Parallel Queue Simulation
(0]
S
|_
C
L3 3 o3 23 (o3 S M
—
So o S0 S o S o ©
O c O O O O]
S S - S S S - K
Oc Oc O;: oc Oc ©
s2 |82 T2 B2 32 ©
$8 T5 ®E 5L =&
g E TE |£E g E g E
() n () () n
L J N J L J N J - »-

Number of Threads

Implementation of a Time Step Based Parallel

Queue Simulation in MATSim

Christoph Dobler

STRC 2010 August 2010

ETH

etitut fir Verkehrsol i st Eidgendssische Technische Hochschule Ziirich
nsti rVerkenrsplanung und lransportsysteme . . .
H ettt i i s Swiss Federal Institute of Technology Zurich

nstitute for Transport Planning and Systems

Implementation of a Time Step Based Parallel Queue Simulation in MATSim August 2010

STRC 2010

Implementation of a Time Step Based Parallel Queue Simula-
tion in MATSim

Christoph Dobler

IVT

ETH Zurich

CH-8093 Zurich

phone: +41-44-633 65 29
fax: +41-44-633 10 57
dobler@ivt.baug.ethz.ch

August 2010

Abstract

Today, agent-based micro-simulations are commonly used in the field of transport planning and
traffic management. Besides modeling of realistic traffic behavior, another important require-
ment is the ability to simulate large scale scenarios in reasonable time. An obvious approach
to reduce the computation time of such scenarios is to use multiple CPU cores. This paper
presents the implementation of a time step based, parallel queue simulation for MATSim writ-
ten in Java.

In a first step, the structure of the MATSim framework and especially the existing simulation
modules are analyzed with regards to their structure, performance and extensibility. The results
of this analysis show that one of those simulation modules can be re-used. The approach that
is implemented by that module can be adapted in a way that the computation is run concur-
rently on multiple cores. A strategy to distribute the computation workload between multiple
cores is proposed and implemented after comparing the advantages and drawbacks of different
approaches.

Furthermore, performance bottlenecks in the existing MATSim code that occurred in combi-
nation with the new simulation module are identified and removed. Performance tests with
different sized scenarios are conducted. An analysis of the results shows that especially on
large scaled scenarios a significant performance gain is reachable.

Keywords
Parallel Queue Simulation, MATSim

Implementation of a Time Step Based Parallel Queue Simulation in MATSim August 2010

1 Introduction

Today, agent-based micro-simulations are commonly used in the field of transport planning
and traffic management. Besides the modeling of realistic traffic behavior, another important

requirement is the ability to simulate large scale scenarios in reasonable time.

Until the end of the last millennium, the main focus in CPU development was to increase the
computing power of a single CPU core. As a result, a simulation could be simply speed up by

using a faster CPU.

Within the last years, the development focus has changed dramatically. Today we can assume
that in the near future computers with multi core CPUs will become state of the art. Increasing
the computing power of a CPU is mainly based on the usage of multiple cores where each core

for itself will not have a significantly better performance than an old single core CPU.

As a result, existing program code has to be adapted to be able to benefit from this new multi-
core architecture. Typically this makes considerable changes in the program structure necessary

because the program logic has to be switched from sequential to parallel.

This paper presents the implementation of a time step based parallel queue simulation that re-
duces the simulation time of large scale scenarios significantly. Chapter 2 describes MATSim—
a toolkit for multi-agent micro-simulations of transport systems. Subsequently different simu-
lation approaches are discussed. In a next step strategies to distribute calculation effort among
parallel threads are analyzed. Chapter 6 gives detailed information on the implementation of
the parallel simulation. Afterwards the results of performance tests with three different sized
sample scenarios are described and analyzed. Finally conclusions are drawn and an outlook on

future developments is given.

Implementation of a Time Step Based Parallel Queue Simulation in MATSim August 2010

2 MATSIim

2.1 Overview

MATSim (Multi-Agent Transport Simulation) is a framework for iterative, agent-based micro-
simulations of transport systems that is currently developed by teams at ETH Zurich and TU
Berlin. It consists of several modules that can be used independently or as part of the frame-
work. It is also possible to extend the modules or replace them with new implementations.
Balmer (2007) and |Balmer et al.| (2008) give a detailed description of the framework, its ca-
pabilities and its structure. Because of its agent-based approach, each person in the system is
modeled as an individual agent in the simulated scenario. Each of these agents has personal-
ized parameters such as age, sex, available transport modes and scheduled activities per day.
Wooldridge| (2000), Klugl (2001), Eymann| (2003) and [Ferber| (1999) give a detailed overview
on (multi-)agent-systems and simulations. Due to the modular structure of the simulation
framework, the agent’s parameters can be easily extended with new parameters, for exam-
ple for the routing strategy that should be used or the areas of the road network that the agent

knows.

