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Abstract 

Ensuing from the deteriorating conditions of road networks, traffic forecasting techniques 
with mathematical and computer-theory methods have been employed to address the real-time 
prediction of traffic conditions and their dynamic control, with the optimum use of the current 
infrastructure. The prediction of traffic conditions, acknowledging multiple regimes, its 
transitions and driver’s behaviour parameters, is a highly desired attribute in intelligent 
transportation systems (ITS), as it could increase operational performance. 

The study in question aims to provide a framework to define the reasons that might preserve 
the conditions of recurrent and non-recurrent congestion occurrence in highways, so as to 
develop in long term an efficient dynamic traffic prediction model that would mitigate 
congestion emergence, before being triggered by interactive exogenous parameters, such as 
weather conditions, traffic composition, incident occurrence, traffic direction and seasonality. 
Contrary to currently existent prediction models, the challenge of the model to be developed 
is to capture traffic dynamics and enhance predictability upon multiregime (congestion, near-
congestion, free flow) and transitional traffic behaviour, combining exogenous multi-
dimensional determinants with real-time or near-real-time data, resulting to dynamic 
prediction models for highway traffic. Apart from the dynamic aspect, the transferability issue 
will be attempted to be addressed. Furthermore, active traffic management (ATM) highway 
management schemes will be formed in microscopic scale, with principal goal to control 
traffic by optimising the operation of an emergency lane as additional traffic lane. 

Keywords 

Traffic forecasting – traffic prediction – weather impact – incident occurrence – traffic 
composition 
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1. Introduction 

Traffic congestion is an escalating phenomenon with multidimensional impact. A potential 
increase in the network capacity with an expansion of the network would only mask and 
transpose the problem ulteriorly, even more reinforced, without addressing the causality. An 
aspiring research could stand in the hypothesis that a traffic forecasting method, in order to 
conduce to restrain or prevent network’s performance aggravation, should acknowledge 
several exogenous parameters for a more plausible representation of traffic evolution, as they 
retain mutual connections that affect congestion occurrence. 

A number of interdisciplinary studies evoked computer-theory and mathematical methods to 
estimate and/or predict traffic conditions, without acknowledging though the dialectical 
interrelationships of prevailing exogenous parameters as a system. Furthermore, the 
overwhelming majority of the developed traffic prediction models have not integrated the 
weather determinant, even though it is undeniably affecting network operations’ performance 
and traffic safety. In USA, weather’s socio-economic impact has been recorded (Table 1), but 
for the rest of the world only the deaths and injuries from traffic accidents are enumerated, 
disdaining any relationship to weather and its power to accentuate the deterioration of 
effectiveness of existing infrastructure (WHO, 2004; FHWA, 2011). 

Table 1 Traffic and socio-economic impact per year in freeways from adverse weather conditions in USA, 
based on FHWA Road Weather Management Overview (2011). 

 

Speed Reduction 
(% out of total 
observations) 

Weather-related 
Vehicles crashes 
(% out of total 
observations) 

Deceased 
(people) 

Injured 
(people) 

Winter Road 
Maintenance 

Light 
Weather 
Condi-
tions 

Heavy 
Weather 
Condi-
tions 

Wet/ 
Snowy/ 
Icy 
pavement 

During 
Rainfall/ 
Snow 

Wet/ 
Snowy/ 
Icy 
pavement 

During 
Rainfall/ 
Snow 

Wet/ 
Snowy/ 
Icy 
pavement 

During 
Rainfall/ 
Snow 

 

Rain 2-13% 3-17% 75% 47% 5’700 3’400 544’700 357’300 n/a 

Snow 3-13% 5-40% 24% 15% 1’300 900 116’800 76’000 

2.3 billion $  
20% of state 

DOT 
maintenance 

budgets 

 

Until recently weather was regarded as a fact and none research has been yet published that 
attempts to challenge or operate with the factor, in order to mitigate its impact in traffic. 
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Responding to this omission a mathematical model will be developed that will accede to 
quantify the control power of weather conditions, in order to proceed beyond the empirical 
qualitative studies of the weather impact. This research perspectives are among others to 
initiate a parameterised worldwide applicable model that detects traffic patterns and predicts 
the congestion duration in highways, thus the potential deterioration of level of service in a 
network, under exogenous variables, namely weather parameters, traffic composition 
(presence of vehicles’ classes), incident occurrence, traffic direction, seasonality, and that 
leads not only to the quantification of the weather impact on road networks in form of traffic 
units, but also to the potential linked alteration of the network’s performance through time, 
that is of the configuration of traffic evolution. 

The prediction of traffic conditions, acknowledging multiple regimes, its transitions and 
driver’s behaviour parameters, is a highly desired attribute in ITS, as it could increase 
operational performance. The model to be developed will attempt to capture traffic dynamics 
and enhance predictability upon multiregime (congestion, near-congestion, free flow) and 
transitional traffic behaviour in real-time or near-real-time, resulting to dynamic prediction 
models for highway traffic. Apart from the dynamic aspect, the traffic forecasting will be 
available regardless the site, ensuring the transferability issue.  

1.1 Objectives statement and motivation 

A framework for a real-time multi-step ahead traffic evolution prediction model (upon 
recurrent and non-recurrent congestion) under exogenous parameters for highways, will be 
described in the current study, aiming to quantify the impact of exogenous parameters 
(adverse weather conditions, traffic composition, incident occurrence, traffic direction, 
seasonality) on traffic congestion and predict the occurrence and duration of congestion. The 
weather impact quantification is regarded to be a novel approach for congestion prediction, as 
currently is only empirically confirmed that deteriorates traffic operations. The real-time 
prediction model that will be structured in a research following the framework described in 
the study in question, is expected to be for congestion prediction in highways, transferable to 
several sites and applicable in ITS and ATIS (Advanced Traveller Information System) 
environments for traffic control management by capturing traffic evolution congestion and 
mitigating its impact. Furthermore, an improvement of forecasting accuracy is expected, 
because of the exogenous parameters that have not been applied in their entirety in existing 
traffic forecasting models. 
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2. State of Research 

Short-term traffic prediction algorithms were set to the center of research interest since the 
‘90s, in order to improve the efficiency of network management in both urban arterials and 
highways via ITS strategies. The developed forecasting models estimate traffic parameters, 
such as speed, flow, density, occupancy, with short time forecasting horizons (a few minutes 
to a few hours) into the future and various prediction intervals (a few seconds to a few 
minutes), based on the behaviour of traffic dynamics that has to be detected and predicted.  

