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Abstract

Every year large railroad companies invest billions of dollars acquiring, man-
aging and fueling locomotives, therefore even small percentage improvements
toward a better efficiency in the use of locomotives, can lead to significant
economic savings. The locomotive assignment problem (LAP) is solved as-
signing a fleet of locomotives to a network of trains optimizing one or more
crucial objectives (costs, profit, fleet size, level of service, . . . ) and satisfying
a rich set of technical and economic constraints. Starting from a determin-
istic train scheduling and focusing on the planning version of the problem,
Ahuja et al. propose to model the LAP as a Mixed Integer Programming
(MIP) problem and to solve it as a multicommodity flow problem with side
constraints (the number of locomotives of each type is limited) on a space-
time network. This model, is characterized by about 197000 integer variables
and 67000 constraints, consequently the problem has been solved combining
several heuristic solution steps.
This work is motivated by the development of a new model able to deal with
real-life aspects of the planning LAP not directly included in the considered
MIP model: locomotive fueling, locomotive maintenance, uncertain schedule.

Keywords: freight train, heuristic, locomotive assignment, locomotive
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Introduction

The strong competition among railroads and the growing role of the pri-
vate sector, specially in Europe where many national railroad proceed toward
a privatization, imply that railroads are paying more and more attention on
operating cost, punctuality and performance, which affects customers’ satis-
faction.
The U.S. freight transportation system is one of the best example of the
effects of the competition among transport companies. The whole system
(highways, waterways, airways, and railways) offers the best service and
rates in the world and the freight rail element of this system is critical to
the competitiveness of many industries and the economies of many states
(Grenzeback et al. [2008]). America’s freight railroads span 140,000 miles
and form the most efficient and cost-effective freight rail system in the world
(Thompson [2007]). Historically, U.S. and Canada offer the richest set of
railways companies dealing with the highest competition rate in the world.
Many of these companies invested and invest in the creation of tools like
simulation and optimization models to help their decisions process. So, not
surprisingly, many optimization models for the locomotive assignment prob-
lem (LAP) have been developed by North American research centers and
focus on real problems faced by U.S. and Canadian companies.
In the last decades however, an increasing interest in optimization models
for the LAP emerged among, for instance, European, Australian, Indian and
Brazilian railway companies.

The rest of the paper is organized as follows: section 1 introduces a short
historical perspective of the role of optimization models in railway’s schedul-
ing problems, section 2 presents the locomotive assignment problem in its
different application fields (freight trains, passenger trains, switch engines,
industrial in-plant railroads), section 3 introduces the literature reviewed,
section 4 describes the mathematical model for the locomotive assignment
problem adopted as reference (state of the art), section 5 summarizes the
original methodological contributions of this paper. Discussion and future
research are outlined in the last section.
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1. Tonnage-based and scheduled-based approaches:
the role of optimization models

The increased computational power in the last decade allows the tractabil-
ity of more complex models and bigger instances. Consequently, the unavoid-
able complexity and size of real-life problems can be captured and managed
more efficaciously leading to the creation of effective decision-support tools
for realistic applications. But this element tells us only a part of the story.

The increasing interest in optimization models, cannot be completely ex-
plained by the increasing computational power and modeling ability. In
the last two decades, passenger and freight movement over the transporta-
tion system have increased significantly in both advanced (like U.S., Europe,
Japan) and emerging (like Cina, India, Brazil) countries.

The U.S. rail freight transportation system represents a significant exam-
ple: the ton-miles of rail freight (one ton-mile represents one ton of freight
carried over one-mile counts) moved over the national rail system have dou-
bled since 1980, and the density of train traffic measured in ton-miles per
mile of track has tripled since 1980 (Grenzeback et al. [2008]). Despite the
fact that the rail’s share of the total freight transportation market is moder-
ate (14 percent of total tons carried, 25 percent of total ton-miles) and that
the rail’s market share is also declining, the current demand for rail freight
transportation is pressing the capacity of the rail system (Grenzeback et al.
[2008]).

The need to reduce greenhouse gas emissions (like CO2) will probably
increase even more this demand because the freight rail service is very fuel-
efficient and generates less air pollution per ton-mile than trucking (Grenze-
back et al. [2008]).
Given the demand for freight transportation, usually expressed in terms of
weight (tonnage), the railroad establishes a policy for the routing of trains. A
possible policy is to running trains only when they have enough freight. This
policy has been traditionally practiced by North American railways and is
named tonnage-based dispatching. In a tonnage-based approach in dispatch-
ing trains, the company holds all trains until they have enough tonnage, so
a train may be scheduled every day, but it may be delayed or canceled, de-
pending on the achieved tonnage.
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The idea underlying the tonnage-based approach is simple: to minimize
the total number of operating trains by maximizing the train size in order
(theoretically) to minimize the crew costs and maximize the track capacity.
However, from a practical point of view, this approach presents some limita-
tions and shortcomings:

(i) Railroad tracks used for loading/unloading, sorting, or storing railroad
cars and/or locomotives (i.e. yards) cannot optimize their operations
relying on a repetitive schedule, and they may require more railcars
and more storage capacity to deal with the traffic variability.

(ii) It may be an increased demand for crew and locomotive resources.
(iii) Operating costs may increase due to an increased idling cost and reloca-

tion cost of equipments and crews and also due to a reduced utilization
of locomotives and railcars.

Moreover, the tonnage-based approach implies an unreliable and poor
service for the customers, so the tonnage-based approach was, and remains,
a good strategy for bulk goods like coal, but it has proven to be a poor strat-
egy for most other goods.
Although the tonnage-based approach is still common in North America, it
is rarely used in the European context where freight trains typically operate
according to schedules (like passenger trains): this is the schedule-based ap-
proach. In the schedule-based approach trains run as scheduled, even when
the train has not achieved a sufficient tonnage.

The management of a schedule-based strategy implies that the schedule
should be adapted depending on the forecast of the traffic and requires ad-
vanced computers and operations research software to conduct deep analyses
of different alternatives in short times. As reported in Ireland et al. [2004], the
scheduled-based strategies recently gained favor in U.S. and Canada where
several railway companies are adopting this more disciplined approach to ob-
tain cost-effective and customer-effective operating plans.
The discussed increase in customer demand for freight rail transport and
the disposal of advanced computers and operations research software (not
available until recently) push several North American railway companies to
change the paradigm of their operations passing to a schedule-based strategy.

In fact running more frequent trains with scheduled transit-time may re-
quire more simultaneous operations of assembling and dispatching, so more
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trains are running simultaneously leading to more congested rail tracks and
yards. More locomotives are required and more empty railcars need to move
faster to be ready for loading (Ahuja et al. [2005a]).

At the beginning of the new century Canadian Pacific Railway (CPR) ob-
tains more than 500 million (Canadian $) of annual operating costs savings.
These savings are because of the ability to better execute the plan through
daily repetition and to better manage crews and equipment (faster railcar
velocity, improved locomotive utilization, reduced train starts). In addition
to cost savings, running on a schedule has allowed CPR to recapture traffic
from the trucks. The new schedule-based approach has allowed CPR to think
and act like truckers (Cambridge Systematics Inc. [2005]).
The success of the new Operations Research tools used by CPR has (sur-
prisingly) overturned the old paradigm that tonnage-based plans are more
efficient.
In the last years all North American Class I railroads follow the example of
CPR. NS and CN, switch most of their services to run on a scheduled operat-
ing plan (also CSX Transportation, and FEC have all adopted the scheduled
railroading philosophy) (Cambridge Systematics Inc. [2005]).
Supporting the historical role of simulation tools, optimization models are
gaining more and more importance in solving large size complex scheduling
problems that characterize the schedule-based approach in real-life applica-
tions.
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2. Problem description

The LAP is one of the most important problems in railroad scheduling
because it involves very expensive assets and huge numbers. Every year,
large railroad companies invest billions of dollars acquiring, managing and
fueling locomotives. Every day they assign thousands of locomotives to thou-
sands of trains. Due to the size of real-life problems, even a small percentage
improvement toward a better efficiency in the use of locomotives, can lead
to significant economic savings.
For this reason it is crucial to find a satisfactory solution to the LAP. Due
to its importance, many researches focused on this scheduling problem. Un-
fortunately, the Locomotive Assignment Problem (LAP) is a very complex
discrete optimization problem that has not been solved in a completely sat-
isfactory way. Indeed the LAP is so complex, from a mathematical modeling
and (even more) computational point of view, because of its detail richness
and its size in real-life applications.