Figure 1: Iterative MATSim Loop

initial analvses
demand y

replanning |

Simulation Events
OSimuIation Starts OBefore Mobsim OScoring ORepIanning

Olteration Starts OAfter Mobsim Olteration Ends OSimuIation Ends

Figure [I] shows the structure of a typical, iterative MATSim simulation run. After the creation
of the initial demand, the plans of the agents are modified and optimized in an iterative process
until a relaxed state of the system has been found. The analysis of the results can be performed

afterwards.

The loop contains the elements execution (simulation), scoring and replanning. Within the
execution module the plans of the agents are simulated. Afterwards the scoring module uses a
utility function to calculate the quality of the executed plans. A commonly used utility function
for MATSim runs is described by Charypar and Nagel (2005). Based on the scoring module, the

replanning module creates new plans by varying values like start time and duration of activities

Implementation of a Time Step Based Parallel Queue Simulation in MATSim August 2010

as well as the routes to travel from one activity to another one. Currently developed replanning
modules will additionally allow to change the elements and their order of performed activity
chains (Feil, 2010) as well as their locations (Horni et al.,[2009). More detailed information on

the loop and its modules can be found in the previously mentioned papers.

One part of the iterative loop is the simulation of the traffic behavior. Currently four different
simulation modules are available. Their task is to execute the plans of the agents within the

simulated scenario. The following section describes these four simulation modules.

2.2 Simulation Modules

2.2.1 QueueSimulation

The QueueSimulation is a deterministic, Java based re-implementation of Cetin’s SQSim (Cetin,
2005; Balmer, 2007). The simulation is based on a queue model and uses a time step based
approach with a step width of one second, meaning that the system state is calculated every
second. Within each time step, the state of the queues is considered. As a result, the duration of
a simulation run increases proportional to the number of links in the network and is independent
of the number of simulated agents. A major disadvantage of the QueueSimulation is its single
core architecture. While other tasks in an iteration of MATSim can be executed in parallel
threads (for example the replanning), several attempts to write a multi-threaded version of
the QueueSimulation have ended without satisfying results. A major reason for the failure of
those approaches was the complexity of the source code—especially of the QueueSimulation,
but also of the other components of the MATSim project. Implementing a parallel simulation
based on that code resulted in a variety of consistency checks to ensure that the simulation
does not produce indeterministic results caused by race conditions. Therefore, the performance
of the parallelized code was not satisfying. However, today the situation is a different one.
Extensive work on the source code, which was done between autumn 2009 and spring 2010,
improved the quality of the code sustainable regarding its suitability for parallelization. The
QueueSimulation offers some benefits like well documented code and its simulation listener

concept which allows additional modules to interact with the simulation while it is running.

222 QSim

Basically, the QSim can be described as an extended version of the QueueSimulation. It con-
tains several additional recently developed features like traffic signals (Neumann, 2008) or
simulated public transport (Rieser, 2010). While the QueueSimulation is some kind of a de-

fault implementation of a traffic simulation module with a stable state, the QSim is still under

Implementation of a Time Step Based Parallel Queue Simulation in MATSim August 2010

development. Some new features, like a redesigned Within Day Replanning Framework (based

on Dobler, 2009), will be fully implemented in the near future.

2.2.3 DEQSim

Another implementation is the DEQSim, which implements an extended queue model and is
described in detail by Charypar et al.| (2007). Additionally to the FIFO (first in, first out) be-
havior of the queues, also a gap is simulated that moves backwards through the queues which
allows to simulate congestion more realistically. Two major attributes of this implementation
are its multi-threaded architecture and its event based approach, which means that calcula-
tions within the simulation are only necessary if an event occurs. As a result, the calculation
effort scales with the number of agents. Compared with the time step based approach of the
QueueSimulation, the event based implementation of the DEQSim achieves significantly shorter
calculation times. However, a disadvantage of the DEQSim is that it is implemented in C++
whereas MATSim is written in Java. Therefore the communication between them is done by us-
ing a time consuming file input/output interface which produces noticeable longer computation

times.

2.24 JDEQSim

The JDEQSim is the forth simulation module currently available in MATSim. It is a re-
designed re-implementation of the DEQSim in Java that is described in detail by [Waraich et al.
(2009). Due to conceptual differences between C++ and Java it was not possible to reach per-
formance gains by implementing the multi-threaded architecture of the DEQSim. Therefore,
the JDEQSim uses only a single CPU core. However, due to its event based approach the

calculation effort is significant lower compared to the QueueSimulation and the QSim.