According to empirical observations (Florio and Mussone, 1996; Kirby et al. 1997; Sheu, 
1999; Ishak and Al-Deek, 2002), it is concluded that a large forecasting horizon leads to a 
degradation of prediction accuracy and a short forecasting step dictates a complex prediction. 
Nevertheless, it is suggested that an interval should not be very short (eg. 30s), as the 
potentially predicted traffic parameters, such as flow and speed, are strongly fluctuating 
causing noise in short time periods and thus decreasing the forecasting accuracy. For this 
reason data of short periods are usually aggregated in 5-minutes steps or greater (Florio and 
Mussone, 1996; Park and Rilett, 1998; Sheu, 1999), but the final prediction interval and 
horizon are defined based on the type of network (urban or highway) and on the type of the 
ITS system (traffic management system, real-time adaptive control system etc.) that the 
algorithm is called to operate. Implementations of traffic forecasting models in highways are 
implying that the optimum prediction step is in a range of 10-min and 15-min, as with a 
corresponding data aggregation the data variability declines and the accuracy of prediction 
horizon is improved (Head, 1995; Smith and Demetsky, 1997; Abdulhai et al., 1999). In 
European highways, where the average time headway is most commonly of 30 minutes, a 15-
min or less prediction horizon is adequately envisaging the traffic performance (Smith and 
Demetsky, 1997). 

Regarding to the suitable parameters that have been examined for capturing and forecasting 
traffic conditions, four dominate the literature: flow, occupancy, speed and travel time. The 
selection of a variable is intrinsically linked to type of available data (loop detectors, 
ITS/surveillance-derived stream data, real-time or not etc), the category of the network 
(urban, highway etc.) and the type of system that is aimed to be developed (control system, 
informative system-ATIS etc.).  

In studies at the University of Leeds (Dougherty et al., 1994; Dougherty and Cobbett, 1997; 
Kirby et al., 1997) traffic flow, occupancy and speed have been found convenient for 
forecasting traffic dynamics. In particular, Dougherty and Cobbett developed three models to 
predict individually the aforementioned parameters in highways. The results for 5-min, 15-
min and 30-min forecast horizons, indicated that the flow and occupancy prediction accuracy 
was greater than the speed’s, probably due to slow-moving vehicles in very low flow 
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conditions. However, there are various contradicting results, which imply either that 
predictions based on traffic flow are more reliable (Levin and Tsao, 1980), or that occupancy 
is more stable and thus representative, as it is affected by traffic composition and vehicles’ 
length (Lin et al. 2009). Of paramount’s importance is the ascertainment that the forecasting 
accuracy is impetuously declining when an model is formed to predict multiple traffic 
variables, rather than multiple models for multiple traffic parameters, mainly as a result of 
their strong correlation (Florio and Mussone, 1996; Innamaa, 2000). 

With the emergence of ITS technologies, from which traffic stream data could be derived in 
real-time and high accuracy, accurate travel time forecasting became possible, along with 
delays and queue lengths for both urban arterials and highways (Chen et al., 2001; Zhang and 
Rice, 2003; vanLint et al., 2005; Skabardonis and Geroliminis, 2008). In studies that these 
data were inaccessible, double-loop or single-loop detectors data were employed and travel 
time prediction was approached via space mean speed prediction from flow, density, 
occupancy and vehicle length estimation (Dailey, 1997; Kwon et al., 2000; Wang and Nihan, 
2000; Dia, 2001). Regardless the aspiring approaches, the results are poorer and the accuracy 
levels redirect to an estimation rather than prediction.  

When aiming to provide prediction for Advance Traveller Information Systems (ATIS), travel 
time or speed is favoured as predictive variables over flow and occupancy, because they are 
more efficient and meaningful for the users that are non-familiar to transportation theory 
users. Nevertheless, this possibility is usually given for highways that are monitored and real-
time data can be provided, and less commonly for urban areas. Hence, for traffic control 
applications in several types of networks, namely highways, urban networks etc., and for 
ATIS applications that monitoring is not supported, traffic forecasting is suggested to be 
based on traffic flow and occupancy, either as final predictive outcome or for computing 
indirectly the travel time or speed (Williams, 2001; Stathopoulos and Karlaftis, 2003; Liu et 
al., 2008; Vlahogianni et al., 2008). 

In parallel to the delineation of an optimum prediction horizon and interval and of the aim-
corresponding suitable parameters, studies are focused on the optimum prediction method to 
be used. A variety of mathematical and artificial intelligent methods were employed in the 
past two decades that venture to capture efficiently the traffic dynamics, namely the abrupt 
fluctuations and peaks during the state transitions. These methods can be categorised 
statistically in parametric and non-parametric approaches. 

The parametric techniques that were initially used for forecasting models, encompassed 
prediction approaches that were mainly developed based on historical average algorithms, 
which as the self-explanatory title implies are using an average of past traffic variables to 
forecast future values of the variables (Stephanedes et al, 1981; Kaysi et al., 1993; Smith and 
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Demetsky, 1997), and time-series models, such the Autoregressive Integrated Moving 
Average (ARIMA) models (Stephanedes et al., 1981; Kaysi, 1993 ; Jeffrey et al., 1987). As 
Smith and Demetsky discuss, ARIMA models are mathematical models that based on the 
stochastic processes of traffic conditions, explain the past behaviour of uninterrupted data 
series and then apply it to the forecast future behaviour. However, the predictions are neither 
stable nor representative of the rapid variations and the unexpected boundaries or edges of 
traffic (Davis et al, 1991; Hamed et al., 1995) that indicate transitional conditions (Addison, 
2002) between free-flow, congested or near-congested states. To overcome this deficiency, 
researchers turned to another time series model category but of multivariate nature, the state-
space models using Kalman filter algorithm that is based on successive updates of parameters. 
The multivariate character of the approach allows data from multiple detectors to be jointly 
considered and results in outperforming the ARIMA models in prediction accuracy, especially 
when the traffic data are classified into different time periods during a day (Stathopoulos and 
Karlaftis, 2003). 

In order to mitigate the distributional constraints, in form of residuals, or assumptions for 
input or output variables upon transition of traffic states (Clark, 2003), recent studies utilized 
real-time datasets derived from ITS systems to forecast traffic conditions with non-parametric 
approaches. Non-parametric regression models and artificial neural network-based models 
(ANN) dominated over the last decade. Specifically, as non parametric regression is based on 
pattern recognition, states from similar traffic dynamic sites can be predicted, establishing a 
more stable and transferable method comparing to the ARIMA models category and to the 
historical average algorithms, with higher accuracy in the prediction of flow and occupancy in 
motorways than speed (Smith and Demetsky, 1997; Smith et al., 2002; Clark, 2003). 
Howbeit, ANN’s models have been extensively used in numerous combinations with other 
algorithms and methods, demonstrating enhanced accuracy results, through their induction 
conception that permits likely generalisations and pattern recognition for multiple steps into 
the future with limited computational costs. Even though the functional relationship within 
neurons is non-linear, the more sophisticated approach leads to model highly non-linear 
relationships in multivariate setting and so to outperform classic linear statistical models 
(Clark et al., 1993; Kirby et al., 1997; Zhang et al., 1998). The models are data-driven, since 
the neurons (interconnected nodes) are connected in an input/output manner, namely the 
output data of one neuron (antecedent) are the input data of another (descendant) (Rokach, 
2010). Numerous researches employed the most widely studied neural network: the multilayer 
feedforward network (Clark et al., 1993; Kwon and Stephanedes, 1994; Smith and Demetsky, 
1994; Zhang, 2000; Vlahogianni et al., 2005). It is consisted of neurons, which are organised 
in input, hidden and output layers, and is based on multilayer units that are called perceptrons 
(MLP) and compute linearly the combination of its inputs, while in its simplest structure 
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(single layer feedforward network) the perceptrons are invoking an activation function to 
transform the weighted sum into a binary output (Rokach, 2010).  