The LAP is solved assigning a fleet of locomotives to a network of trains
usually minimizing the total operational cost and satisfying a rich set of con-
straints (both technical and economic).
Locomotive scheduling may be studied at three levels: planning (or strate-
gic), tactical and operational, in accordance with the length of the respective
planning horizon and the temporal impact of the decision. Roughly speaking,
the three notions identify the planning activities in the long, mid and short
term, in that order. At the strategic level only the number of locomotives
and their type matter, the specific ID of each locomotive is not considered
and locomotives of the same type are completely equivalent.
In the planning version of the LAP, for each train we determine the type and
the number of locomotives assigned to that train. Usually in the planning
LAP the train schedule is given and cannot change (no delays or disruption
are considered).
On the contrary the dynamic (tactical and operational) LAP, introduce many
aspects not considered in the planning version. This is necessary because we
deal with specific locomotives and not just with locomotive types. More
precisely, we have to assign locomotive ID codes (unique for each specific lo-
comotive) to trains. This means that we have to solve a locomotive routing
problem while honoring the constraints of the scheduling phase and new op-
erational constraints (like fueling constraints, maintenance constraints, . . .).
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Furthermore the train schedule may be affected by delays and disruptions
events.

The demand for a particular train is expressed in terms of tonnage and
horsepower (HP) and may be satisfied choosing a feasible and suitable con-
sist from a set of locomotives of different characteristics.
Very often, this suitable consist does not match exactly the power desired for
the train and provide more power than needed. A careful choice of consists
can minimize wasted power but in general cannot eliminate it. It is important
to note that the wasted power is the consequence of an integral number of
locomotives and disappear when a relaxed problem is solved for a fractional
number of locomotives. This fact produces an integrality gap that makes the
solution of this problem more complicated than that for aircraft scheduling,
vehicle scheduling, vehicle routing or crew scheduling. In the solution pro-
posed in Ziarati et al. [1997] the author faces integrality gaps generally well
above 5%. This level of integrality gap is observed rarely in vehicle routing
and crew scheduling contexts. Ziarati et al. report that LAP usually exhibit
tight integrality gaps (the solution of the linearly relaxed problem is strongly
fractional) because the train covering constraints are writtren in terms of
tonnage and horsepower rather than in terms of number of locomotives (an-
other reason reported by Ziarati et al. was provided by the theoretical results
presented in Bramel and Simchi-Levi [1996]).
Moreover, Ziarati et al. stress that choosing the consist that minimizes
wasted power may lead to locomotive unbalances in stations that increase lo-
comotive non-productive movement (deadhead and light traveling). In fact,
non-productive movement may increase in order to solve this locomotive
unbalances i.e. locomotives arriving in a particular station may not be the
same departing from that station. Then we have a trade-off between mini-
mizing wasted power and minimizing non-productive locomotive movements
and part of the problem in selecting consist is to find an optimal trade-off
between these two concurrent requests.

The minimization of operational cost imposes the consideration of other
crucial aspects involved in the consist selection problem. The reduction of
costs is primarily pursued minimizing the number of used locomotives and so
minimizing the non-productive time spent by equipment, crews, technicians
and so on. It is then important to promote the use of train to train connec-
tions avoiding consist-busting operations.
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A consist-busting operation is characterized by very labor, cost, and time
intensive activities. Additional crews are needed to transfer locomotives be-
tween the rail yard and the shop facility. Here, initial consists are busted
and reassembled to form other consist, different from the initial one. Trans-
ferring locomotives across a station introduces incremental moves for the
yard masters to worry about. Car switching activity must be paused and
train movements must be coordinated between different department (trans-
portation and mechanical) as opposed to train to train connections which are
entirely supervised by transportation. As a consequence, consist-busting re-
quires between two to six additional hours per locomotive within the station
(Vaidyanathan et al. [2008a]).

2.1. Freight and passenger railway transportation
Passenger and freight trains have different characteristics, passenger trains

always run according to a fixed schedule while freight trains may operate
without schedules and simply depart when they have accumulated a suffi-
cient tonnage. Passenger trains are more time sensitive and so they have the
priority where they share the same rail network with freight trains (a com-
mon occurrence in U.S., Canada, Europe, Australia and in many developing
countries).
Typically passenger trains are lighter than freight ones since they use a small
number of cars coupled with one or two locomotives while freight trains gen-
erally contain a large number of cars coupled with several engines. For pas-
senger trains the maximum gross weight is known in advance with a small
uncertainty while the weight of freight can change unexpectedly for both
scheduled and not scheduled trains.
There are significant differences in complexity and modeling of the planning
LAP in the passenger and freight frameworks. Very often a single locomo-
tive is sufficient to pull a passenger train (so the load of the train no longer
features in the formulation) and when more than one locomotive is needed
the consist is usually constituted by no more than two locomotives of the
same type. According to Noble et al. [2001], in the first case the problem
is modeled assuming several classes of locomotives but a single pulling loco-
motive (multi-class single-locomotive problem), in the second case the train
is pulled by a multi-locomotive consist (multi-class multi-locomotive prob-
lem). In both cases the reduced size of passenger trains and consist make the
problem more tractable with respect to the freight version, so it is possible
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to assign simultaneously both locomotives and cars to the passenger trains
(Cordeau et al. [2000], Cordeau et al. [2001], Lingaya et al. [2002]), while for
freight trains this two assignments are managed separately.
As reported in Cordeau et al. [1998], few works focusing on the management
of passenger railway locomotives can be found in the operations research lit-
erature. Ramani [1981] focuses on the problem faced by Indian Railways,
Cordeau et al. [2000], Cordeau et al. [2001] and Lingaya et al. [2002] treat
the problem of simultaneous locomotive and car assignment at VIA Rail
Canada, Illés et al. [2005] and Illés et al. [2006] treat the locomotive assign-
ment at Magyar Államvasutak (MÁV) (the Hungarian State Railway Com-
pany), Maróti and Kroon [2005] study the maintenance routing of trains at
NS Reizigers (the main Dutch operator of passenger trains), Paoletti and
Cappelletti [2007] present a decision support system developed by the Mod-
els and the Decisional Systems Department of Trenitalia (the main Italian
operator of passenger trains) to aid the locomotive fleet planning.
Resuming, we have the following table

Table 1: Passenger railway locomotive management
Authors Railway company
Ramani [1981] Indian Railways
Cordeau et al. [2000] VIA Rail Canada
Cordeau et al. [2001] VIA Rail Canada
Lingaya et al. [2002] VIA Rail Canada
Illés et al. [2006] Magyar Államvasutak
Illés et al. [2005] Magyar Államvasutak
Paoletti and Cappelletti [2007] Trenitalia

More researches focus on the more complex freight railway engine assign-
ment. Some of the reasons that make the planning LAP for freight trains
more complex are:

- The number of active locomotives is often two or three times the one
required in passenger trains (consist may be constituted by 4 or more
pulling locomotives, depending on the maximum number of axles per-
mitted on a single consist)

- The number of active and passive locomotives attached to freight trains
can be many times the number of locomotives attached to passenger
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trains (for instance, CSX imposes the maximum number of locomotives
on a single train equal to 12)

- There are many different types of trains, belonging to (three) different
classes (intermodal, auto and merchandize), that require very different
consists, so it is more difficult to reduce the size of such a heterogeneous
set of consist

- There are much more train to train connections possibilities to be con-
sidered, much more constraints (like locomotive versus train compati-
bility constraints) and complications like cost of coupling and uncou-
pling consists (consist busting)

The following table reports a (non exhaustive) list of researches inspired
by real problems

Table 2: Freight railway locomotive management
Authors Railway company
Florian et al. [1976] Canadian National
Ziarati et al. [1997] Canadian National
Ziarati et al. [1999] Canadian National
Ziarati et al. [2005] Canadian National
Ireland et al. [2004] Canadian Pacific Railway
Ahuja et al. [2005a] CSX Transportation
Ahuja et al. [2005b] CSX Transportation
Ahuja et al. [2006] CSX Transportation
Vaidyanathan et al. [2008a] CSX Transportation
Vaidyanathan et al. [2008b] CSX Transportation
Powell and Bouzaiene-Ayari [2007] Norfolk Southern
Brannlund et al. [1998] Banverket Swedish National Railway
Scholz [2000] Stateiis Järiivägar Swedish State Railways
Noble et al. [2001] Public Transport Corporation
Baceler and Garcia [2006] Companhia Vale do Rio Doce
Fügenschuh et al. [2006] Deutsche Bahn AG
Fugenschuh et al. [2008] Deutsche Bahn AG
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2.2. Yard switching and in-plant railroad LAP
Railroad yards are a complex series of railroad tracks for storing, sorting,

or loading/unloading railroad cars and/or locomotives and constitute crucial
components of a railroad network. They are the points of origin and desti-
nation of shipments and freight movements. In a yard, inbound trains are
disassembled, unloaded and inspected. After that (when needed) cars and
locomotives are sent to cleaning and maintenance cfacilities (shops). Finally
they are loaded and reassembled forming new outbound trains.
As reported in Sabino et al. [2010], yard activities are an important part
of freight transportation operations since the delays associated with these
activities represent a large portion of the transit time for rail freight. Yard
locomotives are often called switch engines, they move cars and locomotives
within the railroad yard. The objective is to minimize the costs of the switch
operations and the solution of the LAP helps to optimize the fleet size of the
switch engines that greatly affect this costs, see Sabino et al. [2010] for more
details.