Implementation of a Time Step Based Parallel Queue Simulation in MATSim August 2010

3 Simulation Approaches

In a first step, the existing MATSim simulation modules and their simulation approaches are
reviewed in detail to decide whether they can be used as basis for a parallel simulation module
or if a new module has to be created from scratch. At the moment, there are two different
simulation approaches that are implemented by the existing simulation modules. Both of them

have assets and drawbacks, so a detailed analysis of them is necessary.

3.1 Event Driven Approach

The DEQSim and JDEQSim use an event driven approach. In this approach, the simulation
modules perform actions each time an event is created by an simulated object. As a result,
a simulation will end immediately if nothing happens that create events. Typically, only a
single event happens at a specific point in time. This leads to problems when trying to handle
multiple events on parallel threads. If an event is handled, it has to be ensured that every event
that happened previously and that could influence the currently handled event has already been

processed.

The DEQSim is already able to run in a parallel mode but has the drawback that it is written in
C++ whereas MATSim is written in Java. Due to some differences in the handling of threads
and the data exchange between them an implementation of the same parallelization strategy
in Java would not deliver satisfying results. C++ allows to exchange data between threads
with only little delay, in Java the threads have to be synchronized which consumes much more
computation time. Synchronization in this context means to ensure that if an object is edited in

a thread the performed changes are visible in all other threads.

3.2 Time Step Based Approach

The second approach is time step based and is used by the QueueSimulation and the QSim. The
simulated period is split up into equal pieces with a given duration—the time step size. Each
of these time steps and events occurring within such a step are treated time discrete. All events

are handled as if they had happened at the same point in time.

On the one hand, a time step based approach produces some overhead when nothing happens
in a scenario but the simulation module has to update the system state. Such situations may
especially occur in scenarios with only a couple of simulated agents and at times where the
traffic volume is very low like early in the morning. On the other hand, the time steps can be

used as break and synchronization points. Actions within one such time step can be performed

Implementation of a Time Step Based Parallel Queue Simulation in MATSim August 2010

on parallel threads without additional synchronization effort as long as they do not interfere
with each other. This can be guaranteed by writing an events handling logic that does not take

other events into account that occurred in the present time step.

3.3 Selection of a Simulation Approach

Takeing the QSim as basis for a parallel queue simulation seems promising for multiple rea-
sons. Using the time steps as fixed synchronization points between all threads should reduce the
time consuming synchronization actions, which in turn reduces the computation time signifi-
cantly. Several recently implemented modules use the QSim. It should be possible to use them
also with a parallel QSim without significant adaptions in their code. Also further additional

modules will likely use the QSim due to its simple and easily understandable structure.

Implementation of a Time Step Based Parallel Queue Simulation in MATSim August 2010

4 Distribution of the Workload

As a next step, the distribution of the workload has to be defined. Typically this is done by
assigning the objects (e.g. agents, links and nodes, signal lights) that perform actions and cre-
ate events to different threads. Depending on the type of simulation, it is possible to use a
static and / or dynamic assignment of the objects. Static means in this context that an object is
always handled by the same thread, dynamic that an object may be handled by various threads.
In a traffic simulation it is reasonable to assign infrastructure object (nodes, links and facilities)
statically, whereas the agents are assigned dynamically to the thread that handles the infrastruc-
ture object where they are physically present. Two commonly used distribution strategies are

described in the following sections.

4.1 Object Based Distribution

In an object based workload distribution, the simulated objects can be assigned to different
threads which handle the actions and events that are produced by the objects. Using a random
distribution algorithm should ensure that the workload on all threads is comparable. If data
is exchanged between different objects it has to be ensured that they are handled by the same

thread. Otherwise the threads and their data have to synchronized.

An object based distribution is easy to implement and produces even with a random assignment
strategy sufficiently balanced workloads. Additionally, a control instance can be implemented
that controls the workload of the calculating threads and adapts the distribution strategy if

necessary.

4.2 Area Based Distribution

An area based distribution separates the simulated area into connected sectors. Each of this
sectors is handled by a thread. An advantage of this approach is that there is no synchroniza-
tion necessary as long as only objects within the sector are involved in an action or event. A
major drawback is that typically the identification of sectors with comparable workloads is very
complicated and computation time intensive. Using equal sized areas will often produce poor

results because the traffic volume in a road network depends on the simulated scenario.

A possible solution would be to interactively resize the sectors. If a sector has a higher com-
putation time than his neighbors the load could be balanced by handing over some objects to
the neighbor sectors. This load balancing could be done during a running simulation or after

an iteration, if an iterative simulation approach is used.