The theory of neural networks was merged in hybrid approaches with rule-based fuzzy logic 
and genetic algorithms (GA), so that the optima network parameters emerge and the optima 
matches between input and hidden layers are detected. GA maintain a population of classifiers 
for the training part of a model and serve as search engines through multivariate complex 
spaces aiming to find the optimum classifier and hence the maximum statistical correlations 
via local minima that would indicate the optima connections between input an hidden layers 
(Lingras and Mountford, 2001; Adeli and Jiang, 2003). Empirical observations indicated that 
with the use of GA as an optimisation technique of the ANN, the high values of traffic 
parameters are better identified, the prediction model performs better  and that computational 
effort is decreased in comparison to traditional ANN, since the input space is reduced by the 
effectuated generalisations (Yin et al., 2002; Ishak and Alecsandru, 2003). However, attention 
has to be drawn to the fact that GA may indicate erroneous traffic patterns as representative of 
the input dataset, because of over-heuristics enforcement (over-training) that produce poor 
classifiers, which chanced to perform well on the training dataset (Rokach, 2010), and thus 
decrease remarkably the prediction accuracy. In view to that and to the greater deficiency of 
efficient constructive methods for the implementation of ANN, in the context of determining 
the input parameters of the neurons and of selecting the network structure, wavelet networks 
surfaced to fill in this void of ANN models with integration of enhance the detection of traffic 
patterns even for non-recurrent conditions (Zhang, 1997; Zhang and Benveniste, 1992; Adeli 
and Karim, 2000; Karim and Adeli, 2002a; Karim and Adeli, 2002b; Jiang and Adeli, 2005). 

In conclusion, the most studied non-parametric techniques, namely neural networks and non-
parametric regression, outperform traditional statistical methods, such as historical average 
algorithms, as detect and predict remarkably better the extreme traffic conditions, the rapid 
fluctuations and the transitions between states (Smith and Demetsky, 1997). As various 
research results suggest, between ANN and ARIMA models, ANN are the more aspiring for 
predicting traffic variables particularly for multiple steps ahead, because of the adaptive 
nature of the non-parametric ANNs’, even with the addition of new input data, that predict 
efficiently the rapid and high variations of traffic patterns and are more suitable for real and 
near-real predictions, mainly in highways (Kirby et al., 1997; Williams et al. 1998; Smith et 
al., 2000; Lint et al., 2005; Jiang and Adeli, 2005).  

Nevertheless, the majority of the deployed forecasting models have not incorporated 
exogenous variables that would ensure the consistency of the model on predicting traffic 
conditions and evolution upon diverse traffic composition, incidents and weather conditions. 
Even though few empirical studies confirm and assess the weather impact (Kyte et al., 2000; 
Pisano and Goodwin, 2004; Agarwal et al, 2005; Chung et al., 2006; Billot et al., 2009), there 
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are even fewer the models that predict adequately certain traffic parameters (speed or travel 
time) (Huang and Ran, 2003; Wiley, 2006; Butler et al., 2007; Faouzi et al., 2010) and none 
that encompasses the entirety of the aforementioned exogenous variables. Addressing to this 
under-researched part of traffic forecasting domain, the methodology that will be described in 
the next section will attempt to capture the traffic dynamics and predict traffic evolution under 
diverse traffic composition, incidents and weather conditions. 

A comparative table of the most prominent methods presented in relevant literature is 
following in the Appendix (Table A.1). 

3. Methodological Framework 

Envisaging the adaptability and transferability of the proposed framework on networks with 
similar geometric characteristics and level of demand, methodologies that demand the 
heuristic definition of several coefficients were not preferred. 

The approach will be centred on the development of a traffic congestion prediction 
methodology that will be able to provide real-time traffic forecasting upon multiple regimes 
and its transitions (free flow, near-congestion, congestion, recovery) incorporating also 
parameters for traffic prediction under various weather conditions (rain, no rain, snow, no 
snow), incidents, traffic compositions (categories based on the percentage of heavy vehicles) 
and day types (weekday, weekend/holidays). The predicted values of the traffic parameters 
will be utilised, aiming to mitigate the congestion incidence in highways, by developing a 
dynamic decision-making algorithm that allots the emergency lane to the traffic, whenever the 
network performance deteriorates. For the same reason, the emergence of an optimum control 
strategy and of predominant factors that have not been incorporated, will be pursued. Finally, 
the robustness of the proposed methodology will be assessed. 

The following proposed framework is subject to further adaptations and will be finalized to a 
proposed methodology following the completion of the analysis. It is an approach to forecast 
traffic evolution with considering as exogenous factors the traffic composition, incidents and 
weather conditions. The proposed short-term traffic forecasting algorithm will be structured 
as multivariate, predicting recurrent and non-recurrent congestion multiple steps ahead, and 
will have a long prediction horizon with prediction interval as close to the traffic parameters 
evolution as possible. The transferability of the model will be pursued via a non-parametric 
methodology and will serve for traffic control and traveller information systems. To ensure 
the transferability and the variability adaptation of the traffic parameters a framework with an 
ANN prediction model is proposed. The proposed prediction model is planned to be applied 
in highways in real-time environments and given the disposability of highway traffic data, the 
traffic variables of flow, speed, and then occupancy and congestion duration is aimed to be 
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predicted. The following table (Table 2) summarizes the processes, inputs, outputs and the 
proposed methodological tools that will be employed for the subsections of the research part 
in question. 

Table 2. Summarizing table of processes, inputs, outputs and methodological tools for the 
proposed traffic prediction framework. 

Process Methodological Tool Inputs Outputs 

1. Pre-process.  

Adressing missing data & 
outliers issue 

Statistical indicators 
(MRE, SRE, RMSEP) 

Flow and speed  

(Q & V) time series 

Flow and speed  

(Q & V) time series 
without missing data 

2.Traffic patterns 
recognition 

Discrete Wavelet 
Transform with  

Multi-Resolution Analysis 
(DWT MRA) 

Flow and speed  

(Q & V) time series 
without missing data 

Flow and speed  

(Q & V) time series 
with singularities 

3.Dominant traffic regimes 
detection 

Fuzzy C-Mean Algorithm 
(FCM) 

Flow and speed  

(Q & V) time series 
with singularities, 

exogenous variables,  

Regimes of traffic flow 

4. Traffic Conditions 
Forecasting 

Artificial Neural Networks 
(ANN) with various: 

- structures  
- algorithms  

- no. of layers 
- prediction horizon 

- time step 

Flow and speed  

(Q & V) time series 
with various regimes of 

flow, exogenous 
variables 

Congestion prediction 
vector 

3.1 Data Pre-process, Outliers and Missing Data Approach  
Before detecting the various traffic states and its transitions in highways, which will lead to a 
better traffic evolution prediction, the issue of outliers and missing or corrupted data will be 
addressed. Missing or corrupted data occur following a malfunction of the equipment by 
producing either randomly missing data, when i.e. a very short-time and temporary cease of 
recording data is emerged due to communication disruption, or “blocks” of missing data, 
when the device ceases recording for a longer period of time for re-initialisation, maintenance 
reasons or structural damage. Additionally, as a result of noise measurement, unreliable data 
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(outliers) may be recorded that may be witnessed throughout the dataset without a specific 
pattern. Each of these cases of missing data and all the combinations will be tested with 
interpolation and moving average and will be compared to the null replacement scenario via 
traditional statistical indicators (i.e. mean relative error-MRE (eq.1), standard deviation of 
relative error-SRE (eq.2), root mean square error proportional-RMSEP (eq.3) that as Van Lint 
et al. discussed, quantify efficiently the performance of each scenario (van Lint et al., 2005).   