Lübbecke and Zimmermann [2003] report the LAP faced by another par-
ticular railroad sector. Large industrial plants in the automobile, chemical,
and steel industry require to transport freight between production, storage,
or shipping terminals that are often widely spread. In order to preserve a
timely production process it may be useful to have a private railroad system
which manage this tasks (often a subsidiary and a distinct legal entity). An
industrial in-plant railroad has to be managed minimizing operational cost
and the LAP has to be solved efficiently. There are very few studies dedicated
to this particular version of the LAP, one of the first is Charnes and Miller
[1956], for a more recent research see Lübbecke and Zimmermann [2003] in
which real application at Verkehrsbetriebe Peine-Salzgitter GmbH and EKO
Transportgesellschaft GmbH are presented.

3. Problem types

The locomotive assignment problem may be classified into a several kind
of categories depending on the classification parameter that is considered.
For instance, problems can be classified looking at the planning level and so
the problem may be a strategic, tactical or operational locomotive schedul-
ing. Another possibility is to classify problem by the objective pursued by
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the modeler, for instance: minimize operating costs (maximize profits), min-
imize deadheading times, minimize fleet size, and so on.

From a modeling perspective a first important classification can be ob-
tained considering as classification parameter, the maximum number of pulling
locomotive a train may require. If each train in the problem needs a single
pulling locomotive then the problem is modeled by a single locomotive model
(or single engine model). If some trains require more than one pulling lo-
comotive then the problem is modeled by a multiple locomotive model (or
multiple engine model).

3.1. Single locomotive models
Ceteris paribus, the problems in the single locomotive category are clearly

easiest to solve. It is natural to proceed further in the classification consider-
ing how many locomotive types the model requires. If the problem is modeled
assuming only one type of locomotive, then it becomes similar to the single
depot (bus) vehicle scheduling problem (SDVSP), if many locomotive types
are required, then the problem is similar to the multiple depot (bus) vehicle
scheduling problem (MDVSP) (Forbes et al. [1991]). The first version (SD-
VSP) may be modeled as as a minimum cost flow problem whose solution is
achievable for very large scale instances as remarked in Ziarati et al. [1997]
since it can be solved efficiently by polynomial or pseudopolynomial algo-
rithms, for instance by the so called Hungarian Method (Fügenschuh et al.
[2006], see Ahuja et al. [1993] for details). As the former, the vehicle schedul-
ing problem with multiple depot has been widely studied.

Focusing on the railway area, Booler [1980] considers a one day cyclic
train schedule with possibly variable trains departure times and propose a
model based on multi-commodity flows. The objective is to find a minimum
cost set of locomotive schedules to pull a given set of trains. Booler proposes
a heuristic method based on a linear programming model. Booler tests the
method on small instances (10 to 50 trains) and Wright [1989] point out that
this approach does not produce good solutions for larger (more realistic) in-
stances (100 to 500 trains).

Wright seems the first author able to find a valid solution for a large-scale
instances of this problem. He consider a cyclical one day train schedule and
obtain the solution through a heuristic procedure. Wright test the procedure
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on several instances (25 to 200 trains) however he does not take into account
the existing constraints for the fleet size, for this reason Wright does not
recommend the use of this procedure for real life applications.
Forbes et al. [1991], inspired by the work of Wright, obtain an exact solution
for the locomotive scheduling problem. They translate to the locomotive
scheduling problem, a solution procedure they developed for the MDVSP in
a previous work: the model is based on an integer linear program equivalent
to a multi-commodity flow formulation where each commodity represents a
locomotive type. This method represent a significant improvement over the
method proposed by Wright, also because Forbes et al. are able to take into
account the fleet size constraints, not included in the model of Wright.

More recently Fügenschuh et al. [2006] follow a path similar to the one
adopted in Forbes et al. [1991]. They start from their experience on multi-
depot multi-vehicle-type bus scheduling problems and extend their and other
authors solution methodologies to the locomotive scheduling problem. As
Forbes et al., Fügenschuh et al. point out the extra difficulties of locomotive
scheduling problems due to the several new aspects that have to be taken
into account: cyclic departures of the trains, time windows on starting/arrival
times, transfer of wagons between trains. The model is formulated as a linear
integer programming problem, in two different versions: with fixed and with
flexible starting/arrival times.
The fixed starting time version of the problem is called capacitated cyclic
vehicle scheduling problem (CVSP) due to the cyclic character of the loco-
motives schedules. The capacity of the vehicles represents an upper bound
for the availability of the different locomotive types. The flexible starting
time version is called cyclic vehicle scheduling problem with time windows
(CVSPTW). The CVSPTW is further specialized in two sub-versions, the
first consider constant traveling times while in the second the driving time
of the trains is not constant but depend on the total network load. This
take into account the fact that often freight and passenger trains share (most
of) the same tracks and so at daytime a freight transport may wait for the
passenger transport and then the average traveling speed may be much lower
than at nighttime. Their work aims to improve the simulation tool used by
the Deutsche Bahn AG, the largest German railway company. Their model
is based on a multi-commodity min-cost flow formulation and is solved as a
linear integer programming problem.
The CVSP and the CVSPTW problems are formulated as integer program-
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ming problems and commercial IP solvers (ILOG Cplex 10) are used to com-
pute feasible/optimal solutions.
Fügenschuh et al. are able to solve instances of the CVSP up to 1537 trips
and 4 locomotive classes while for the CVSPTW they consider up to 120
trips and 4 locomotive classes and time windows lenght ranging from ±10 to
±120 minutes intervals around the pre-scheduled starting time.

As Charnes and Miller [1956] before, Lübbecke and Zimmermann [2003]
treat the in-plant railroad engine scheduling and routing problem, a subject
that has not been extensively discussed in the operations research literature.
They describe the mathematical and algorithmic solutions proposed to in-
plant railroads as decision support tools for scheduling and routing problems.
The minimization of the total deadheading and waiting time is considered as
an example of practically relevant objective function. The problem is related
to the multiple-vehicle pickup and delivery problem and two formulations of
the problem are considered: a mixed integer and a set partitioning programs.
The linear programming relaxation of the set partition model is solved by
column generation. Computational experiments on both artificial and real-
life data from three different German plants (VPS, EKO and SOL).

3.2. Multiple locomotive models
The most complete version of the LAP occurs when consists, (instead of

single locomotives) are linked to trains and there is more than one locomo-
tive type, so a single train may be linked with several locomotives of different
types. This is the LAP with heterogeneous consists.

Florian et al. [1976] analyzed a freight train problem for Canadian Na-
tional Railways (CN) and were among the first to deal with this version of
the problem. They formulated the problem as an integer program based on a
multi-commodity network flow formulation. The objective is to minimize the
capital investment and the maintenance costs over a long planning horizon
selecting an optimal number of (mixed) engine types that satisfy the motive
power requirements of each train. The power requirement constraints are
determined according to train weight, train length (number of cars) and ge-
ography (rule grade of traveled track).
They propose a solution based on a Benders decomposition method and
conduct computational experiments using the weekly train schedule for the
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Atlantic region of the CN. Their implementation does not converge rapidly so
the problem could not be solved to optimality and the size of the optimality
gap was considered acceptable for medium-sized problems but not for large
ones. It should be noticed that the limited computational power imposed to
stop the algorithm after less than 30 iterations, different convergence result
could be probably obtained with the present computers.