Implementation of a Time Step Based Parallel Queue Simulation in MATSim August 2010

4.3 Selection of a Distribution Approach

Due to the code structure of the QSim and the possibilities in Java to handle multiple threads, us-
ing an object based distribution approach is most practicable. Implementing such an approach
is considerably easier compared with an area based distribution. The usage and handling is less
complex and especially no information about the behavior of the traffic flow in the simulated

scenario is needed to get an even workload distribution.

One of the main benefits of an area based approach is the reduction in data synchronizations
but this is not possible when using the QSim. There it is necessary to synchronize the data
after each simulated time step. By contrast using such an approach when developing a parallel
JDEQSim would be complex but also very promising. When implementing such a combination
it may be meaningful to minimize the number of links that connect the different areas. If a
vehicles drives over a link that connects two areas, it is necessary that the threads which handle
those areas synchronize their data. The necessity for doing this can be illustrated by having a
look at a simple example. Thread A wants to move a vehicle from one of its links over a node
to a link of thread B—but before doing so thread A has to ensure that there is free space on that
link. To do so, thread A has to communicate with thread B which checks the available capacity
on that link and returns the result. If there is free space available, the vehicle is handed over
to thread B which will take over its further simulation. As a result, accepting a certain amount
of differences in the thread workloads may still have a higher total performance that perfectly

balanced areas with a huge amount of links between different areas.

Implementation of a Time Step Based Parallel Queue Simulation in MATSim August 2010

5 Implementation

5.1 Objectives of the Implementation

Before starting to develop the parallel simulation, some objectives have been defined that
should be respected by the implementation. They affect aspects like the usability as well as
the maintainability and the extensibility.

e Respect typical programming guidelines and rules within the MATSim project, keep the

code simple and extendable.

e Use the existing structure of the simulation (QSim, QSimEngine, etc.) and adapt it where

necessary.

e Make it usable like any other already existing simulation module without significant,

additional configuration effort.

e Create deterministic results, which do not depend on the number of parallel simulation
threads.

e Detect potential bottlenecks which affect the performance and

— remove them if the effort and volume of the necessary changes in the code is justi-
fiable.

— document them so they may be considered and / or removed in future refactorings.

5.2 Analysis of the QSim

In a first step, the structure and the performance of the QSim is analyzed. As shown in Figure
[2] it contains methods which simulate the traffic behavior and creates events which can be used
to interact with listeners. If such an event occurs, all registered listeners are informed and can

perform then the required actions while the simulation is waiting.

A performance analysis shows, that the doSimStep method in the QSimEngine consumes over
90% of the computational time of a simulation run. Therefore, the main focus is on the par-
allelization of that method. Within doSimStep two methods with comparable computational

effort are called—moveNodes and moveLinks.

The moveNodes method handles vehicles that leave one link and enter another one. Typically,
a Random object is used to select in which order the ingoing links are handled (If all nodes

are controlled by light signals the Random object is never used.). Therefore, the result of a

10

Implementation of a Time Step Based Parallel Queue Simulation in MATSim August 2010

Figure 2: Structure of the QSim

QSim - run
{ prepare Simulation J
[fire QSiminitialized Event]

{

while Simulation is running do another SimStep

(
v

[actions to do before SimStep]

{

fire BeforeSimStep Event

{

QSimEngine — do SimStep

[move Nodes j

/

move Links

{

actions to do after SimStep

{

fire AfterSimStep Event

y

[fire SimulationBeforeCleanUp Event

{

clean up Simulation

_/

simulation is influenced by the order in which the nodes are processed. This can be avoided by
assigning a Random object to each node. Doing so will create deterministic simulation results
that will slightly differ from results calculated with the QSim because other sets of random
numbers will be used. When using multiple Random objects on parallel threads, it is necessary

to guarantee that the random numbers are independent from each other. This, for example,

11

Implementation of a Time Step Based Parallel Queue Simulation in MATSim August 2010

would not be the case if each Random object is initialized with the same initial value.

moveLinks simulates the actions (e.g. agents which start and end activities) on the links. Each
link can be treated independently from the other ones. Therefore, the links can be simulated
on multiple threads without concerning about race conditions with one exception. The QSim
can teleport vehicles from one link to another one. If within one time step multiple vehicles are
teleported from different threads to one link, their order may vary. In that case, they have to be
ordered by their the Id of the agent who drives the vehicle to ensure that the simulation result

is deterministic.