1100 n n

n

y oMRE
N o

−
= ⋅ ∑                            (1) 

2
1100

1 100
n n

n

y o MRESRE
N o

 −
= ⋅ − −  

∑          (2) 

( )2100 1
n n

mean

RMSEP y o
o N

= ⋅ −∑                    (3) 

where N is the total number of observations, yn is the nth predicted value of the nth input, on is 
the nth predicted value of the nth output, omean is the predicted mean and yn-on is the prediction 
error for data pattern n  (van Lint et al., 2005). 

It is noted that wavelets are not strongly envisaged as potential denoising method, as the 
proposed prediction model aims to be used in a real-time system environment (Adeli and 
Karim, 2000) and wavelet filter coefficients need heuristic and subjective criteria to be used in 
order to provide a simplified linear combination of elementary functions, rendering the data-
driven model intransferable to other sites. 

3.2 Traffic Patterns Recognition with Wavelet Analysis 
The detection of traffic patterns will be firstly addressed, by identifying the important parts of 
the dataset, where the traffic states and potentially its transitions may subsist, in order that in 
the subsequent phase of the study the search will be correctly oriented and with reduced size 
of data. Via the analysis of abrupt fluctuation in the measurements, produced by traffic 
variables (flow, speed), weather conditions (rain, no rain, snow, no-snow), incident 
occurrence (incident, no-incident), traffic composition (% of heavy vehicles), traffic direction 
and day type (weekday, weekend/holidays), the regions of the dataset where the dominant 
states may occur will be unveiled.  

Regarding the properties and evolution of traffic demand, hence the properties of times series 
scaled measurements of traffic flow in a fixed spatial point, research led to the conclusion that 
are characterised by periodicity or seasonality depending on the day or the time period. The 
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transitions between traffic states are depicted as irregular structures (singularities) with 
noticeable fluctuations along a dataset and as they are phenomena with scaling behaviour, a 
dyadic sequence of scales can be applied using Discrete Wavelet Transform (DWT) Wavelet 
Multi-Resolution Analysis (WMRA), in order to localise characteristics in space/time and 
frequency/scale for flow and speed through wavelet decomposition (Mallat and Hwang, 1992; 
Addison, 2002; Jiang and Adeli, 2004; Vlahogianni, 2008).  

Wavelet analysis was selected amongst other artificial intelligence techniques, and in 
particular the Fourier analysis that was vastly used until recently, because of the following 
aspiring points. First, it is more efficient in identifying patterns and sharp transitions in time 
and scale in non-linear input signals, as the traffic datasets. Furthermore, wavelets are more 
adept in representing discontinuities in chaotic time series, which could be the case for the 
kind of datasets in question, as the signals can be decomposed hierarchically and so analysed 
in various levels of details and in various components of characteristics. Lastly, even though 
wavelets are not limited to stationary inputs, the required storage for representing time series 
is small and consequently the computational time is sufficiently brief for real-time 
applications. Wavelet transforms of a signal/dataset evolving in time depend on two variables: 
the time and the local scale/frequency as a measure of similarity, thus provide time and 
frequency localisation for continuous time signals with discrete values (Adeli and Karim, 
2000; Jiang and Adeli, 2004; Daubechies, 2006). They will be used to subset the input data 
into blocks of frequency components and to examine each one with a resolution 
corresponding to its scale in different levels of detail, so as to detect singularities, namely 
specific traffic patterns with an important rapid variation at each of them, herein 
corresponding to flow or speed, throughout a wide scale range.  

The Discrete Wavelet Transform (DWT) of traffic flow can be written as tf of time variable t, 

in terms of a series of orthonormal wavelet basis functions as follows in equation 4:  

( )
,

/2

2

2 (2 ) ,

, , ( )

i j

j t j t
fW f k dt

j k L

ψ

ψ

∞
− −

−∞

= −

∈ ∈

∫
 

                   (4) 

The coefficient ψ is the scaled and translated version of the elementary wavelet function 

called mother or generating wavelet, which is presented in equations 5 and 6 in Continuous 
Wavelet Transform (CWT) (Daubechies, 1992), and describes the original signal at time 

, 2 j
j kb k−= at the frequency band 2 0j

ja = ≠ , where parameters k  denotes the time index, j  the 

frequency index, both belonging to the set of integers, a  the frequency (or scale) and b the 
temporal content (or space or dilation) location, both belonging to the  set of real numbers.  
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a b
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a b L

ψ ψ

ψ
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               (5) 

that by replacing the a andb the following wavelet expansion function in DWT:  

/2
,

2

2 (2 ),

, , ( )

t j j
j k t k

j k L

ψ ψ

ψ

− −= −

∈ ∈ 
                (6) 

The notation 2 ( )L  corresponds to the square summable time series space of traffic flow f , 

where the superscript 2 denotes the square of the modulus of the function. When for a certain 

temporal content b  the frequency a  in a subset decreases, then t b
a

ψ − 
 
 

narrows in width 

while maintaining the same space, as it is examined for a certain b , emphasising a sharper 
area and thus indicating a potential singularity. The DWT representation of traffic flow in eq. 

4, can be also regarded as a subsampling of the CWT coefficients with dyadic scales, e.g. 12 j−

for 1,2,...,j N= , where N is the maximum number of decomposition level and thus less 

accurate than the CWT (Jiang and Adeli, 2004). Nevertheless, the reason that DWT was 
selected for the current methodology addressing a real-time application, is that the required 
number of coefficient vectors is smaller and thus the integration of every version of values for 
the scale and dilation, a  and b respectively, demands less computational effort, is less time-
consuming and reduced in size.  

