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Abstract 

Travel time is considered as an important performance measure for roadway systems, 

and dissemination of travel time information can help travelers to make travel decisions such 

as route choice or time departure. Since the traffic data collected in real time reflects the past 

or the current conditions on the roadway, a predictive travel time methodology should be used 

to obtain the information to be disseminated. However, an important part of the literature uses 

instantaneous travel time assumption, and sums the travel time of roadway segments at the 

starting time of the trip. The growing need for short-term travel time prediction also led to the 

development of forecasting algorithms. These methods can be broadly classified in two major 

categories; parametric methods (e.g. linear regression, time series models, Kalman filtering), 

non-parametric methods (neural network models, support vector regression, bayesian models, 

simulation models).  

This paper presents a predictive travel time methodology based on speed data at fixed 

loop detectors. However, in contrast to above mentioned existing methodologies, it benefits 

from the available traffic flow essentials (e.g. shockwave, bottlenecks). The proposed method 

makes use of both historical and real time traffic information to provide travel time prediction. 

First, an existing bottleneck identification algorithm is used to determine the location and 

spatial extent of the bottlenecks. In order to use the historical dataset in a useful and efficient 

manner, days with similar traffic patterns (i.e. speed profiles) should be identified. Since high 

number of detectors and time periods in a day lead to a large number of observations, 

Principal Component Analysis (PCA) is used to reduce the dimensions of the dataset. Then, 

Gaussian Mixture Model (GMM) is used to create clusters in the historical dataset. Optimal 

number of clusters can be determined by the use of average silhouette width and information 

criteria such as Akaike Information (AIC) and Bayesian Information (BIC) criteria. In this 

study, optimal number of clusters is also verified by a performance measure which indicates 

spatial and temporal distribution of congested regions detected by the bottleneck identification 

algorithm. Based on this distribution, a probability map of congestion can be created for each 

cluster and can be used to predict travel time for a day which belongs to that cluster. 

However, this approach would only work under recurrent traffic conditions. In case of non-

recurrent congestion, bottleneck identification algorithm is implemented in real time and the 

congestion propagation is estimated using the shockwave speed previously calculated for the 

historical dataset. The experiment results based on the loop detector data of I-80 and I-5 

segments in California indicate that the proposed method provides promising travel time 

predictions under both recurrent and non-recurrent traffic conditions. 
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I. Introduction  

Predictive travel time is a valuable information required by drivers and transportation 

managers to make better travel and control decisions. The provision of travel time information 

through Advanced Traveler Information Systems (ATIS) enables drivers to make decisions 

such as route choice and departure time. In addition, besides the fundamental traffic 

parameters, travel time can be used by transportation agencies to deploy efficient control 

measures and to prevent potential traffic congestion.  

Data required to estimate travel time can be obtained through loop detectors, test vehicles, 

license plate matching techniques (automatic vehicle identification, AVI) and ITS probe 

vehicle techniques [1]. All of the detection technologies except the one based on loop 

detectors provide direct measurement of experienced travel time. As freeways are usually 

equipped with loop detectors that collect flow, speed and occupancy information, travel time 

estimation in freeways should rely on them. Travel time measurement can be either based on 

local velocity measurements, or more sophisticated models that attempt to correlate vehicle 

observations at multiple locations [2]. However, the essential problem with travel time 

information is that it always has to refer to future conditions in the roadway. On the contrary, 

traffic data collected in real time reflect past or current conditions in the roadway. Therefore, 

the provision of travel time information always requires prediction of future conditions on the 

roadway. The approach of instantaneous travel times might create considerable errors when 

traffic conditions are varying in time and space.  

A speed contour plot is presented for a section in freeway I-5S in California in Fig. 1. A 

few active bottlenecks can be seen in the site that start at different times and propagate 

upstream. Fig. 1 clearly shows that the difference between instantaneous and experienced 

travel time by plotting a few vehicle trajectories with instantaneous and experienced travel 

time. Note that these differences can be quite significant especially during the congestion 

onset and dissipation. This indicates that estimation of travel time should not be solely based 

on the traffic data collected in real time, but also the future recurrent traffic conditions can be 

integrated from historical data. 
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Fig. 1 Speed Contour Plot and Trajectories 

The need for short-term travel time prediction led to the development of various forecasting 

algorithms. These methods can be broadly classified in two major categories; parametric 

methods (e.g. linear regression [3], time series models [4], Kalman filtering [5]) and non-

parametric methods (neural network models [6], support vector regression [7], bayesian 

models [8], simulation models [9] etc.).  

This paper presents a predictive travel time methodology based on speed data at fixed loop 

detectors. However, in contrast to the aforementioned existing methodologies, it benefits from 

the available traffic flow essentials (e.g. shockwave, bottlenecks). The proposed method 

makes use of both historical and real time traffic information to provide travel time prediction. 

