thus faster
convergence.

4. Replanning This step actually groups two of the important components of co-evolutionary
algorithms: (a) selection of the interactions for evaluation, and (b) application of the
evolutionary operators (selection and mutation).
To do so, part of the agents select a past plan based on the experienced score, following a
Logit selection probability. This will have two consequences: (a) the state of the transport
system, used for evaluation, will only evolve slowly from iteration to iteration, giving
the time to the agents to adapt, and (b) those plans will be re-evaluated, given the new
plans of the other agents. The other agents copy and mutate one of their past plans. If the
number of plans in an agent’s memory exceeds a predefined threshold (usually 4 or 5), the
worst plan is deleted, pushing the evolution towards plans with higher scores. Steps 2 to
4 are then iterated until the system reaches a stable state.
What kind of mutation is performed determines which alternative plans will be tried out
by the agent. Typical replanning strategies include least cost rerouting using travel time
estimates from the previous iteration, departure time mutation, and mode mutation at the





          

subtour level, considering mode chaining constraints. A tour is a sequence of consecutive
trips starting and ending at the same location, named anchor point. A subtour is a tour,
possibly without other tours it contains. Vehicular modes can only be performed for whole
subtours, which must be anchored at home or in subtours of the same mode. Experiments
included secondary activity location choice (Horni et al., 2009) and activity sequence
(Feil, 2010)

Those steps are iterated until a stationary state is reached, and the state of the system in this
stationary state is taken as a result.

2.2 Daily Plans and Joint Decisions: Formulation and Algorithm

The MATSim process, by design, embeds a solution concept close to a Nash Equilibrium, with
the important difference that behavior of other agents is random, and the choice probabilities of
agents are independent, knowing the experienced states of the transport system. This indepen-
dence is particularly problematic when trying to include what we called joint decisions, as it
forbids the representation of binding agreements.

Hence, a generalized algorithm, which first state was presented in Dubernet and Axhausen
(2013), was developed. It aims at including a way to represent binding agreements and their
influence on individual scores. The solution concepts which can be represented using this
framework will be described in the next sections.

The generalization here relies on the introduction of joint plans constraints. The individual plans
of two agents are linked in a joint plan if the score of one of the plans is assumed to depend
heavily on whether the second individual plan is executed or not: an obvious example is a daily
plan including the “car passenger” mode, which makes sense only if the agent identified as
a driver indeed plans to perform the ride. Such links are used as constraints for the process,
linked plan always being executed together. This ensures that the score derived from a plan
corresponding to a joint decision takes into account the decision of all parties. This new element
has no effect on the entity set nor on the potential solution set: all combinations of individual
plans are still potential solutions; allowing to test a given individual plan in the context of several
joint plans however allows to introduce new solution concepts, which take into account the
influence of binding agreements on the utility of this individual plan.

Those constraint come into play in the replanning step. Joint plan constraints are enforced when
agents simply select a plan from their memory for execution, but may be broken when selecting
plans as a base for mutation: those breakages act in a similar fashion as cross-overs in genetic





          

algorithms, and allow a quicker propagation of “good” individual plans within the joint plans.
They are created after each mutation, using a set of rules, such as linking plans of co-travelers.

Given those constraints on which combinations of individual plans can be chosen together, one
needs a way to create new plans from old ones, and a way to select past plans based on the
experienced score.

To achieve this, it is not possible anymore to consider agents in isolation, and one has to identify
groups of agents to replan jointly. Fig. 2 illustrates the process to identify agents which are
replanned together. In this figure, circles represent agents. Solid lines represent the existence of
joint plans between agents, and discontinuous lines represent “social ties”, that is, the possibility
to create new joint or incompatible plans. For replanning, agents having joint plansare put
in the same group, as is the case for agents 0, 1 and 2 , agents 3 and 5, and agents 8 and 9.
Agents being linked by social ties can, but must not necessarily, be put in the same group. In the
figure, for instance, agent 5 and 6, or 7 and 9, are put in the same group, allowing to generate a
new joint plan containing individual plans for each of those agents, while agent 4 is replanned
alone. This allows to break big connected components, such as the one of agents 1 to 6, to be
broken down in smaller groups, each group being treated by different operators. The groups
used in different iterations need not be the same, as long as the constraints are respected. During
the process, each agent should however be replanned together with each of its social contacts,
to allow the search algorithm to try interactions between any pair of social contacts. For the
household case, presented in this paper, agents are always replanned with the totality of their
household’s members.