Ziarati et al. [1997] extended the formulation proposed in Florian et al.
[1976] to include many of the operational constraints encountered at CN (e.g.
active and passive deadheading, scheduling of the maintenance intervals of
the locomotives, noncyclic trains schedules with fixed start and ending times).
Ziarati et al. propose a timespace-network approach for the operational ver-
sion of the LAP with a heterogeneous fleet and formulated the problem as a
mixed integer linear program corresponding to a multi-commodity network
flow problem with supplementary variables and constraints. The objective
is the minimization of the total operational costs. They consider a week as
time horizon, but the solution of very large instances impose to divide the
time horizon into a set of rolling overlapping time windows of two or three
days that involve fewer trains services (500 / 1000 each). Each time slice is
then optimized using a branch-and-bound procedure in which the linear re-
laxations are solved with a DantzigWolfe decomposition. The solution of the
problem for a slice determines the initial conditions for the following problem
associated to the next slides. Computational experiments were conducted on
real-life data (26 stations, 164 yards, 18 shops, 1988 train services, 1249 lo-
comotives, 26 locomotive types). As in Florian et al. [1976], optimality was
not reached, with gaps ranging from 3% to 7 %
To reduce the optimality gaps, Ziarati et al. [1999] strengthened the previ-
ous formulation with specific cutting planes, additional cuts that are based
on the enumeration of feasible assignments of locomotive combinations to
trains. They report an average reduction in integrality gap of about a third
for problems of one, two, and three days time slice. The use of this cuts and
of the new branching strategy (called branch-first, cut-second approach) con-
sistently improve solution quality with modest increases in computing time.

An alternative approach to solve complex combinatorial problems has
been proposed in Powell et al. [2001]; it is based on the approximate dy-
namic programming (ADP) framework.
The idea proposed by Powell et al. is to formulate the original problem as a
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dynamic programming problem and solve, through ADP, a sequence of small
sub-problems that can be managed optimally using commercial solvers (like
CPLEX). This approach permits to deal with uncertainty in a general way
allowing the modeling of a wide class of uncertainties even in complex real-
life combinatorial problems.

The ADP framework has been extensively described in many papers
(Marar and Powell [2009]; Marar et al. [2006]; Powell [2003]; Powell and
Topaloglu [2003]; Powell et al. [2001, 2002, 2007]), technical reports (Powell
and Bouzaiene-Ayari [2006]), conference proceedings (Powell and Bouzaiene-
Ayari [2007]) and in a book (Powell [2007]).
The LAP is often formulated as a MIP problem, a class of problems which
is treated for instance in Powell and Topaloglu [2005]; Powell et al. [2002];
Topaloglu and Powell [2006].

Moreover Powell et al. apply their approach to the solution of a real-life
LAP. Focusing on recent application, in 2006 they start developing an appli-
cation, sponsored by the Norfolk Southern Railroad and Burlington Northern
Sante Fe Railroad. This application was claimed to solve the problem of as-
signing locomotives to trains over a planning horizon (a week for real-time
planning, a month for strategic planning) capturing a high level of detail
about both locomotives and trains, as well as a variety of complex busi-
ness rules. Notably, the application simultaneously handled the problem of
routing locomotives to shop location (maintenance centers). In 2007 this
application was still in development in collaboration with Norfolk Southern
Railroad.
Finally in 2009 the work of Powell et al. produced an application named
Princeton locomotive and shop management system (PLASMA) which com-
pleted the user acceptance test at Norfolk Southern as a strategic planning
system.

An important improvement in the realism of the LAP models has been
provided in Ahuja et al. [2005b]. Ahuja et al. study a real-life locomo-
tive scheduling faced by CSX Transportation Inc., a Class I U.S. railroad
company. Following the requests of the CSX managers, who sponsored the
research, Ahuja et al. focus on a weekly schedule and on the strategic version
of the corresponding locomotive planning problem.
Ahuja et al. propose a Mixed Integer Programming (MIP) formulation, each
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locomotive type correspond to a different commodity and the problem is
modeled as a multicommodity flow with side constraints (the number of
locomotives of each type is limited) on a space-time network where arcs de-
note trains and nodes denote events i.e. arrivals and departures of trains and
locomotives (for a review of the network models and their application in lo-
comotive and train scheduling see for instance Ahuja et al. [2005a]).
Defining the total cost as the sum of ownership, active, deadheading, light-
traveling and consist-busting costs plus the penalty for the use of single-
locomotive consists, the objective is to minimize the total costs finding active
and deadheaded locomotives for each train, light-traveling locomotives and
train-to-train connections.
Starting from the data provided by CSX, they consider an instance of the
LAP with 538 trains running with different weekly frequencies, 119 stations
and 5 types of locomotives. In the week the total number of trains (which
differ at least for the running day) is 3324 and the resulting weekly space-
time network consisted of 8,798 nodes (events) and 30,134 arcs (trips).
The proposed formulation does not consider some real-life constraints like
the weekly consistency constraint (the same train running on different days
should have the same locomotive assignment) and the train to train con-
nection constraint (perform the same train to train connection for each pair
of connected trains). Even without this constraint (which would increase
dramatically the problem size), the MIP formulation consisted of 197,424
variables and 67,414 constraints and could not be solved to optimality or
near-optimality using commercial software like CPLEX, even considering
the linear programming relaxation of the problem. In order to deal with
this large size instance, Ahuja et al. propose a decomposition-based heuris-
tic approach that allows near-optimal solutions (using CPLEX) for real-life
instances in moderate computing times and implicitly account for the con-
sistency constraints. The first step of this heuristic approach transform the
weekly scheduling problem in a daily scheduling one. This is done passing
from the actual set of the weekly frequencies to the following binary set:
cancel trains running less than 5 days a week (weekly frequency equal to
zero) and set to 7 the frequency of the remaining trains (this simplification
works because in the specific dataset provided by CSX the 94% of trains
run 5 days a week or more). Even if the daily space-time network is signifi-
cantly smaller, it contains 1,323 nodes and 30,034 arcs and finding an integer
optimal solution is still very problematic. Ahuja et al. identify in the fixed-
charge variables (fixed cost of deadheading and light-travelling) the principal
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obstacle that prevent the daily problem to be solved to optimality or near-
optimality. Then, the following three-step sequential heuristic approach is
used to eliminate fixed-charge variables:

(i) Select among the admissible train to train connections the ones with
lower impact on the cost function; the impact is assessed solving the
linear programming relaxation of each problem obtained fixing connec-
tions one by one.

(ii) Identify a small but potentially useful set of light-travel arcs and, as for
deadheading arcs, fix light-travel arcs one by one and select arcs relying
on the impact on the cost functions

(iii) Once the fixed-charge variables are eliminated through the two previous
steps, solve the integer program for the daily locomotive assignment
without the fixed-charge variables obtaining a high-quality solution (in
short time).