Instead of identifying traffic flow patterns using statistical methods, that sometimes might not 

succeed to capture complex phenomena of traffic flow, we propose to integrate in the 

methodology, identification of traffic patterns with traffic flow theory fundamentals, for 

example with shockwave analysis and bottleneck estimation. First, an existing bottleneck 

identification algorithm is utilized to determine the location and spatial extent of the 

bottlenecks [10]. It uses speed readings at fixed detector locations as an indicator of 

bottleneck activation. Identified bottleneck locations are used in this study to restore the major 

traffic events likely to be observed on the roadway and to construct the link between real-time 
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traffic information and historical dataset. Using the shockwave phenomena and identified 

bottleneck locations in real-time, the impact of a bottleneck can be predicted before it 

completely develops. Historical information can be very useful to determine the 

characteristics of the bottlenecks (i.e. spatial extent and duration) and so, predict their 

impacts. Nevertheless, as we will show later, traffic conditions significantly vary from day to 

day (even for similar demand conditions) and as a result the size of a bottleneck in the time-

space domain and travel speed of vehicles in this domain have high fluctuations. Thus, a 

simple prediction based on historical average or a partitioning of traffic conditions based on 

days (weekdays-weekends) or times of day (AM or PM peak) might introduce significant 

estimation errors.  

II.  Methodology 

A. Bottleneck Identification Algorithm 

Chen et al. [10] developed an algorithm to automatically identify bottleneck locations, their 

activation and deactivation times, and their spatial extents using loop detector data and 

focusing on speed measurements. Chen method compares each pair of detectors adjacently 

located and determines the existence of bottleneck when 

¶ Speed difference between upstream and downstream detectors is above the minimum 

speed differential, Ўὺ   threshold. 

¶ Speed at upstream detector is below the maximum speed threshold, ὺ . 

Chen et al. [10] chose values of ὺ =40mph and Ўὺ =20mph with data aggregated at 

5min intervals taken from California freeways. These parameters may need to be adjusted 

depending on the application. 

Identification of bottleneck in an automated way allows us to restore the major traffic events 

that occur on the roadway and to keep track of traffic conditions in real time. However, since 

the algorithm has an offline part, it is not possible to smooth the results in real-time. 

B. Clustering 

Historical traffic patterns can be used for prediction of travel time. To use the historical 

dataset in a useful and efficient manner, days with similar traffic patterns (i.e. speed profiles) 

should be identified. Clustering techniques have been already used in transportation field to 

analyze traffic flow patterns, see for example [11]. However, since travel times are computed 

using local velocity measurements in this study, time-dependent speed measurements along 

the roadway must be used in the clustering step. 

Since high number of detectors and time periods in a day lead to a large number of 

observations, Principal Component Analysis (PCA) is used to reduce the dimensions of the 



Swiss Transport Research Conference 

 _________________________________________________________________________________ May 2 - 4, 2012 

7 

dataset, see for example [12]. PCA has been proved to be an efficient tool to reduce the 

dimensions of the dataset and to compress the data. PCA, using the orthogonal 

transformation, converts a set of observations with correlated variables into a set of 

observations with linearly uncorrelated variables, which are called principal components 

(PC).  

After reducing the dimensions of the dataset, Gaussian Mixture Model (GMM) is applied to 

create clusters in the historical dataset. GMM is the combination of multivariate normal 

density components, and it fits the data using expectation maximization (EM) algorithm. 

GMM is often used for clustering purposes, and unlike other clustering methods, it is not 

solely based on the distance between the observations, but it is based on the distribution of 

data points.  

Optimal number of clusters can be determined by the use of average silhouette width and 

information criteria such as Akaike Information (AIC) and Bayesian Information (BIC) 

criteria. In addition to the optimal number of clusters, the stability of the results is crucial to 

clustering. GMM, whose initialization is random or based on k-means results, should return 

the same results every time it is repeated to ensure the accuracy and the robustness of the 

algorithm.  

C. Stochastic Congestion Maps 

Once clusters are created and bottleneck identification algorithm is applied, a stochastic 

congestion map (Fig. 2a), which represents the likelihood of observing bottleneck at a given 

space-time point, can be created for each cluster and it can be used to predict travel time for a 

day which belongs to the given cluster.  

Each cluster is divided into subsets using certain threshold probability values (e.g. from 0.05 

to 1 with spaces of 0.05), and a deterministic congestion map is created for each subset. 

Congestion map associated with the lowest threshold is constructed by the bottleneck points 

(in the time space domain) whose probability is greater than 0.05 (i.e. occurring more than 5% 

of the analyzed days), the map associated with second lowest threshold is constructed by the 

points whose probability is greater than 0.10, and so forth. Fig. 2b represents the subsets 

created within the congestion map. Note that darker colors represent higher threshold values, 

and the higher the value of the threshold is, the smaller the size of the bottleneck is. Also note 

that the difference between subsets is roughly in the shape of rings around a given core. These 

results are of great importance to our analysis because they show that even the location and 

duration of bottlenecks are roughly known a priori, a more careful look identifies strong 

stochastic phenomena that can vary travel times from one day to the other. For example 

bottleneck #5 in fig. 2b starts at location with milepost 40, but its extension in time and space 

varies from day to day. 
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Fig. 2 a.Stochastic Congestion Map, b. Subsets in Congestion Map 