Figure 2: Group identification
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Once groups are identified, the process is similar to the individual case: for some agents, plans
are selected without modification, considering the joint plan constraints. For the others, plans are
selected for mutation, allowing to break “weak” plan links, such as links due to the performance
of a joint activity.

If agents have too many plans (the definition of too many varying depending on the solution
concept), a plan, and the plans of the corresponding joint plan, are removed. The selection
strategy for removal is of prime importance for several reasons: (a) it must not create states
where no feasible combination exist, and (b) it is this selection strategy which drives the learning





          

process towards one stable state or the other, much more than the selection strategy for the
executed plan. The selections strategies are thus the most important elements for specifying the
solution concept that the algorithm implements: the next two sections illustrate two possibilities,
on specific to intra-household coordination (Section 2.3), the second also applicable to arbitrary
social networks (Section 2.4).

2.3 First Solution Concept: Household-Level Utility Maximization

The first solution concept for household-level decision making that will be used here postulates
that individuals do not try to maximize their individual utility, but the utility of the household.
This formulation is classical in the literature, as seen in Section 1.1. The group-level utility is
constructed by combining individual-level utilities, most usually using a (weighted) sum, though
other formulations are possible.

In the weighted sum formulation, a player will be willing to decrease its individual utility if
it allows to increase the utility of the other players in the group by at least the same amount.
This is similar to what is often termed a game with transferable utility, with the difference that
transferable utility is usually understood as a cost, which sharing across players is part of the
strategies of the players (see e.g. Jain and Mahdian (2007)).

One must note that this solution concept is specific to the case when individuals are part of
well-identified cliques, such as households, but is not applicable for arbitrary social network
topologies: it basically transforms the game in a competition between groups rather than players.
It is akin to the user equilibrium solution concept, with players being the pre-defined groups.

The specific components implemented in the algorithm to search for this solution concept are:

• Selection operator: when selecting a plan from the agents’ memory, the feasible combi-
nation which maximizes the sum of randomized scores is chosen. Scores are randomized
by adding a Gumbel-distributed error term, to emulate a Logit model, such as the one
classically used for selection in the classical MATSim process — making the generalized
process equivalent to the classical process when no joint plans are evaluated. A branch-
and-bound approach is used, which allows to keep the computational burden acceptable
(Lawler and Wood, 1966).
• Removal operator: when the number of plans remembered by an agent exceeds a pre-

defined threshold, the plan pertaining to the plans combination which minimizes the sum
of scores is removed, taking care not to create a state where no feasible combination exists.
If the plan pertains to a joint plan, plans of other participants are also removed from their





          

respective agent’s memory. This also reproduces the classical MATSim behavior when no
joint plan is evaluated.

2.4 Second Solution Concept: Absence of Blocking Coalitions

The solution concept defined in Section 2.3, though common in the literature, is not really
satisfying: (a) not only is it only applicable for a very specific social network topology (isolated
cliques), but (b) it also makes strong assumptions on the altruism of the individuals, and
(c) requires the individual utilities to be comparable.

Hence, we search here for a solution concept which (i) is valid with any social network topology,
and (ii) allows for egoistic behavior, while still allowing for binding agreements.

This can be done by applying the concept of Absence of Blocking Coalition within our framework:
agents can agree with another agent on which daily plan each of them will perform, but the
agreement will be accepted only if none of the agents can get a better utility by not performing
the agreement.

The specific components implemented in the algorithm to search for this solution concept are:

• Selection operator: when selecting a plan from the agents’ memory, the system selects a
feasible combination such that no blocking coalition exists, given Gumbel-randomized
scores. A group of agents constitute a blocking coalition for a given allocation A if they
are the participant of a joint plan which improves the score of all of them, compared to
the ones they perform in allocation A. This kind of allocation is found using an algorithm
inspired by the classical “top trading cycle” algorithm for the house allocation problem
(Schummer and Vohra, 2007). Note that there may be a variety of such allocations; in
which case, one of them is arbitrarily chosen. Space here does not allow us to present this
algorithm in detail.