Ahuja et al. obtain a integer high quality solution for the daily schedul-
ing problem in 15 minutes with CPLEX 7.0. The procedure is completed
using this solution as the starting solution for a very large-scale neighbor-
hood (VLSN) search algorithm that starting from this initial feasible solution
repeatedly replaces it by an improved neighbor until we obtain a local opti-
mal solution.
The solution of the daily problem is then heuristically adapted displacing lo-
comotive from the fictitious trains to the actual trains (respectively inserted
in the daily schedule and canceled from the weekly schedule) by the frequency
quantization.
So a modified MIP flow formulation of the weekly problem is obtained from
the solution of the daily problem resorting the original weekly frequency
distribution. Anyway, this modified weekly problem still requires excessive
computing time and so the corresponding multicommodity flow problem is
heuristically converted into a sequence of single commodity flow problems
with side constraints, one for each locomotive type. Finally, a VLSN search
algorithm is applied to improve the feasible integer solution of the weekly
locomotive scheduling problem obtained in the previous step.
Computational test were conducted on a real-life scenario: 3324 trains origi-
nating from and terminating at 119 stations and 3316 locomotives belonging
to five locomotive types. The Algorithms made extensive use of CPLEX 7.0.
and were tested on a Pentium III 750 MHz. The solution obtained in Ahuja
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et al. [2005b] is substantially superior to the one provided by the software
developed at CSX: the total cost is substantially reduced and the number of
locomotives used dramatically decreases (by 350 ÷ 400 units, depending on
the scenario).
A technical document (Ahuja et al. [2006]) was also prepared to introduce
possible extension of the model, e.g. CAB signal requirements, optimal rout-
ing of locomotive to fueling stations and shops to satisfy fueling and main-
tenance constraints. A more detailed presentation of these and other exten-
sions can be found in Vaidyanathan et al. [2008a] where a generalized LAP
is considered. Vaidyanathan et al. extended their previous model on several
ways by incorporating in the planning problem all the real-world constraints
needed to generate a fully implementable solution and by developing addi-
tional formulations necessary to transfer solutions of the models to practice.
Vaidyanathan et al. propose also two alternative formulations for the gener-
alized LAP: consist formulation, and hybrid formulation. The consist formu-
lation is an extension of the locomotive flow formulation described in Ahuja
et al. [2005b], which defines each locomotive type as a commodity and routes
locomotives on the train network. In the consist flow formulation locomotive
types are replaced by the consist types and each consist type is defined to
be a single commodity and is routed on the train network. In locomotive
flow formulation, single locomotives are assigned to trains and consist are
the result of this assignment. In the consist flow formulation the solution is
obtained starting from a set of consist already assembled. The optimal set of
assembled consist is determined heuristically. The hybrid formulation allows
the assignment of both assembled consist and single locomotives.
Vaidyanathan et al. point out that performances critically depends on the
number and types of consists, as expected the greater the number of consists
with different horsepower and tonnages, the better the quality of the solu-
tion.
The use of assembled consist restrict the solution space, this could lead, and
leads, to a loss in optimality. Nevertheless, computational tests performed
by Vaidyanathan et al. show that the optimal objective function value in the
consist formulation may be just 5% higher than the one obtained in the lo-
comotive flow formulation. The correct identification of the set of assembled
consit is crucial to reduce as much as possible the optimality gap.
The (potentially) small optimality gap is highly compensated by many ben-
efits:
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(a) For some instances the locomotive flow formulation could not converge
to a feasible solution in more than 10 hours of computation, while the
consist flow formulation was able to optimally solve the same instances
within a few minutes.

(b) The consist flow formulation use a much lesser number of constraints
because allow to implicitly handle many constraints that have to be ex-
plicitly specified in the locomotive flow formulation; this well explains the
shorter computation times and the rapid convergence toward an optimal
solution.

(c) Railroads often impose complex rules on what locomotive types may be
combined together, these requirements are very hard or impossible to
impose in the locomotive flow formulation while are easy to enforce in
the consist flow formulation.

(d) Consist-busting (and the corresponding cost) is reduced to a large extent

In fact, great improvements in solution speed and robustness, significant
consist-busting reduction and easy implementation of complex constraints,
make the consist flow formulation superior.
Some important real-life constraints cannot be inserted in the scheduling
phase, so the models proposed in Ahuja et al. [2005b] and Vaidyanathan
et al. [2008a] did not account for the fueling and maintenance feasibility of
individual locomotive units. The fueling and maintenance constraints have
to be imposed to specific locomotive units, not to locomotive types. This can
be done in the locomotive routing phase, that follow the scheduling phase.
Vaidyanathan et al. [2008b] developed methods that allow to route loco-
motive units on fueling and maintenance friendly routes while honoring the
constraints seen in the scheduling phase.

4. Mathematical modeling

It is difficult to identify a representative mathematical model for the LAP.
The LAP can be encountered in several contexts (rail freight, rail passenger,
switch engines, in-plant railroad) and many different formulation are possi-
ble, depending on the problem type (single / multiple locomotive), on the
objective function and on the constraints.
It seems a good idea to consider the more general problem (LAP with hetero-
geneous consists) since the other problems can be seen as simplified version of
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the general one. In the OR literature, the most used formulation for the LAP
with heterogeneous consists is the one used by Ahuja et al., a Mixed Integer
Programming (MIP) formulation where each locomotive type correspond to
a different commodity and the problem is modeled as a multicommodity flow
with side constraints on a space-time network.

The model proposed by Ahuja et al. is also the more advanced under
many aspects and may be considered the state of the art, hence it represents
a good reference model. This model has been formulated in a new way in
Vaidyanathan et al. [2008a] where authors introduce the consist flow formu-
lation, in this new formulation each consist is defined as a commodity and
the set of feasible consist represent the set of flowing commodities.
Vaidyanathan et al. define a space-time network G = (N,A) where nodes
N and arcs A are divided into different categories. Nodes belong to three
different sets, the arrival nodes (ArrNodes) which represent the train ar-
rival events, the departure nodes (DepNodes) which represent the departure
events and the ground nodes (GrNodes) that allow the flow of consist from
inbound trains to outgoing trains. The (GrNodes) allow to model easily
train to train connection, light-travel and idling of consist in stations.

Arcs belong to four different sets, train arcs TrArcs connect (DepNodes)
and (ArrNodes), ground arcs GrArcs connect (GrNodes) to (GrNodes)
(train is idling in a station). Each arrival node ∈ ArrNodes has a cor-
responding arrival ground node ∈ GrNodes, the same holds for departure
nodes, connection arcs CoArcs connect arrival nodes ∈ ArrNodes to the cor-
responding arrival ground nodes ∈ GrNodes and the same holds for depar-
ture nodes (these are the train to train connections). Finally light-traveling
arcs LiArcs connect (GrNodes) to (GrNodes) (train is light-traveling). The
model assumes that the light-travel possibilities are given.

It is important to note that for each station the last ground node of
the week is connected to the first ground node of the week of that station,
through a ground arc such that the ending inventory of locomotives becomes
the starting inventory in the next time period. This permits to count the
locomotives used during the week, evaluating the flow of locomotives on arcs
that cross the time line at midnight on Sunday (Sunday midnight is the check
time, at this time there are no arrival or departure).
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Each train l is characterized by the following attributes:
dep-time(l): the departure time of train l
arr-time(l): the arrival time of train l
dep-station(l): the departure station of train l
arr-station(l): the arrival station of train l
Tl: tonnage requirement for train l
βl: HP per tonnage requirement for train l
El: the penalty for using single locomotive consist on train l

Given the set of all locomotive types K, k denotes a particular locomo-
tive type belonging to K. Every k ∈ K is characterized by the following
attributes:
hk: horsepower (HP) of a locomotive of type k
bk: number of axles on a locomotive of type k
Gk: ownership cost of a locomotive of type k
Bk: fleet-size of a locomotive of type k
ckl : cost of assigning an active locomotive of type k to train l
dkl : cost of deadheading a locomotive of type k on train l
tkl : tonnage provided by a locomotive of type k to train l

Each train l has three sets of locomotives that could be assigned to it.
MostPreferred[l] (locomotive types preferred), LessPreferred[l] (locomotive
types accepted with a certain penalty) and Prohibited[l] (locomotive types
not allowed).
C: set of consist types available for assignments whereas c ∈ C denotes a
specific consist type.
Fl: fixed cost for using a light arc l.
ccl :cost of assigning an active consist of type c ∈ C to train arc l.
dcl : cost of assigning a deadheading consist, light-traveling consist or idling
consist of type c ∈ C if the train arc l belongs to the sets
TrArcs, LiArcs or CoArcs

⋃
GrArcs respectively.

αck: number of locomotives of type k ∈ K in consist c ∈ C.
I[i]: set of arcs entering in the node i.
O[i]: set of arcs leaving the node i.
S: set of overnight arc crossing the Sunday midnight timeline.
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The decision variables are the following

xcl : binary variable representing the number of active consist of type c ∈ C
on arc l ∈ TrArcs.
ycl : integer variable, representing the number of non-active consists (dead-
heading, ligh-traveling or idling) of type c ∈ C on arc ∈ AllArcs
(AllArcs = TrArcs

⋃
GrArcs

⋃
LiArcs

⋃
CoArcs).

zl: binary variable which takes value 1 if at least one consist flows on arc l
and 0 otherwise.
zc: binary variable which takes value 1 if consist type c ∈ C is used and 0
otherwise.
sk: integer variable that indicate the number of unused locomotives of type
k ∈ K.

The constraints in the model are the following

- The constraint (2) imposes that to each train l is assigned exactly one
active consist

- The constraint (3) imposes the locomotives flow upper bound on each
train arc

- The constraint (4) ensures that the consists flow is balanced in every
node for every consist type

- The constraint (5) imposes the locomotives flow upper bound on light
arc

- The constraint (6) imposes that, for each locomotive class k, the num-
ber of used locomotives is no more than the available locomotives

- The constraints (7) and (8) ensure that the model extract a subset of
p consist from the set C.