At some points within moveNodes and moveLinks calls to methods in global objects (QSim,
OSimEngine and Simulation) are executed, what could cause race conditions. This can be
avoided by using one of two simple strategies. A simple but slow approach is to add a syn-
chronized tag to the methods. Doing this ensures that only one thread at a time executes such
a method. Especially if many concurrent calls from multiple threads occur, this will be a per-
formance bottleneck. The second strategy is more complex and requires more changes in the
code but results in better performance. The method is moved from the global object to one
which exists once per parallel thread. Additionally it may be necessary to create an additional,

supervising method that is executed from the main thread.

This can be illustrated with a simple example. Links that do not contain active vehicles are
deactivate by the QSim to reduce the calculation effort. When a vehicles enters the link, the
link has to be reactivated which is done by calling a method in the QSimEngine. There the link
is added to a list which is processed at a later point in time. In a parallel QSim each thread could
contain such a list. The additional supervising method could then collect the vehicles from the

threads and add them to a global list which then is finally processed.

5.3 Structure of the ParallelQSim

If the current design with a QSim that contains a single QSimEngine would be used in a parallel
implementation, a lot of method calls in the QSimEngine would have to be synchronized to
avoid problems with race conditions which would result in a poor performance. This problem
can be avoided by using one QSimEngine per thread. The ParallelQSim introduces a code
structure where this is realized—it contains a single MultiThreadQSimEngine that manages an
array of QSimEngineThreads which extend the Java Thread class and can act as QSimEngines.

This results in a structure as shown in Figure [3]

Basically, the MultiThreadQSimEngine is a wrapper class that manages the communication
between the ParallelQSim and the QSimEngineThreads. As a result of that structure, the Par-
allelQSim sees only the MultiThreadQSimEngine and is not involved in the handling of the

12

Implementation of a Time Step Based Parallel Queue Simulation in MATSim August 2010

Figure 3: Comparison of the QSim and the ParallelQSim

QSim ParallelQSim
(QSimEngine) MultiThreadQSimEngine
[QSimEngineThread]] j

threads—it does not even recognize that there are multiple threads involved in the simulation.

The QSimEngineThreads are created once per iteration of the simulation and reused in every
sim step which is considerably faster than creating new threads in each sim step. As shown
in Figure [] this is realized by using two CyclicBarriers (StartBarrier and EndBarrier) which
are part of the Java concurrent package. A third CyclicBarrier (SeparationBarrier) is used to
synchronize the moveNodes and moveLinks actions—the threads must have handled all their
nodes before they can go on with the links. When the doSimStep method of the MultiThread-
QSimEngine is called, it starts the threads by triggering the StartBarrier and then waits until all

threads have reached the EndBarrier.

Figure 4: Structure of a QSimEngineThread

QSimEngineThread - run

]

[StartBarrier j

]
¥
[else]

If Simulation is still running
end

{

moveNodes

()
()
{

[SeparationBarrier j
()
()

{

movelinks

¢

EndBarrier
|4 J

13

Implementation of a Time Step Based Parallel Queue Simulation in MATSim August 2010

5.4 Changes in the MATSim Core

In the course of development of the ParallelQSim some changes have been made in the core.
Some of them were necessary to ensure the proper function of the ParallelQSim, others were
mainly implemented to improve the performance. A last group of changes has due to different
reasons not been implemented yet but should nevertheless be mentioned here—they may be

considered in future code refactorings.

5.4.1 Agents Counter

The QSim uses a class called Simulation to count the simulated agents (alive and lost ones)
which contains some static methods. Those methods are called from different places in the
simulation what can cause race conditions if multiple parallel threads are involved. This prob-
lem was solved by using atomic variables from the Java concurrent.atomic package. They can
be increased or decreased in a single operation that cannot be interrupted. Still this may be a
performance bottleneck but due to the fact that the number of method calls is relative small this

solution is acceptable.

Another possible solution would be to add the counting functionality to the QSi-
mEngineThreads. Doing so would eliminate the concurrent method calls but would also require
quite a lot of changes in the code of the MATSim core. Because of the expected negligible small
performance gain compared to the implementation effort required, this alternative version has

not been realized yet.

5.4.2 EventsCollector

Basically, events are not necessary to run simulations with MATSim—but without them, no
analyses could be performed. Every time something happens in the simulation (e.g. an agent
starts an activity or a vehicle is moved from one link to another one) this is documented by
creating an event that contains information about what happened and when did it happen. This
information is used by EventHandlers to calculate values like trip travel times or mean travel

time of a link at a given time.

All events that are created by the simulation are sent to the EventsManager. There, they are
processed by sending them to the EventHandlers. Performance measurements show, that this
structure with a single EventsManager becomes a major bottle neck if a multi-threaded simula-
tion is used. In such a scenario, the threads create multiple events concurrently but the Events-
Manager has to handle them sequentially. To ensure that only one event at a time is handled, it

is necessary to synchronize the method calls in the EventsManager. Thus, the performance is

14

Implementation of a Time Step Based Parallel Queue Simulation in MATSim August 2010

significantly influenced by the duration of the events handling.