• Removal operator: The algorithm above makes more sense if agents have the choice
between a large number of joint plans, creating a wide variety of possibly blocking
coalitions. Thus, the criterion for removal has been changed here, by putting a maximum
number of plans per joint plan composition. In order to avoid memory consumption to
go out of control, a high limit also had to be defined for the number of plans in an agent
memory.
When the limit for a given joint plan composition is reached, one should keep the plans
which have the highest probability to create blocking coalitions, that is, to be preferred
to the other plans in the agents memory. To this end, a lexicographic ordering is used:





          

the process removes the plan which maximizes the number of plans which are the worst
of the agents’ memories. If several joint plans have the same number of worst plan, the
process chooses among them the joint plan which maximizes the number of second worst
plans, and so on until the “worst” plan is unique.
When the overall maximum number of plans in the memory of an agent is reached, the
worst individual plan for this agent is removed, taking care to always let at least one plan
not part of a joint plan, as there may otherwise not be any state without blocking coalition.
Agents are parsed in random order, to avoid the emergence of “dictators” over iterations,
whose worst plan would always be removed, even if it is the only “bad” pan of a joint
plan.

3 Results

This section will present the results of four simulations for the case of intra-household ride
sharing, on a scenario for the Zürich area.

The scenario is composed of the following elements:

1. Population: The initial demand comes from the full-Switzerland scenario described by
Meister et al. (2010). It was generated by allocating activity chains from the national
travel survey from the years 2000 and 2005 to records from the national census 2000,
which is a 100% sample of the Swiss population, containing in particular information
as home location at the hectare level and work location at the municipality level, as
well as household membership information. The agents are grouped according to the
household information from the census, and only the households having at least one
member performing a trip passing less than 30km from the Bellevue Place, in the center
of Zurich, are kept. A sample of 10% of those households is used for the simulation.
This results in a scenario containing 206,943 agents, grouped in 88,439 households, and
performing a total of 788,931 trips. This rather old scenario is used because from 2010 on,
the Swiss census is not a full sample anymore, and hence does not allow to reconstruct
households as easily. Though this approach is not applicable to most recent data, it is
sufficient for the purpose of this paper. The generation of a synthetic population from the
most recent data is in progress.

2. Network: a planning network is used, using data from the Federal Office for Spatial
Development. It models the Swiss network at medium-level resolution, as well as
the major arterials in the neighboring countries. It allows faster runs than a navigation
network.





          

3. Public Transport: the public transport schedule from the Cantonal Transport Model is
used to get realistic travel time estimates.

4. Facilities: the “facilities” contain the information about opening times for different activity
types, and roughly correspond to buildings. Data comes from the federal enterprise census
2001.

Due to the evolving code base, the parameters of the scoring function which were calibrated
for previous studies did not give satisfying results anymore. Therefore, the parameters were
adjusted so as to obtain reasonable results. Due to the duration of a single simulation, calibrating
a scenario is a time-consuming process. The aim of the study described herein being to test the
behavior of the model rather than producing accurate forecasts, it was not attempted to get a
perfect fit, but rather to obtain values of the good order of magnitude. The scoring function was
extended in the following way:

• only the driver of a car gets a marginal utility of traveled distance (representing fuel cost)
• for shared rides, both driver and passenger get a positive marginal utility of travel time,

to represent that passing time in a vehicle with a relative is more enjoyable than waiting.
Note that this positive value is set such that it is lower than the opportunity costs, that is,
the cost incurred by the fact that traveling longer forces to perform shorter activities; this
way, shorter trips are still preferred over longer trips.
• the time passed in a leisure facility jointly with a household member gets an additional

logarithmic utility. This introduces a willingness to travel further to meet contacts (here
only household members). The parameter might get more importance when simulating
more generic social networks.

Four runs are performed, to test the influence of the new utility terms and of the solution concepts
on the results:

1. Absence of Blocking Coalition, utility of being together in leisure activities (ABC.t)
uses the selectors for the Absence of Blocking Coalition concept (see Section 2.4), plus a
high logarithmic utility of time passed with household members in leisure activities: at
the “typical duration” of a leisure activity (see Charypar and Nagel (2005) for the exact
meaning of this term) the marginal utility of time passed with a given household member
is 100 times higher than the marginal utility of time passed in the leisure location.