Regarding the properties of wavelets, it has to be noted that they have to be non-orthonormal, 
in case of missing data (Daubechies, 2006), and non-orthogonal so as to ensure the non-
independency of each wavelet, in order that their integration in the ANN to be rendered 
possible. The redundant wavelet coefficients (bases) that emerge from DWT, or else the sets 
of independent vectors, will be further referred to as wavelet frames. Each frame contains 
supernumerary wavelets for a signal reconstruction and consequently renders the traffic 
forecasting more accurate, as encompasses more possible subsets that allow the emergence of 
a more representative vector. A multiresolution analysis will be evoked for various levels of 
detail/resolution (Mallat, 1989), which demands the implication of a sequence of nested 

closed approximation scaling function subspaces iV   with  i∈  (space of integers) that as 

result of the dilations and translations of the scaling functions, have the following properties 
(Zhang and Benveniste, 1992; Adeli and Karim, 2000; Daubechies, 1988, 1992):  

2
2 1 0 1 2.... ... ( )V V V V V L− −⊂ ⊂ ⊂ ⊂ ⊂ ⊂ ⊂   
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That is, ( )iV i∈  is a subspace of 1iV +
and iV  is defined by spanning 2 ( )L  by the scaling 

functions of father wavelet (eq. 8): 

t
kϕ ( k∈ ) as { }ti k

k
V Span ϕ= ,                (8) 

with the overbar indicating the closure of the subspace. The wavelet subspace is iW the 

orthogonal complement of iV in 1iV +
, so the entirety of the time series space is represented as 

the summation of all subspaces, with ⊕  indicating the direct space sum and the integer 

subscript 0j any starting scaling parameter index from negative infinity to positive infinity, 

including zero. Furthermore, the scaling function subspace iV  satisfies the natural scaling 

condition (eq. 9): 

1(2 )t t
i if V f V +∈ ⇔ ∈                    (9) 

where traffic flow time series have a membership to the subspace iV  and are scaled by a 

dyadic factor in the next subspace, that is a downsampling by a factor of 2 is effectuated.  

Consequently, based on the aforementioned properties, the shifted scaling father function 
(2 )tϕ and the mother wavelet tψ  (eq. 10) for the solution of the DWT of the traffic flow 

expressed in MRA (eq. 11), are as follows:  

( )2 2 ,t n t

n
h n nψ ϕ= − ∈∑                  (10) 

0 0

0

,
t k t k t

j j j j k
k k j j

f s wϕ ψ
=

= +∑ ∑∑                 (11) 

where n  is the order of the wavelet function and nh  is a sequence of n  real or complex 
numbers, called the scaling function coefficients, or else the scaling filters, with values 
resulted from any given type of wavelet function satisfying the two fundamental wavelet 
properties: a) the integral of tψ  is zero and b) the integral of the square of tψ  is unity 

(Daubechies, 1988; WUTAM, 1998; Jiang and Adeli, 2004). The first term of eq. 11 is the 
coarse resolution at scale 0j and the second term is the frequency and time breakdown of the 

signal (Jiang and Adeli, 2004).  

After the data analysis, the optimum wavelet function and depth of wavelet analysis will be 
selected, so as the singularities of the inputs – time series of flow and speed – and hence only 
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the noteworthy parts of the dataset emerge more accurately, allowing to proceed to the 
following part of the research, the detection of the dominant traffic states. 

3.3 Dominant Traffic States/Regimes and Factors Detection with 
Fuzzy Approach 

From the reduced in dimensions dataset that resulted by the Discrete Wavelet Transforms 
Wavelet Multi-Resolution Analysis (DWT WMRA), certain singularities in the traffic 
evolution have been unveiled, indicating the parts that traffic regimes may occur. An efficient 
classification is proposed to be invoked through a rule-based fuzzy data clustering, by which 
the dominant states will be emerged without losing important characteristics. Even though 
several methodological techniques have been used in literature, which vary in compact 
support and smoothness, a hybrid method of wavelet and fuzzy analysis was selected, as the 
computational effort will be reduced and a more robust model will be established. The 
emergence of this approach was evoked, following the aforementioned literature review and 
attempts of dominant regimes identification with the use of genetic algorithms, which 
suggested erroneous traffic patterns as representative of the input dataset, because of 
premature convergence and over-training that led to the definition of poor classifiers, which 
chanced to perform well on the training set, and thus would have decreased remarkably the 
prediction accuracy.  

The dataset can be classified into homogeneous clusters, which their objects are traffic flows, 
speeds, the aforementioned exogenous parameters and the singularities, that correspond to 
certain traffic states. These parameters form a set of vectors { }1 2 3, , ,..., nX x x x x= . A 

representative set { }1 2 3, , ,..., kZ z z z z= of z classes in X is produced by a data clustering 

technique, where x, z p∈ , thus the most representative traffic states. Among the most 
efficient fuzzy algorithms, namely the Fuzzy C-Mean algorithm (FCM) (Dunn, 1973; Bezdek, 
1981), applied by Adeli and Karim for freeway incident detection within a neural network 
(Adeli and Karim, 2000), and the Fuzzy K-Mean algorithm (FKM) (MacQueen, 1967), 
applied by Vlahogianni et al. for traffic flow regimes detection in signalised arterials 
(Vlahogianni et al., 2008), the FKM will be employed for this classification, as the FCM 
demands a heuristic definition of coefficients that renders the prediction model unsuitable for 
real-time application.  

Consequently with fuzzy partitioning, one traffic pattern is allowed to belong to more than 
one cluster with a different membership degree from 0 to 1 with 1 denoting the maximum 
membership to the cluster, rather than a crisp assignment of one traffic pattern exclusively to 
one cluster. A number of k clusters are a priori defined with k centroids, which must be placed 
considering that they represent the traffic states, which will form the initial-seed groups 
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centroids. Each object/set of parameters/initial representative of a traffic state is assigned to 
the nearest centroid, until all objects are associated. To the new classes that have been created, 
k new centroids are located and each object is re-assigned to a new centroid. The loop is 
terminated when the location of centroids is fixed. This algorithm aims to minimize the 
following squared error objective function (eq. 12): 

2

1 1
( ) x z

n k

ij i j
i j

J z Aβ
β

= =

= −∑∑                                 (12) 

subject to: 

1
1, 1

k

ij
j

A i n
=

= ≤ ≤∑                  (13) 

0, 1 , 1ijA i n i k≥ ≤ ≤ ≤ ≤ , 2 1β≥ >                (14) 

where Jβ is the objective function for given value of data fuzziness degree β, with 2 indicating 
the greatest fuzziness in the dataset, Aij the membership degree of vector  i in class  j, k the 

number of classes, 2
x zi j− is a chosen distance measure between data point x i and the 

clusters’ centers zj , and zj are the clusters’ centers that indicate the distance between the n 
data points from their assigned cluster centers, computed by the equation 15 (MacQueen, 
1967; Adeli and Karim, 2000): 

1

1

z

n

ij i
t i
j n

ij
i

A x

A

β

β

=

=

=
∑

∑
                                 (15) 

The algorithm is composed as follows: 

1. Set k points that represent the initial group of traffic states (objects) and the initial seed 
group of centroids, in respect to the limit of equation 13. Compute the cluster center zj 
for each class (eq. 15) 

2. Assign each object to the group that has the closest centroids. 
3. After the assignment of the last object, recompute the positions of the k centroids. 
4. Repeat steps 2 and 3 until the centroids location remains fixed.  