Figure 5: EventsManager

ParallelQSim
MultiThreadQSimEngine

D)

°
@
o

d=
'_
)
c
<)
C
L
£
(70}
€]

4-—[QSimEngineThread j
4——[QSimEngineThread]
4——[QSimEngineThread j
4-—[QSimEngineThread j

v
E

ventsManager j

Waraich et al.| (2009) presents an approach where separate threads are used to handle the events.
Still a single ParallelEventsManager is used, but instead of handling the events, they are only
collected and handed over to other EventsManager instances that run in separate threads, where
the events are finally handled. Due to the fact that the ParallelEventsManager was designed to
be used with a single thread simulation module, it cannot handle multiple concurrently created

events without synchronizing their access.

Figure 6: ParallelEventsManager

ParallelQSim
. . .)
MultiThreadQSimEngine
)) ') '
ke ke o ke o —
®© @®© @®© ®© ®© c
Q Q Q Q Q :
o o c o o A
= = = = =
[0) (0] () (0] (o) @
= = = = =)
2 2 2 2 2 > &
L L L L | 5
= = £ = £ =
() () n () n Iz
c c @] c c S
L/ L/ Y w Y
[ParallelEventsManager }—
_/

15

Implementation of a Time Step Based Parallel Queue Simulation in MATSim August 2010

To avoid the time consuming synchronizations, a new EventsManager was developed for the
ParallelQSim—the so called EventsCollector. Its basic concept is comparable with the Paral-
lelEventsManager but instead of handling events when they occur, the are only collected. After
each simulated time step they are handed over to an EventsManager which handles them. A
major performance gain is reached by using a ConcurrentLinkedQueue to collect the events.
This special type of queue is unbounded, thread-safe and based on linked nodes. Internally it
is an implementation of an efficient, wait-free algorithm that is described by Michael and Scott
(1996). A ConcurrentLinkedQueue is thread-safe which means that it is not necessary to use
time consuming synchronized methods—the queue is able to handle concurrent access. It is
also possible to use a ParallelEventsManager which handles the collected events in a separated
thread. Doing so allows the main simulation thread to continue immediately without waiting

until all events have been processed.

Figure 7: EventsCollector

ParallelQSim
MultiThreadQSimEngine

4——[QSimEngineThread j
4-—[QSimEngineThread]
4——[QSimEngineThread]

4——[QSimEngineThread]
4-—[QSimEngineThread]

EventsCollector

{

EventsManager

5.4.3 Decentralized Events Handling

All previously described strategies to handle the simulation events are due to their performance
bottlenecks only limited capable to be used with the ParallelQSim. Avoiding this leak is possi-

ble but requires major changes in the existing EventHandlers.

The basic idea of a first approach is to create separate EventsManagers and EventsHandlers

for every QSimEngineThread where each thread handles only those events that are caused

16

Implementation of a Time Step Based Parallel Queue Simulation in MATSim August 2010

by its assigned simulation objects (agents, links, nodes, etc.). This is basically possible, but
leads to a more complex structure as shown in Figure[§] Some EventsHandlers are able to act
independently within their QSimEngineThread, others have to synchronize their data with the

other threads externally by using a EventsManagerCoordinator.

Figure 8: EventsManagerCoordinator

ParallelQSim
MultiThreadQSimEngine

= g s g = o = g = g
20|20 20 |20| 20
RS 8BS |RE| 8RS RS
okl |lok| ot ok ok
c 9 c O c 9O c 9 c 9
= (@)] = ()] — [®)] = (@)] = (@)]
o © o O o O o © o O
c S c S c £ c £ c
Se D2 S22 $e 42
guw| | gy |guw| guw| | gu
L] v v v v

[] [} [} [} [}

' ' ' ' '
b4 v b4 b4 "4

[EventsManagerCoordinator j

An EventsHandler that calculates leg travel times for example would have to be synchronized
with the corresponding handler instances in the other threads because the leg could end on
a link that is handled by a different thread than the start link. Without synchronization, the
handler in the first thread would not be informed that the agent has ended its current trip and
therefore could not calculate the leg travel time. The second thread on the other hand could
not handle an arrival event because the corresponding departure event is unknown. To solve
this problem, a centralized EventsManagerCoordinator would have to merge the incomplete
information from the EventsManagers in the different QSimEngineThreads.