23



The weekly consist flow formulation for the LAP with a fixed number p of
available consist types is the foolowing

min : w =
∑

l∈TrArcs

∑
c∈C

cclx
c
l +

∑
l∈AllArcs

∑
c∈C

dcly
c
l +

∑
l∈LiArcs

Flzl −
∑
k∈K

Gksk (1)

subject to∑
c∈C

xcl = 1 (2)∑
c∈C

∑
k∈K

αck(xcl + ycl ) ≤ 12, for all l ∈ TrArcs (3)∑
l∈I[i]

(xcl + ycl ) =
∑
l∈O[i]

(xcl + ycl ), for all i ∈ AllNodes, c ∈ C (4)

∑
c∈C

∑
k∈K

αck(ycl ) ≤ 12zl, for all l ∈ LiArcs (5)∑
l∈S

∑
c∈C

αck(xcl + ycl ) + sk = Bk, for all k ∈ K (6)∑
l∈S

(xcl + ycl ) ≤Mzc, for all c ∈ C, M is a sufficiently large number (7)∑
c∈C

zc = p (8)

xcl ∈ 0, 1, for all l ∈ TrArcs, c ∈ C, (9)
ycl ≥ 0, and integer (10)
zl ∈ 0, 1, for all l ∈ LiArcs (11)
zc ∈ 0, 1, for all c ∈ C (12)
sk ≥ 0, for all k ∈ K (13)

5. The identification of the consist set

The locomotive fueling and maintenance constraints are typically consid-
ered in the routing phase, that follows the planning one. For this reason (and
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also to not further complicate a very complex model) in Ahuja et al. [2005b]
and Vaidyanathan et al. [2008a] the fueling and maintenance constraints are
not inserted and are considered in a distinct paper that focuses on the freight
locomotive routing problem (Vaidyanathan et al. [2008b]).
The fueling and maintenance constraint are relegated in the routing phase
because the locomotive manager has to route the single specific locomotives
(identified by their unique ID number) to fueling stations and shops to honor
this constraints (it does not make sense to consider an entire class of loco-
motives in this case). Nevertheless, this does not necessarily imply that the
planning phase has no role in the fueling and maintenance problem.
Another aspect usually not considered in the planning LAP is the robustness
of the solution. In real applications uncertainties constantly affect the train
schedules, specially in the management of freight train where delays (and
locomotive disruptions) are more frequent and a part of trains work under a
tonnage-base regime. It could be useful to identify a simple way that increase
the robustness of the solution without introducing a robust optimization for-
mulation of the problem (that would complicate an already complex model)
and without introducing explicitly the uncertainties in the train schedules.
To deal with this two aspects, (fueling/maintenance constraints and robust-
ness), is it possible to introduce in the model the concept of homogeneity,
not considered in the previous models.
Fueling and maintenance constraints are considered first. The idea is to start
from the planning phase inserting elements in the model that make easier the
routing to fueling and maintenance stations in the following phase.
The profile of the set of potential consist C remains general, unspecified
(every feasible consist type is a potential optimal consist) or is pre-defined
by locomotive managers. The limitation of the number of feasible consists
reduces optimization possibilities and could reduce the solution optimality.
Nevertheless a judicious choice of available consist types could preserve opti-
mality and simplify the model and the selection process since allows to honor
complicates constraints that are difficult to insert in the model or make the
model less tractable.
The idea is to take into account additional aspect, not considered so far in the
optimal consist selection, such that the final planning LAP solution is easy
to handle in the routing phase, where fueling and maintenance constraints
are honored.
In CSX a locomotive should be sent to the shop every 92 days (John and
Ahuja [2008]). So far, the consist are assembled without considering when a
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locomotive becomes critical (i.e. the maintenance is scheduled within 7 days).
Then the residual time to the next maintenance event (shortly rtm in the
following) is in general different for each locomotive inside each consist. In
other terms, consist are in general heterogeneous with respect to the rtm
parameter. This fact has two important consequences in the routing phase:

(i) each heterogeneous consist must be busted in order to send the critical
locomotives to the shop

(ii) critical locomotives are highly dispersed over many different stations
over the entire network

As a consequence, we have a high number of consist busting firstly and a
high number of locomotive travel toward the shops secondly, in other words
high consist-busting costs, high travel costs, organizational and logistic com-
plexity, increased risks for crews and equipment.
Building consist considering the rtm parameter permits to obtain homoge-
neous consist with the following positive impact in the routing phase:

(i) critical locomotives are grouped in critical consist that can be sent
directly to shops avoiding the consist busting

(ii) in particular cases, the limited capacity of some shops could impose
some consist busting, anyway their number is expected to be far lower
than the one necessary with heterogeneous consist

(iii) critical locomotives are grouped in critical consist minimizing the num-
ber of stations where critical locomotives are located

With maintenance-homogeneous consists it is expected a significant re-
duction in consist busting and in travels of locomotive toward shops. Cost
and risk could be reduced and maintenance logistic should be highly facili-
tated.

The routing phase may benefit from maintenance-homogeneity of consist
also because it is (potentially) possible to assign critical consist to trains (or
train sequences) that end their trip in stations equipped with a shop (or close
to these stations). Is it also possible to exploit the maintenance-homogeneity
in an alternative way. Locomotive failure is more frequent than expected.
Critical consist may be considered more risky, they could be considered more
prone to failure since more time is passed from the last maintenance. Then,
the locomotive manager could decide to assign critical consist to trains less
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impacted by a disruption or which travel on tracks were recovery is more
rapid and less costly.

Different parameters can be defined to evaluate the homogeneity of a con-
sist. After having considered the rtm it is possible to consider the residual
time to the next fueling event (rtf ). If a consist is built using locomotives
with very different ranges, the frequency of fueling events increases. On
the contrary, a group of locomotives characterized by similar ranges needs to
stop less frequently for fueling events. The parameters rtm and rtf, expressed
respectively in days and hours, allow to identify maintenance-homogeneous
and fueling-homogeneous consist types. The identification of homogeneous
consist types is done preliminarily, before starting the optimization phase.
In Vaidyanathan et al. [2008a] the set of potential consist types C was pre-
specified, following the indications of CSX. What the optimization program
do is just to identify the numerosity of the different consist types available
in C. Obviously the expertise of locomotive managers cannot be substitute
but could be integrated in this preliminary identification phase. So the iden-
tification phase helps to create the pre-specified consist set jointly with other
company-specific constraints and allow to select consist types that are not
captured by a simple cost optimization and that are more productive in the
following phases (like routing). The identification phase is independent from
the particular optimization strategy and can be associated to the optimiza-
tion model proposed by Vaidyanathan et al. or to alternative models. The
identification phase addresses the optimization specifying the set C. Reduc-
ing the set of potential consist types C could lead to a loss in optimality:
costs can increase since more expensive consist type could be selected ex-
cluding some economic consist types.

To asses the impact of the identification phase on the optimality we
should solve the optimization program under different scenarios considering
different consist set C provided by different identification choices (as done in
Vaidyanathan et al. [2008a]). Nevertheless we could make some initial con-
siderations on the cost-benefit ratio of the identification phase analyzing the
results obtained in Ahuja et al. [2005b] and in Vaidyanathan et al. [2008a].
According to CSX Corporation [2005] and CSX Corporation [2006] the CSX
road freight locomotive fleet profile at December 2004 and at December 2005
were the following
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Table 3: CSX road freight locomotive fleet profile in 2005, 2006 and 2011a

Locomotive class Units 2005 Units 2006 Units 2011

AC4400CW 593 593 621
C40-8/C40-8W 532 532 529

SD40/SD40-2/SD40-3 404 402 529
SD70AC 220 220 20

SD50/SD50-2 177 177 174
AC6000CW 116 117 117
ES44DC 0 100 302

SD60I/SD60/SD60M 90 90 94
C44-9W 53 52 52
B40-8 32 32 50
SD70M 25 25 25
SD70AE 0 20 0
SD80AC 13 13 13
GP60 3 3 3

GP40/GP40-2 0 0 416
C39-8 9 0 0

C44-6W 1 0 0
ES44AC 0 0 300

GP38-2/GP38-2s 0 0 323
SD70MAC 0 0 220
Road Slug 0 0 190

Fleet size 2268 2376 3978

adata source for 2011: www.thedieselshop.us/CSX.HTML - (accessed April 21 2011)
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The fleet data for 2011 were very detailed so to obtain a more compact
table the classes with very low numerosity have been neglected in fleet 2011
(the reported fleet 2011 represent the 95.12% of the actual fleet 2011). The
very similar locomotive classes have been aggregated (in fleet 2005 and 2006
the only aggregated classes are SD60I/SD60/SD60M).