2. Group Utility, utility of being together in leisure activities (GU.t) uses the selectors
for the Group Utility concept (see Section 2.3), plus a high logarithmic utility of time
passed with household members in leisure activities.

3. Absence of Blocking Coalition, utility of sharing a ride (ABC.s) uses the selectors for
the Absence of Blocking Coalition concept (see Section 2.4), plus a positive linear utility





          

of time passed in the same vehicle as a social contact. The utility of time passed in
activities with household members has the same form and parameters as the utility of time
passed in a leisure activity.

4. Group Utility, utility of sharing a ride (GU.s) uses the selectors for the Group Utility
concept (see Section 2.3), plus a positive linear utility of time passed in the same vehicle
as a social contact.

The results are compared with the results from the national travel diary survey 2005, which was
used as one of the sources for the scenario generation (Swiss Federal Statistical Office (BFS),
2005). The mutation operators, which, together with the initial plans allocated to the agents,
define the set of possible plans for each agent, are described in Table 1. At each iteration, for each
group, a replanning module is selected with a probability proportional to the module’s weight.
Sequence mutation and leisure location choice are included to allow for the emergence of joint

leisure activities, which are an important source of joint travel. The various approaches already
implemented for location choice in MATSim (Horni, 2013) are not usable here, as we need a
reasonably high probability to generate activities at the same location for different household
members. 1600 iterations are run, with all mutation operators deactivated after iteration 1500
(the process only selects past plans based on score from this iteration on).

Each time the execution of mutation operators generates new plans for a group, the newly
generated plans are grouped into joint plans using the following heuristic rules:

• plans of co-travelers are linked. Those links cannot be broken at replanning (plans of
co-travelers are always mutated together), as there is a strong dependency of the scores of
the plans of the co-travelers.

• plans having expected overlapping leisure activity at the same location are linked. Those
links can be broken when selecting plans for mutation, but not when selecting plans for
mutation, allowing to explore more party compositions for joint activities.

Fig. 3 shows the evolution of scores for the four runs, Fig. 4 shows the evolution of mode shares.
It seems convergence is still not reached after 1500 iterations, as a slight slope is visible in all
graphs. Quite unsurprisingly, the group utility concept allows to reach slightly higher average
scores, as agents attempt to maximize the average score of the household.

Fig. 5 shows the mode shares, per trip length category, at the end of the four runs and in
the national travel survey. All runs tend to underestimate a lot the share of joint travel —
note however that the shares from the National Travel Survey include both intra- and extra-
household ride sharing. The Absence of Blocking Coalition concept leads to much lower shares
of joint modes than the Group Utility concept, due to the egoism of drivers: in Absence of





          

Table 1: Replanning Modules

Module Description Weight

Past Plan Selection see Section 2.3 and Section 2.4 2
Time Allocation Mutation Randomly mutates activity end times. It adds or

removes a random amount to all activity end times
in a plan, within a range which decreases with

iterations, from ] − 2.5h; +2.5h[ at the beginning to
] − 0.5h; +0.5h[ from iteration 750 on.

1

Subtour Mode Mutation Changes randomly the mode of all trips of a subtour. 1
It considers car availability (i.e. the combination of
driver’s license and car ownership) and trip chaining

constraints: subtours with chain-based modes (car
and bike) must be anchored at home or in a subtour
of the same mode. Subtours containing one or more

joint trips are not modified.
Re-routing Computes new routes for all trips in the plan, using

a least-cost path algorithm based on the travel times
observed in the previous iteration.

1

Activity Sequence Mutation randomly switches two activities 1
Joint Trip Mutation Inserts or remove joint trips randomly 1
Joint Location Choice Randomly mutates leisure locations for several

agents at the same time, by selecting a location
which minimizes the maximum distance traveled by

one of the participants.

1

Blocking Coalition, a driver will perform a joint ride only if its side effects (presence of an
household member in the vehicle or at the leisure location) have a positive effect on its utility; in
Group Utility, drivers will also perform a ride if it helps increasing the utility of the cotraveler.
Interestingly, the share of joint travel with high utility of joint activity time is higher than the
share of joint travel with a utility of shared in-vehicle time. This shows how the process, by
considering the utility of the whole day, is able to represent the interaction between different
choice dimensions. Unfortunately, this also points the difficulty of the calibration process, as
parameters for activities have influences not only on characteristics of the activities, but also on
mode shares and other statistics.