Another approach for decentralized events handling would be to add an event container to each
object that can create events. In that case, an EventsHandler should be able to get all required
information from that set of collected events. A disadvantage of this approach would be that
the number of events per object would increase during the simulation what would cause longer
lookup times in the collection when searching for specific events. This could be avoided by
using a separate list of events for every used EventsHandler at the expense of a higher memory
consumption. In that case, the handler would decide which events have to be stored and which

ones can be removed from the list because they are not needed anymore.

17

Implementation of a Time Step Based Parallel Queue Simulation in MATSim August 2010

6 Performance Measurements

6.1 Hardware

The experiments that are run to compare the performance of the ParallelQSim with the existing
QSim are run on a computer with two quad core CPUs (each an AMD Opteron 2380) and 24
GB of shared memory. A maximum of 7 cores is used for the ParallelQSim—the remaining
core is used for the (parallel-)events handling and some background processes that are running
on the computer. Doing so ensures that the measured performance is not influenced by other

Processes.

6.2 Scenarios

As a first scenario a 1% example of Berlin is used which is a basic example scenario used by
MATSim. It contains about 16K agents who perform 28K trips and is simulated on a network

with about 11k nodes and 28K links. During a simulation run 1M events are created.

For the second and third scenario a model of Canton Zurich is used—once as 25% sample
with 400K agents and 1.3M performed trips and once as 100% with 1.6M agents and 5.1M
performed trips. The used network contains 73K nodes and 163K links. A simulation run
creates 47M respectively 158M events.

These real world scenarios represent scenarios that are typically simulated with MATSim. It
can be assumed that the results of the performance measurements can be reached on other,

comparable scenarios as well.

6.3 Results

The results of the simulations runs that are discussed in this section are only analyzed regarding
the performance of the used simulation setup (queue simulation and events handling strategy),

but no conclusions concerning the results from a traffic planning view are drawn.

Figure [9] shows the calculation effort of the events handling in the three scenarios. The results
show, that the effort is 25% of the total calculation effort and is not influenced by the size
of the scenario. According to Amdahl’s Law (Amdahl, |1967), which describes the maximum
achievable speedup of a programm with partially parallelized code, this affects significantly
the reachable performance gain. The influence of the non-parallel code can be illustrated with

a simple example. If code that consumes 5% of the computation time of a program cannot

18

Implementation of a Time Step Based Parallel Queue Simulation in MATSim August 2010

be parallelized, the total calculation time cannot be reduced by more than a factor twenty—
even if the remaining code could be handled in zero seconds. Thus, the events handling limits
the possible speed gain to a factor of four related to the calculation time of the QSim with
non-parallel events handling. Related to the runs of the QSim with parallel events handling a

performance gain of factor three is possible.

Figure 9: Performance of different Events Handling Strategies

[l default Events Handling
[parallel Events Handling
Il no Events Handling

1% Berlin 25% Carﬁ)n.Zurich 100% Canton Zurich
Scenario

100%[

75%¢

50%}-

Normalized Calculation Effort
with different Events Handling Strategies

25% -

0%

An important finding is the high efficiency of the ParallelEventsManager in combination with
the QSim—almost the entire calculation effort of the events handling is moved from the main
thread to a separated thread. As a result, the simulation is nearly as fast as it would be without

any events handling.

Figures[I0(a)to show the results of the runs with the three test scenarios. Each sub-figure
contains the results of runs with the ParallelQSim using one to seven cores and different events
handling strategies. Additionally, the same scenarios have been run with the non-parallel QSim.
In a first analysis step, the computation times of the QSim and the ParallelQSim using only one
thread are compared. The difference between the calculation times is the overhead caused by

the parallelization like distributing and synchronizing data between the threads.

In the Berlin scenario a significant overhead of over 50% is found. As a result, using the
ParallelQSim cannot reduce the calculation time significantly compared to the QSim. However,
the ParallelQSim itself performs quite good. The calculation time reduces by 50% if three

threads are used instead of a single one.

The Canton Zurich scenarios show that the calculation overhead is less significant if the sce-
nario get more complex—the overhead reduces to 30% (25% scenario, using 5 threads) and

20% (100% scenario, using 6 threads). Therefore the performance gains rise up to the—

19

Implementation of a Time Step Based Parallel Queue Simulation in MATSim

August 2010

Figure 10: Results of the Sample Scenarios

m

Calculation Time compared to non parallel QS

Calculation Time compared to non parallel QSim

Calculation Time compared to non parallel QSim

150%|- Il no Events Handling

125%p

100%r

75%

(a) Results 1% Berlin Scenario
default Events Handling 1
parallel Events Handling

a @ ~ ®
[=] =] o [=]

N
o
Duration of a Simulation Run [Seconds]