According to CSX Corporation [2007], at December 2006 CSX operates
3,853 total locomotives, owned or leased long term, including 2,489 road and
freight locomotives (65%), 1,175 yard and local service locomotives (30%)
and 189 auxiliary units (used to produce extra traction for heavy trains in
hilly terrain). The fleet received 200 high-horsepower units in 2007, in addi-
tion to the 100 locomotives added in 2006. These newer locomotives meet the
Clean Air Acts emission standards and offer more fuel efficiency and greater
reliability than earlier models. As a result, 150 leased units will be retired.
According to CSX Corporation [2009], at December 2009 CSX operates 4,071
total locomotives (of which 95% owned and 5% leased long term) including
3,539 road and freight locomotives (87%), 311 yard and local service locomo-
tives (8%) and 221 auxiliary units. As of December 2009, 566 locomotives
(14%) were held in temporary storage due to significant declines in volume.
As volume returns, these locomotives could be placed back into service within
a week, after restorative maintenance procedures are performed.

To asses the feasibility and the impact of the maintenance-homogeneity
selection strategy on locomotive management it is useful to compare the
locomotive availability in the CSX locomotive fleet with the locomotive uti-
lization provided by Ahuja et al. [2005b].
The first paper (published in 2005) proposes the locomotive flow formula-
tion and considers five locomotives types, the second one (published in 2008)
considers six locomotive types and shows the superiority of the consist flow
formulation. The first paper compare the results obtained by the optimiza-
tion procedure developed by CSX and the one developed by Ahuja et al.,
table 4 resumes the results in term of used locomotives.

According to Ahuja et al. [2002] (from which Ahuja et al. [2005b] stems)
the first scenario is characterized by 119 stations and 538 trains, each of which
operate several days in a week such that there are 3324 weekly trains that
differ for at least for the operating day (the corresponding weekly space-time
network has 8798 nodes and 30134 arcs). Ahuja et al. [2005b] introduces two
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Table 4: # of locomotives of different types - CSX vs Ahuja solution
Scenario 1 Scenario 2 Scenario 3

Locomotive model CSX Ahuja CSX Ahuja CSX Ahuja

SD40 498 249 519 283 550 323
SD50 171 160 162 138 174 161

C40-8W 621 487 619 466 620 432
AC4400CW 164 154 155 154 155 155
AC6000CW 160 160 160 160 160 160

Total 1614 1210 1615 1201 1659 1231

additional scenarios (scenario 2 and 3) characterized by the same number
of stations and trains but where trains differ in tonnage and horsepower re-
quirements.
Vaidyanathan et al. [2008a] implement the consist flow formulation consid-
ering two smaller scenarios, scenario A (388 trains, 6 locomotive types, 87
stations) and scenario B (382 trains, 6 locomotive types, 87 stations) and
provide the total number of locomotives used with 8 different sets C (from
3 consist types to 17 consist types). Table 3 resumes only the result for the
consist flow formulation since the number of used locomotives is greater in
the consist flow formulation (the corresponding solution costs is at least 5%
greater than the one obtained by the locomotive flow formulation)

Table 5: total number of locomotives in the consist flow solution
# locomotives

Consist set # Consists Scenario A Scenario B

2[SD40], 3[SD40], 3[C40-8W] 3 1376 1388
& 2[AC6000CW], 2[C40-8W]∪1[SD40] 5 1330 1343
& 1[C40-8W]∪2[SD40],2[AC4400CW] 7 1183 1201

& 2[C40-8W], 2[SD40]∪1[SD60I] 9 1051 1064
& 2[C40-8W]∪[AC6000CW], 1[C40-8W]∪1[SD40] 11 1051 1064

& 1[SD60I]∪[GP40], 1[AC4400CW]∪1[SD40] 13 1045 1056
& 4[SD40], 2[GP40] 15 1047 1062
& 4[SD60I], 3[GP40] 15 1047 1063
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The paper does not specify the number of locomotives detailed for each
locomotive class but provides just the total number of locomotives.

According to Ahuja et al. [2002] the solution is obtained assuming an
availability of 3316 locomotives belonging to five locomotive types. Never-
theless the number of 3316 locomotives (belonging to the five classes and
available for freight trains) seems to be disproportionated (too big) with re-
spect to the utilization of the locomotives provided in Ahuja et al. [2005b].
Even considering the less optimal case (the CSX solution requires 1659 lo-
comotives in scenario 3) the percentage of used locomotives based on 3316
available locomotives, is very low and it is not realistic (49.97% of unuse
locomotives). The problem is that if we consider the actual locomotive avail-
ability (fleets 2005, 2006 and 2001) the utilization of some locomotive classes
exceeds the their actual availability because the problem was solved assuming
3316 available locomotives.

Table 6: ∆ actual locomotive fleet vs scenario
Locomotive fleet 2005 Locomotive fleet 2008 Locomotive fleet 2011

Locomotive class Ahuja CSX Ahuja CSX Ahuja CSX

AC4400CW 428 419 438 429 466 457
AC6000CW -44 -44 -43 -43 -43 -43

C40-8/C40-8W 45 -89 44 -90 42 -92
SD40-2 121 -146 119 -148 235 -32
SD50 16 6 16 6 -18 -28

It is clear that the actual availability of locomotives in 2005 and 2006 for
the five models is far away from the one assumed in the paper. The con-
sidered scenarios are then realistic but does not depict the actual situation
and the requests of locomotives are sized for a significantly larger fleet of
3316 units. This is evident considering the negative delta between the actual
number of available locomotives in the class AW6000AC and the locomotive
requested in the scenarios. Nevertheless, selecting the first or the second sce-
nario and the solutions provided by Ahuja we obtain a locomotive utilization
which is feasible with both 2005 and 2006 fleets (with the exception of the
class AC6000AC).
This solution is the result of a locomotive flow approach but (since Vaidyanathan
et al. [2008a] provide only the total utilization for the consist flow solution)
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to make an example we could assume that the locomotive utilization in sce-
nario 1 is associated to a consist flow solution: in fact the consist flow solution
differs only marginally from the locomotive flow solution (5%), then this as-
sumption is not so wrong.
After a transition period we may assume that it is possible to group lo-
comotives in subgroups each characterized by a specific maintenance date
belonging to a specific week. The numerosity of each subgroup depends on
the weekly capacity of shops. For the sake of simplicity we may guess that,
since every locomotive has to be checked every 13 weeks, every year the num-
ber of maintenance events is four times the number of used locomotives. We
suppose that the number of used locomotives provided by CSX in the three
scenario is realistic and gives a a reference value of the shop maintenance
capacity. Considering the higher and the lower values (1659 and 1614 lo-
comotives) and a working year of 50 weeks we have that the maintenance
weekly capacity of all the shops ranges in the interval [133, 129] locomotives
serviced every week. Assuming a weekly capacity of 134 locomotives and a
weekly utilization of 1659 locomotives, it is possible to group locomotives
in 13 groups, each of which is is rtm-homogeneous and is composed by 128
locomotives. Clearly the rtm for the 13 groups range from 91 to 1, and the
group with rtm ∈ [1, 7] is the one composed by critical consist.
In this scenario, every week we need to replace 128 locomotives (the critical
locomotives) that are routed toward the shop in the incoming week. Since
locomotive managers are interested in cyclic locomotive scheduling, the set
of consist formed by the 128 critical locomotives, contains the same consist
types (i.e. presents the same distribution of critical locomotives) every week.
In other words, the distribution of locomotive classes inside the critical group
should be the same observed in the set of used locomotives. This means that
the locomotive class with the lowest (positive) delta between availability and
utilization is determinant for the feasibility of the maintenance-homogeneity
selection strategy.
Then the class SD50 has the smaller positive delta, the residual available
locomotives amount to 16 units. This value has to be greater than the one
used to replace the critical locomotives belonging to the class SD50. As said
the number of critical locomotives belonging to the class SD50 is given by
177
13

= 13.61, where 177 is the numerosity of the class (see table 3).
Since 16 > 13.61, the maintenance-homogeneity selection strategy is feasi-
ble for this scenario. A similar result is obtained considering the percentage
weight of the class SD50 in the fleet 2004 (7.84%) and assuming that the 128
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critical locomotives leaving the set of active locomotives are distributed as the
used locomotives, then 16 > 0.84 · 128 = 10.03. This is just an example and
the small margin (only 2 locomotives more than 13.61) does not protect from
disruptions in the locomotive class SD50, anyway, as stressed, the considered
utilization is suited for a much larger fleet size (3316 locomotives instead of
2258). So the maintenance-homogeneity selection strategy should be feasi-
ble (eventually adopting some minor changes in the locomotive availability)
and does not interfere with the optimality search and the ratio cost-benefit
seems to be interestig, specially in view of the following phases (like routing).