Fig. 6 shows the trip distance distribution, per mode, at the end of the four runs and in the





          

Figure 3: Evolution of Scores
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national travel survey. Except for bike trip lengths, which tend to be overestimated, the fit for
non-joint modes is rather satisfying. What is interesting here is to look at what happens with
joint modes. Let’s first have a look as the case with a high utility of joint activity time, and
no utility of joint traveling. “Car driver” trip length tends to be overestimated, a little for the
Absence of Blocking Coalition concept (mainly due to too few short trips), a lot for the Group
Utility concept (too few short trips and too much long trips). The longest driver trips for the
Group Utility concept comes from an over-estimation of driver detours, which remain performed
by the agent if they result in enough increase in the utility of the co-traveler. Also, the fact that
there are too few short trips for the Absence of Blocking Coalition concept points to the fact





          

Figure 4: Evolution of Mode Shares
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(c) ABC.s
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that there are probably not enough household members having the same OD pairs in their plan,
which is not compensated by the location choice strategy used here: the detours drivers have to
do in the simulation are longer than the detours individuals perform in reality. On the opposite,
“car passenger” trips tend to be too short for both solution concepts. The reason may be twofold:
first, given two arbitrary OD pairs, the longer the passenger trip, the higher the expected driver
detour, and hence the higher the probability of the joint ride being rejected by the driver. Second,
being passenger for one trip forbids to use a vehicular mode for the rest of the tour: the other
trips of the tour then have to be performed by walk, public transport, or again car passenger.
Performing a long trip as a passenger may thus force to perform long trips by public transport or





          

Figure 5: Mode Shares per Distance Class
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walk, inciting the agent to rather take the car from the beginning. The picture with a utility of
joint in-vehicle time is pretty much the same, with the important difference that driver detours
are overestimated even for the Absence of Blocking Coalition concept, even if the effects of this
term on the utility of the day are much smaller: the utility of joint in-vehicle time, while making
joint travel more likely, also compensates for the opportunity costs, while the utility of joint
activities, in addition of inciting to travel together, increases the opportunity costs of travel.

Figure 6: Trip Distance Distribution per Mode
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Fig. 7 shows the shares of the passenger mode per trip purpose, for the four runs and the National
Travel Survey. The data from the National Travel Survey shows a clear pattern: trips for leisure
purpose have a higher probability to be performed as shared rides. When considering a high
utility of joint activities, the Absence of Blocking Coalition run seems to show slightly such a
pattern for trips to leisure only. The Group Utility runs show a completely different picture, with
a dominance of passenger trips for trips to and from education — for both utility formulations.
Interestingly, shares for this purpose are quite close to the shares observed in the National
Travel Survey. Those differences come from the difference between the two runs: in Absence
of Blocking Coalition, a joint trip is performed only if it is the best for all co-travelers, while
in Group Utility, it is performed if it increases the average utility of the co-travelers. Thus, the
(slightly) higher share for leisure purpose in run ABC.t comes from the willingness of agents
to perform joint activities, together with the flexibility in activity location. The significant
dominance of education purpose in Group Utility shows that this concept seems to be able to





          

represent children escorting, by combining the strong altruism assumption with the impossibility
for children to drive a car.

Those results show that both solution concepts seem to have their pros and cons:

• The Group Utility concept seems to be able to represent intra-household commitments,
such as escorting the children to school, by capturing a certain kind of altruism. This utility-
based “altruism” however tends to create agents driving unrealistically large distance just
to drive somebody else on a short distance.

• The Absence of Blocking Coalition concept, with its pure egoism, results in much more
realistic driver detours. It is however unable, in this form, to represent willingness to
serve, and produces very low joint travel shares. Adding a utility of joint in-vehicle time
to correct for this underestimation makes driver perform unrealistic detours, while still
dramatically underestimating the number of shared rides.

One might thus want to extend the Absence of Blocking Coalition concept, which seems to lead
to the most realistic trip distribution, with “altruistic” components, to allow to reproduce the
relatively realistic behavior of the Group Utility concept for children escorting.