The procedure always terminates, and regarding its sensitivity to the initial random selection 
of seed-points as cluster centers, it can be reduced after multiple iterations. The algorithm 
results to a classification of the aforementioned objects into groups of one traffic regimes 
each, and consequently to the dominant traffic regimes of the dataset, reducing also the 
dimensionality of the dataset.  
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3.4 Traffic Conditions Prediction with Wavelet Neural Network 
The development of an efficient and transferable model for traffic prediction on highways will 
be addressed in this part, as the majority of traffic prediction models in existing literature are 
oriented to forecast in urban areas that the traffic evolution is expressed more limitedly, and 
thus they are not representative for the rapid fluctuations that are observed in highways. The 
data-driven approaches of neural networks have been proven accurate traffic predictors (Chen 
et al., 2001; Ishak & Alecsandru, 2003), so for modeling and forecasting traffic conditions’ 
evolution in highways, and in particular traffic congestion, the Artificial Neural Network 
(ANN) theory will be explored, in order to unveil a potential approach for employment. The 
reason for not searching an approach among the common time series and several other non-
parametric and parametric methodologies and heuristic methods, as the genetic algorithm or 
the trial-and-error, lies in the resulted overpredicted parameters and the unstable and not 
representative predictions of the rapid and high variations of traffic parameters, which 
indicate transitional traffic conditions (Davis et al., 1992; Smith and Demetsky, 1997; Hamed 
et al., 1995; Addison, 2002). Regarding the genetic algorithms, empirical observations 
indicated erroneous traffic patterns as representative of the input dataset, because of over-
heuristics enforcement that produced non-representative classifiers and subsequently 
decreased remarkably the prediction accuracy. Therefore, the non-linearity of traffic 
conditions is inducing the development of a neural architecture, as it has the ability to solve 
complex problems with non-linear functions, and of an automatic adaptive algorithm that will 
have forecast efficiently real-time the traffic congestion upon multiple regimes in highways. 
The proposed methodology is based on a hybrid of wavelet and neural network models 
(WNN), aiming to utilise the advantages of both fields on several structures and algorithms 
and on prediction horizons and time steps, as neural networks can be trained incrementally.  

A neural network is described by Haykin as a parallel distributed processor that temporarily 
stores, via synaptic weights, experiential knowledge acquired through a learning process. 
During this process the free parameters of the ANN, such as the synaptic weights and bias 
levels, are formed as a result of the constant incitation by the environment in which the ANN 
is embedded. Namely, the type of learning that will be selected for the research, depends on 
the behaviour of the parameter in question (Haykin, 1999). Architecturally, as Rokach cites, 
the development of a model by ANN is attained with a network of interconnected units – in 
the sense of inputs-outputs – hereinafter called neurons or nodes (Anderson and Rosenfeld, 
2000; Rokach, 2010). The nodes are organized in three layers (input, hidden, output) and are 
connected via the hidden layers of neurons that serve as extractors of the features of the input 
data by using a nonlinear function without loops, also referred to as direct cycle. The neurons 
in the hidden layer are connected to both the input and the output neurons and they are the key 
to the activation of the classifier. In order to compute the output of a single neuron, the 
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weighted sum of inputs to the neuron is calculated, then the bias is added to the sum, which is 
finally given as input to the activation function of the neuron. In the simplest structure of 
feedforward NNs, the single-layer perceptron network – a classifier that calculates a linear 
combination of its inputs and invokes an activation function that transforms the weighted sum 
into binary output – with one-direction nodes and a single layer of outputs, has the same 
analytical function as the logistic regression model, and is also known as sigmoid function. 
Subsequently this is not an adequate ANN structure for the current research. Even though the 
input space was reduced as subject to the previously presented parts of the research, since the 
information is spread across many attributes (traffic parameters time series and exogenous 
parameters in various traffic regimes, for both upstream and downstream sections, so as to 
predict incoming traffic and back propagating shockwaves), it remains complex and it is 
required respectively a more sophisticated structure that ANNs can provide and for which 
were selected for the prediction methodology.  

Firstly, the structure of the multiple-layer perceptron network with different algorithms will 
be explored. In figure 1 is illustrated the topology of a representative multi-layer feedforward 
(MLF) neural network adjusted to the current research. This ANN architecture consists of 
interconnected and usually feed-forward way nodes, and although the dominant supervised 
learning algorithm in the literature was the back propagation algorithm (BP), a gradient 
descending method for training the network, herein it will only be addressed as a part of the 
comparative study of ANN architectures and algorithms for the appointment of a more 
efficient algorithm, since it cannot be applied in real-time ATM systems.  
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Figure 1. Graphic representation of a multi-layer feedforward (MLF) neural network with 
one input layer, one output layer, two hidden layers and their weights, adjusted in the 
research in question. 

 

Source (of the neurons part of the image): Rokach, 2010.  

 

Recent studies have presented a more efficient structure for the multilayer feedforward NN, 
especially for real-time applications, with several aspiring algorithms and results more 
accurate in comparison to the BP. Even though the feedforward networks have static structure 
by definition, by incorporating the time as dimension into the design of an ANN implicitly 
(Tapped Focus Lagged Feedforward Network – TLFN) or explicitly (recurrent networks), i.e. 
as a short-term memory into their input layer, they transformed into non-linear dynamic 
models with the advantage of enhanced stability (Haykin, 1999). These approximating 
networks have two-stage structure, a linear preprocessing phase and a memoryless nonlinear 
network of basis transfer functions, followed by the incorporation of the time dimension. For 
the nonlinear part, simple nonlinear structures can be used, such as the radial basis function 
(RBF), the sigmoidal etc., which learn the input space and transform its vector to the output 
space. Haykin refers to a better approximation of large classes, based on the observation that 
biological neurons are more receptive to activation when the input is closer to the center of 
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the field (Adeli and Karim, 2000), feature that is promising for more efficient forecasting 
results, given the large datasets of the research in question. 

Another structure that by empirical observations it is promising to outperform the MLF NNs, 
as forecasts with greater accuracy the time-dependent traffic flow along with the entity of the 
exogenous parameters, is the Time Delay Neural Network (TDNN). TDNN uses BP 
techniques for the weights of the neurons, but does not employ only single connections 
between nodes, as the majority of ANNs. Instead it establishes multiple connections that 
affect the hidden and output layer and resulting in saving in memory previously developed 
spatio-temporal patterns and not only inputs. Furthermore, the Adaptive Time Neural 
Network (ATNN) is an even more aspiring NN, as during the learning process it seeks phase 
relationships that produce higher correlation over history and automatically adapts its 
intervals (Abdulhai et al., 1999).  

Regardless the structure and the applied algorithm, in order to estimate the parameters of the 
forecasting neural network, a training phase is included that calculates the connection 
weights, which optimize a given evaluation function of the training data. Various search 
methods can be used to train these networks, of which the most widely applied one is back 
propagation (BP) (Rumelhart, 1986). This method propagates values of the output evaluation 
function backward to the input, allowing the network weights to be adapted so as to obtain a 
better evaluation score. Radial basis function (RBF) networks employ Gaussian nonlinearity 
in the neurons (Moody and Darken, 1989), and can be seen as a generalization of nearest 
neighbour methods with an exponential distance function (Poggio and Girosi, 1990). 