To asses the impact of the fueling-homogeneity selection strategy we need
much more data. The range depends on the fuel capacity of the locomotive
and on the fuel consumption rate. Assuming a planar and straight track (and
an average value of the adhesion coefficient between rail and wheel) the fuel
consumption depends on the HP provided by the locomotive which depends
by the tonnage of the train and the velocity at which the train should be
pulled.
The maintenance-homogeneity selection has a direct impact on the composi-
tion of the set C because we have to guarantee the availability of the correct
locomotive types. However it does not impose preliminary restrictions on
the setting up of the consist, every locomotive model could be joined with
any other locomotive model to form a consist. In the worst case we may
temporarily form consist that are not strictly homogeneous (for instance,
one locomotive is critical, the others becomes critical within 3 days) and you
can accept, paying some penalty, to send a locomotive to the shops some
days before (or after) the scheduled maintenance day. On the contrary the
fueling-homogeneity selection strategy heavily affect the consist set C since
impose some constraints on the available consist types, for instance: the class
AC6000 and the class SD40 could have very different fuel consumption rates
and this should exclude the possibility to form a consist joining locomotive
belonging to this two classes.
In fact the fueling-homogeneity selection strategy appear to be costly and to
evaluate the benefits of its adoption we should consider some real scenarios
that permit to evaluate how may fueling events is it possible to save with
this strategy. As said, the consumption depends on the train tonnage and on
the train speed, this are parameters that essentially depend on the train type
(Auto, Intermodal, Merchandise). According to GE Harris Energy Systems
[2000] approximately 5% of a total Class I road fleet would run out of fuel
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during the course of a year even if, on average, Class I locomotive tanks are
refueled when they are 60% full, so the number of fueling event is higher
than the one we should expect looking at the locomotive fuel capacity. For
this reason it seems valuable to evaluate the feasibility of the (more costly)
fueling-homogeneity selection strategy.

It is important to note that the initial set C could be obtained as a
solution of an optimization problem (different from the locomotive assign-
ment and simpler) and that both maintenance-homogeneity and fueling-
homogeneity selection strategy can be imposed introducing suitable con-
straints. A soft constraints that associate a penalty proportional to the
heterogeneity of the consist in terms of rtm seems to be suitable for the
maintenance-homogeneity selection. On the contrary a hard constraints that
fix the maximum range difference in terms of rtf between two locomotive
classes, seem to be the right choice for the fueling-homogeneity selection of
the consists. In this preliminary optimization problem (selection phase) the
objective function should consider only active costs because they are domi-
nant and because the choice of the consist type is done looking at the demand
of the active trains. The problem becomes more simple since the number of
variables and constraints is reduced and the problematic fixed-charge vari-
ables disappear (alternatively these constraints could play a role directly in
the the locomotive assignment model).
Neglecting the deadhead, ligh-travelling and ownership cost we loose sensi-
bility on the cost optimality but this is not the crucial point in this initial
phase because we are defining the set of potential consists that should pro-
vide benefits in terms of maintenance routing, fueling routing and robustness
that are not evaluable in the planning phase looking strictly at the costs.

To promote the robustness of the solution we can still look at the homo-
geneity but this time it is not the consist internal homogeneity.
A robust solution should be less sensitive to disruptions and delays and should
allow for an easier reaction to this kind of unexpected events. If it would
be possible to use the same type of consist to pull all the trains, this solu-
tion would make a big step toward robustness. Indeed this ideal situation
is associated to the highest possible consist fleet homogeneity: every consist
disruption or delay could be absorbed in an easier way since any element of
the consist set could replace any disrupted or delayed consist.
Clearly it is impossible to achieve this fleet homogeneity without incurring
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in an extreme increase in costs, since in this case the powerful consist would
be used for every train. Moreover there are some technical constraints that
prevent the use of the same type of consist for every train.
Vaidyanathan et al. [2008a] introduce in their model two additional con-
straints that impose a limit on the number of consist types. The idea is
to improve substitution opportunities finding a small set of consist types
that offers a good solution as a large one. This approach offer good results,
Vaidyanathan et al. provide 8 scenarios with a number of consist types rang-
ing from 3 to 17 (3, 5,. . ., 15, 17) and show that these additional constraints
ensure that the model identify a set of p optimal consist types. Vaidyanathan
et al. consider a scenario with 388 trains, 6 locomotive types and 87 stations
and show that increasing the number p from 3 to 9, the objective function
value (the total cost) is improved by more than 17% whereas increasing p
from 9 to 17 the costs is further reduced by just a 3%.
Instead of fixing the number of consist types introducing two additional con-
straints in the optimization model, we can alternatively impose the a limit in
the number of available consists types in the selection phase (the preliminary
optimization phase). To limit the number of consist type we can integrate
the preliminary optimization problem (selection phase) as follow. We deter-
mine the set of potential consist C without considering any (fleet or consist)
homogeneity constraints. Then as done by Vaidyanathan et al. [2008a] we
define a binary variable zc that assume value 1 if a consist type is keep inside
the set C and value 0 if the consist is eliminated from C.
Then we define the sum

Z =
∑
c∈C

zc (14)

and the active cost function ∑
l∈TrArcs

∑
c∈C

cclx
c
l (15)

and we consider the minimization of a convex combination of these two terms

min : w =
( ∑

l∈TrArcs

∑
c∈C

cclx
c
l

)
η +

(∑
c∈C

zc

)
(1− η), η ∈ [0, 1] (16)

The user can define the weight of the two terms obtaining more homogeneous
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but costly consist fleets or less robust but economic solutions.

min : w =
( ∑

l∈TrArcs

∑
c∈C

cclx
c
l

)
η +

(∑
c∈C

zc

)
(1− η) + λ

(∑
c∈C

∆c
rtm

)
(17)

η ∈ [0, 1], λ ≥ 0 (18)

subject to

∆c
rtf ≤ ∆max

rtf for all c ∈ C (19)∑
c∈C

xcl = 1 (20)∑
l∈I[i]

xcl =
∑
l∈O[i]

xcl , for all i ∈ AllNodes, c ∈ C (21)

∑
l∈S

∑
c∈C

αck(xcl ) + sk = Bk, for all k ∈ K (22)

xcl ∈ 0, 1, for all l ∈ TrArcs, c ∈ C, (23)
zc ∈ 0, 1, for all c ∈ C (24)
sk ≥ 0, for all k ∈ K (25)

Conclusions and future work

We describe the introduction of a preliminary optimization program (se-
lection phase) that determines the set of the consist types initially available
for the solution of the LAP. This phase could identify consist types that are
not captured by a purely cost-oriented selection but that can be very useful
specially in the routing phase, where they could simplify maintenance rout-
ing and fueling routing, producing saves that should not be achieved using
(apparently) more economic consist types. The selection phase may be im-
plemented as a simpler minimization program since the objective consider
only active costs. We describe an alternative way to promote consist fleet
homogeneity (and so solution robustness) expressing the objective function
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in the preliminary minimization program as a convex combination of the ac-
tive cost function and the total number of consist available in C.
Future researches should asses in a quantitative way the ratio costs-benefits
for both the maintenance-homogeneity and the fueling-homogeneity strate-
gies. It is also interesting the quantitative evaluation of the cost of robustness
when consist types homogeneity is imposed in the preliminary phase instead
of directly in the model as done in Vaidyanathan et al. [2008a].
The final objective is to integrate the preliminary phase with the solution of
the LAP. The formulation proposed by Vaidyanathan et al. [2008a] could be
the starting point for the solution of the LAP and alternative aggregations
and heuristic procedures are possible. Alternatively, it seems promising to
reformulate the problem as a set partitioning problem and to exploit the dom-
inant number of variables over the number of constraint adopting a solution
strategy based on the column generation approach.
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