However, the only way to get significant, though low, shares of joint travel, was to unrealistically
reward joint leisure activities, until the scores obtained form this component completely dominate
the other components. This brings several remarks to mind:

• First, household-specific processes may have to be represented explicitly: limited vehicle
resources, or “maintenance” tasks having to be performed by any, but at least one, member
of the household during the day, etc.

• Other processes, not specific to households, may remain to include. Section 1.3 listed
some studies in the fields of experimental game theory, which show significant (and
consistent) deviations of observed behavior from the rational outcomes. Researchers were
able to model those deviations using different forms of inequity aversion, kindness, or just
by considering iterated games. Those insights from game theory are however difficult to
consider here, for at least two reasons. First, “inequity” is difficult to quantify: utility is
private to the agent and difficult to compare between agents, and it is not obvious what
should one consider for inequity — utility, travel time, activity time, waiting time? Second,
the short horizon of the simulation makes it difficult to represent the trust-building process
modeled in iterated games, which might indeed be an important process in real life — one
might agree to drive somebody just to keep good relationships, and ensure that the other
person continues to act kindly.

• The initial plans and mutation operators (which together define the actual entity sets of





          

the co-evolutionary algorithm) need to be carefully selected. In particular, initial plans
which lead to good results when letting joint decisions aside may prove incorrect when
including such decisions. In particular, the classical MATSim utility function is not well
suited for activity insertion or removal (see e.g. Feil (2010)), but individuals do modify
their activities depending on their binding agreements: household heads may agree on
who escorts the children to school and who does the grocery shopping (which allocation
depends on a lot of factors, see e.g. Schwanen et al. (2007)); friends do agree on a
date for their dinner at the restaurant, rather than first planning each one a different date
and then checking who wants to go on the same date (which is roughly what happens
in the algorithm presented here) — in other words, the choice of which activities to
perform during a given day is correlated between social contacts, which is broken by the
independent sampling of activity chains used for scenario generation.

• Here only household joint travel was considered, letting more generic social contacts out.
This is not only problematic for representing joint trips: Section 1.1 lists some studies
showing a significant impact of the spatial distribution of leisure social contacts on the
characteristics of leisure travel. The application of the Absence of Blocking Coalition
concept is however possible in this context, and experiments are currently in progress,
using a Switzerland-wide social network generated from the model by Arentze et al.
(2012).

4 Discussion

Since their formulation in the middle of the 20th century, game theoretic concepts have been
refined and used in a variety of contexts involving competing agents, from economics to computer
networks, passing by transportation systems. In transportation systems in particular, they have
been a successful framework to describe and model the retroaction of congestion on travelers’
behavior.

Game theory defines solution concepts, which define the set of outcomes being “solution” of
the game. Those concepts are usually based on a stability criterion: which outcomes are stable,
given rational players? Though the most widely spread solution concept is the Nash equilibrium,
other formulations are possible, and may be necessary. In particular, to represent what we called
joint decisions, one needs to go away from this concept and find other formulations, which allow
to model binding agreements.

This paper demonstrates the inclusion of two such solution concepts in a travel forecasting tool,
one specific to the case of isolated cliques, the other one applicable to generic social network





          

topologies, and analyzes the kind of results that were obtained.

The outcome of both solution concepts are quite different, and it seems a hybrid solution concept
would be optimal. A particularly difficult problem seems to be to achieve realistic shares for
shared (car) rides, while maintaining realistic travel distance distribution.

Though the analysis here was focused on households, one of the two solution concepts is
applicable for any social network topology. The application of this concept for friendship
network is being experimented with, to verify the hypothesis that considering social activities
can help in the prediction of leisure trip distributions.





          

Figure 7: Passenger Mode Share per Purpose
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 8.70 %  2.72 %  0.93 %  1.25 %  1.44 %  2.33 %

(e) National Travel Survey
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l

 7.3 %  5.3 % 15.7 %  6.8 % 12.0 %  6.5 %

 6.5 % NA 14.9 %  9.2 %  4.8 %  9.0 %

 8.4 % 16.8 % 17.6 %  8.0 %  7.0 % 15.0 %

 0.0 %  8.3 % 10.4 % 13.1 %  4.0 %  8.2 %

 6.7 %  5.1 %  7.6 %  3.7 %  4.8 %  5.3 %

 6.5 %  9.9 % 13.7 %  8.0 %  5.0 %  9.2 %
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