For the final emergence of the most suitable type of ANN for traffic forecasting in highways, 
a comparison of all the aforementioned supervised and unsupervised learning algorithms will 
be effectuated in terms of accuracy. The TDNN and ATNN is expected to outperform static 
MLF-type NNs as they contain in the forecasting process spatial patterns that are time-
evolving, as the traffic parameters behaviour that is to be predicted. 

Finally, the proposed methodology will be compared to simple deterministic models (non-
parametric regression etc.), to assess if the computational cost will be considerably equivalent 
to the accuracy improvement. According to Lu (Lu et al., 1996), there are deficiencies in the 
application of neural networks, namely the difficulty in interpreting the model, in 
incorporating prior knowledge about the application domain, and also long training time, both 
in terms of CPU time, and of manually finding parameter settings that will enable successful 
learning i.e. optimize the evaluation function. Nevertheless, due to the spatial coefficient that 
is not incorporated in the time series approach and to the time coefficient that is not 
comprised in the static MLF-type NNs, the time delay-type NNs are envisaged to be more 
accurate in traffic forecasting. 



12th Swiss Transport Research Conference                                                                                               May 02-04, 2012 
 ______________________________________________________________________________________________  

21 

Regarding the proposed prediction horizon and the time step that is considered to be selected 
for the prediction framework in question, two are two rules of thumb that tend to be efficient 
when followed: 
a) the larger the prediction horizon, the less the accuracy prediction 
b) the shorter the time step/interval of the forecasting model, the more difficult is the 

prediction effectuated, because of the rapid fluctuations of traffic parameters in short time 
periods 

However, based on implementations of traffic forecasting models (Florio and Mussone, 1996; 
Smith and Demetsky, 1997) and the range of traffic parameters in European highways, the 
time interval is suggested to not be too short (i.e. less than 30’’), as the traffic parameters have 
variability and the fluctuation in short time interval would result in decreasing the accuracy 
prediction. The optimum prediction horizon and time interval will be defined following the 
completion of the analysis from a range of 30-seconds, 1-minute, 2-minutes, 4-minutes, 5-
minutes, 10-minutes, 15-minutes for the horizon prediction and 30-seconds, 2-minutes and 5-
minutes for the time interval.   

4. Initial Investigation of Naïve Forecasting Models – Case 
Study Results 

In an initial attempt to comprehend the behaviour of forecasting models, simple deterministic 
models were evoked to be analysed with a dataset of disaggregated speed, time headway and 
time gap collected from a loop detector on A1 Swiss highway between Geneva and Lausanne, 
for 365 days of year 2010.    

The data were aggregated per 10-minutes, since the daily average time headway during peak 
hours was most commonly of 30-minutes and a lower than 15-minutes prediction horizon was 
considered at that primal stage as adequate. To find the best matches in the observations in 
terms of traffic flow patterns and time period classification (weekday, weekend), the Nearest 
Neighbour method was applied. In addition, two simple deterministic models were developed 
as extrapolations of historical data, to set a measure to assess the degree of forecast accuracy 
of this research proposed model. In the first naïve model, the current traffic speed and 
headway is used as the predicted value and in the second, the average of the current and the 
four previous speeds and headways as its prediction. 

In figure 2, are presented the abovementioned data aggregated by 10-min, in order to define 
via the Root Mean Square (RMS) the weight of each variable in the calculation of the 
mahalanobis distance, that would be used in the Nearest Neighbour method. The use of 
weights was aiming to normalise the different magnitudes of each variable, resulted from the 
RMS of speed and of headway distribution, namely ws=4.5 km/h wh=12.8sec. 
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In figure 3 is demonstrated that the speed and the time gap/or headway variables are 
independent, as for various values of time gap and headway the speed does not alter its 
behaviour. 

Figure 2. a. Speed, b. time headway and c. time gap distributions for 10-min aggregated traffic data of 
2010 from detector 24 on A1 Swiss motorway (Data courtesy of OFROU). 

 

  

 
 

a. 

b. c. 
Time headway (sec) Time gap (sec) 

Speed (km/h) 

Frequency 

Frequency Frequency 

 

Figure 3. a. Speed - headway and b. speed - time gap relationship scattergrams for 10 min 
aggregated traffic data of 2010 from detector 24 on A1 Swiss motorway. (Data courtesy of 
OFROU) 
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As it is indicated from the comparison of the three tested methods in the following figure 
(Figure 4), without any conditions imposed to refine the input and examine the interactions 
upon multiple regimes and exogenous parameters, the predictions are characterized by high 
inaccuracy. Even though the steepness of the headway graph (Fig. 4.b.), depicts a better 
predictability for the headway variable, an all-day forecast misleads the assessment of the 
methods. The case of restricting the input data, using a subset around the period of peak hours 
(before, after and during), is expected to improve the prediction accuracy. 

 

 

 

Figure 4. Error of prediction for a. speed - time gap and b. speed - headway relationship 
scattergrams for three traffic prediction methods: time series using one-step (red line) and 
five-step (green line) and Nearest Neighbour (blue line) for 10 min aggregated historic 
data of 2010 dataset from detector 24 on A1 Swiss motorway. (Data courtesy of OFROU) 
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5. Conclusions and Perspectives 

Amongst the various prediction methods that are presented in current literature, the most 
adaptable regarding the main objective that was targeted for the scope of traffic forecasting of 
this study and the available data, were selected to be implemented. To provide a baseline for 
the traffic forecasting potentials of these methods, deterministic forecasting methods were 
employed to be compared with, in order to assess whether the computational effort 
reciprocates in accuracy. The implementation of the simple deterministic models of time 
series and nearest neighbour affirmed the expected results. With the application of an 
unconditional approach, the headway and speed predictions derived from both methods, 
which were not remarkably dissimilar, were characterised by sizable errors of 10 seconds per 
10 minutes aggregated data for daily observations during 2010. Following, stochastic 
methodological approaches will be examined, contemplating to unveil a representative, 
consistent and transferable method, able to anticipate network’s behavioural alterations 
triggered by weather conditions, traffic composition and incidents, that will be part of the 
proposed methodology, in order to optimally form it and provide real-time traffic evolution 
dynamic forecast in highways, that will increase operational performance and enhance 
predictability, acknowledging multiregime (congestion, near-congestion, free flow), 
transitional traffic behaviour and the entirety of exogenous parameters that are remised from 
current ATM control strategies. This valuable model is envisaging mitigating congestion 
emergence and moderating its impacts while maintaining traffic safety, without any additional 
costs, since it is using optimally the current infrastructure. Furthermore, its transferability is 
ensured in view of its structure, permitting to be implemented in ITS (Intelligent 
Transportation Systems) and ATIS (Advanced Traveller Information System) environments 
for highways with negligible modifications. 

Following the validation of the model, the modification of existent traffic behavioural models 
will be pursued, by incorporating the emerged one into existing micro-simulations tools that 
will be able hereinafter to evaluate weather-responsive strategies. Furthermore, ATM 
highway control management schemes will be formed in microscopic scale, in order to 
moderate congestion emergence where a hard shoulder/emergency lane is non-dynamically 
operating. A dynamic algorithm will be implemented that incorporates exogenous parameters 
to the current procedure, avoiding unstable or forced flow and maintaining correspondingly 
traffic safety. In a future part of the research, and in parallel to the sensitivity analysis of the 
proposed methodology, a hybrid ATM approach will be suggested to confront the persistent 
recurrent and non-recurrent congestion, as a combination of applied and tested individual 
strategies in highway systems of Switzerland and abroad. 
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Among the deliverables of the research will be the development of a decision support system 
and hybrid traffic control strategies for the dynamic operation of hard shoulder in highways, 
for further network performance amelioration and depression of traffic congestion occurrence 
in the same safety level. In addition, an Application Programming Interface (API) that re-
structures the existing traffic behavioural models of micro-simulation analysis, encompassing 
a set of predominant exogenous parameters dialectical to the traffic evolution, will be derived 
at the end of the research. Therefore, the models will be rendered more relevant to the 
adversities that a network encounters, degrading its performance and impeding its operations, 
and will represent more accurately traffic evolution for future exogenous-responsive traffic 
management strategies.  
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7. Appendix 

Table A.1. Comparative presentation of recent traffic prediction methods. 

Methodological Approach Characteristics Advantages Deficiencies 

Historical Average 

(Stephanades et al., 1981 ; 
Jeffrey et al., 1987; Kaysi et 
al., 1993) 

- deterministic 

- relies on cyclical nature of 
traffic flow 

- avg. volume of each time 
interval at each site 

- simple structure -impossible to predict the 
dynamic behaviour of traffic 
(incidents, transitions etc.) 

Autoregressive Integrated 
Moving Average (ARIMA) 

(Okutani and Stephanades, 
1984; Davis et al., 1991; 
Kim and Hobeika, 1993; 
Hamed et al., 1995) 

- stochastic 

- parametric 

- linear or non-linear  

- periodic predictions 

- well-established theoretical 
background 

- not stable and not 
representative of rapid 
variations and unexpected 
edges of traffic 

- difficult multivariate 
modeling 

- weak transferability 

- need of uninterrupted series 
of data 

- not well-suited for freeway 
traffic flow forecasting 

State-space model/ Kalman 
filter state estimators  

(Harvey, 1984; Henson, 
1998; Durbin, 2000; 
Stathopoulos and Karlaftis, 
2003) 

- successive updates of 
parameters from different time 
periods during a daily 
observation 

- linear or non-linear 

- possible multivariate modeling 

- non stationarity of variables 

- flexible in changes of structure 

- better accuracy than univariate 
time series models (i.e. 

- demands full state of the 
system 

- the systems must be 
controllable 

- strong background of Hilbert 
space theory, multivariate 
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ARIMA) statitistics etc. 

Non-parametric regression 
(i.e Nearest Neighbour, 
Kernel etc.)  

(Smith and Demetsky, 
1997; Smith et al. 2002; 
Clark, 2003) 

- deterministic 

- non-parametric 

- non-linear 

- identifies groups of past or 
neighbourhood cases with 
similar features (states, input 
value etc.) around current and 
not prior input state 

- dynamic clustering 

- identifies past cases of the 
current prediction and of its 
prior 

- high accuracy, ameliorated via 
training 

simple structure 

- data-driven accuracy 

- demands extensive dataset 

- difficult multivariate 
modeling 

Artificial Neural Networks 
(ANN) 

(Zhang and Benveniste, 
1992; Clark et al., 1993; 
Kwon and Stephanedes, 
1994 ; Smith and 
Demetsky, 1994; Zhang, 
1997; Zhang et al., 1998; 
Zhang, 2000; Kirby et al., 
1997; Adeli and Karim, 
2000; Karim and Adeli, 
2002a,2002b; Yin et al., 
2002; Ishak and 
Alecsandru, 2003; 
Vlahogianni et al., 2005; 
Jiang and Adeli, 2005) 

- non-parametric 

- non-linear 

- transferability 

- high accuracy 

- permits generalisations  

- demands extensive dataset 

- complex internal structure 
and often heuristic 

Part of Hybrid Models 

Spatio-Temporal 
Correlations 0 

(real-time) 

- For transient behaviour: Multi-
variate Spatial-Temporal 
autoregressive (MSTAR) model 

- Prediction: Vector-Auto-
Regressive Integrated Moving 
Average (VARIMA) 
(p,d,q)(autoregressive terms, 
nonseasonal differences, lagged 
forecast errors in prediction 
equation) 

- Decompose/cut data: 

Time periods into intervals of 
peak/off-peak of day/week 

Space periods into speed-based 
links 

- accurate even for 12time 
periods of 15-min into future 

- weather, incidents, traffic 
composition not included as 
parameters 

- only two regime segregation 
(free-flow, congested)  

Wavelet, Fuzzy, Bayesian , 
Analysis of multi-regimes 
and transitions  

(Vlahogianni et al., 2008) 

- Empirical identification of 
traffic flow regimes and 
transitions 

- Transitional conditions 
detection via flow singularity 

- four-regime consideration & 
inter-regime& intra-regime 

- real-time applicable 

- site-transferable 

- not established causality 
between traffic flow 
phenomena 

- identification of traffic flow 
regimes under incidents and 
adverse weather conditions 
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detection  

- Flow regime identification 

- Intra-&Inter-regime Transitions 
identification  

not included 

State-Space Neural 
Networks (SSNN) 

(Lint et al., 2005) 

- Predict: 

Discrete State Space Model 
(DSSM) or State-Space Neural 
Networks (SSNN) : depends on 
its previous state and the 
previous states of other sections 
(free-flowing congested) 

- Training: 

Self-learning alg. with cost 
function & regularization terms 
from Levenberg–Marquardt and 
Bayesian Regularization (LM–
BR) 

- Missing data replacement:  

Null replacement, Simple 
imputation: interpolation, 
Exponentially moving average 

- transferability and non-heuristic 
preparation/training method,  

- prediction capability under 
missing data 

- Simple imputation: 
interpolation and Exponential 
moving average:  good results, 
insensitive to missing data 

- low performance time cost 
(sequential prediction of 15min: 
0.5s) 

 

 

- reciprocity between 
predictive accuracy & 
robustness. 

- large input dataset demanded 
(8191 combinations tested 
and failed) 

- weather, incidents, etc. 
exogenous parameters not 
included 

- only two regime segregation 
(free-flow, congested) 

- not transitional states 
detected 

Spinning network (SPN) 
with BP algorithm (ANN) 
and Nearest Neighbour0 

(Huang and Sadek, 2009) 

- Historical volume vectors 
stored in the “rings”, the 
SPNetwork 

- Functions: Merge and Compare 

Merge: calculates the average of 
the two items to be merged (eg. 
traffic volume vectors) 
However, considering that an 
item may have been merged 
with many items before, which 
should give it more “stability”, 
the function keeps a record of 
how many other items were 
merged into a given item before 
the current “merge” process, 
and uses that count as a weight 
when calculating the average.  

Compare: calculates the 
Euclidean distance of two 
vectors to assess how similar 
the two vectors are. 

- 5min prediction for now 

- low computational 
requirements 

- transferability 

- no training procedure 

 

- extremely complex structure 
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