130
50%[
120
25%} 110
1 (%/?1 parallel QSim) 1 2 3 4 5 6 7 0
Number of OSim Threads
(b) Results 25% Canton Zurich Scenario
11800

125%

100%

75%

50%

25%

0%
1 (no(r)1 parallel QSim) 1

100%

75%

50%

25%

0%
1 (no% parallel QSim) 1

[l default Events Handling
parallel Events Handling

2 3 4
Number of OSim Threads

(c) Results 100% Canton Zurich Scenario

default Events Handling
parallel Events Handling
Il no Events Handling

2 3 4
Number of OSim Threads

11400

11000 _:

>
o
o
Duration of a Simulat

14000

13500

13000

12500

72000

11500

<1000

Il no Events Handling 1600

Seconds]

412002

Run

10

+5000

4500

lation Run [Seconds]

imul

f a Si

lon O

Durati

according to Amdahl’s Law—highest reachable value of a factor three when using parallel

events handling.

20

Implementation of a Time Step Based Parallel Queue Simulation in MATSim August 2010

Comparing the results of the Canton Zurich runs with parallel events handling and runs without
events handling shows that there is still only a small difference in computational time. Hence,
we can assume that the computation times of the events handling and the ParallelQSim are al-
most alike in these scenarios. The runs without events handling would have a noticeable shorter
computation time if the events handling had become a bottleneck. However, if the simulated

scenarios get even bigger, events handling could clearly become a performance bottleneck.

Considering only the results of the ParallelQSim shows that the number of cores used that
results in the lowest calculation times rises with the total calculation effort for the scenario.
While the Berlin scenario performs best with only three cores, the 25% Canton Zurich scenario
should be run with five cores and the 100% Canton Zurich scenario benefits from up to six
cores. An important detail is that using too many cores results in increased computation times
which is a consequence of the synchronization effort that increases with the number of used

cores.

21

Implementation of a Time Step Based Parallel Queue Simulation in MATSim August 2010

7 Conclusion and Outlook

This paper describes the development and implementation of a new simulation module in
MATSim that reaches short calculation times by using multiple CPU cores. Starting with a
overview on the MATSim framework and its existing simulation modules, different simulation
approaches are described. Analyzing these approaches regarding their suitability for paral-
lelization leads to the conclusion that using the existing QSim as basement for the parallel

queue simulation is most reasonable.

In the next step, various possibilities to distribute the calculation workload between the CPU
cores are discussed. Using a simple implementation that distributes the workload evenly among
the cores seems meaningful. The assignment of the network’s links and nodes to the threads
can be done randomly to avoid clustering of network areas with very high or very low traffic
load. Using a scenario specific distribution that respects the expected load of the network
would probably create slightly better results. A drawback of such a strategy is that it would
require information about the network and the traffic volume which is usually not available in

the required level of detail.

Having a detailed look on the implementation gives an insight into the structure of the QSim
and shows how its concepts have been adapted in the ParallelQSim. Changes in the code
that were necessary to keep the created simulation results deterministic have been described.

Additionally some concepts are discussed which could be used to speed up the events handling.

The results of the performance tests show that—depending on the scenario size—the calcula-
tion time can be reduced by a factor of four. According to Amdahl’s Law it is shown that the
events handling could become a bottleneck when simulating large scale scenarios—a speedup
of more than a factor of four is not possible. However, it is also shown that the existing parallel
events handling reduces the calculation effort in the main thread very efficiently. Moving the
events that are created in the main thread to another thread where they are handled is done
within negligible time. In addition, two approaches to reduce the calculation time of the events
handling have been discussed. A third alternative is using some time consuming events han-
dlers that are only necessary for analyzes but not for MATSim runs itself not for every iteration
of a simulation run. Typical examples for such handlers are plans and events file writers—in

general it is sufficient to create those file only in every tenth iteration.

Another important results of the performance tests concerns the number of CPU cores used.
Depending on the complexity and size of the scenario, the number of cores that results in the
best simulation performance varies. Therefore, a user should keep the results of the sample
scenarios in mind when choosing the number of cores for another scenario—comparing the

scenario with the given samples in this paper should lead to a reasonable choice.

22

Implementation of a Time Step Based Parallel Queue Simulation in MATSim August 2010

Even though the results are already very satisfying, there are still some further performance
optimizations possible and desirable. One major point concerns the synchronization effort be-
tween the threads. Especially in smaller scenarios this performance bottleneck reduces the
attractiveness of using the ParallelQSim. Another topic where further developments are prefer-
able is the events handling. Having a setup where each thread has its own set of events handlers
would reduce the amount of synchronized method calls significantly and therefore should re-

sults in a further performance gain.

23

Implementation of a Time Step Based Parallel Queue Simulation in MATSim August 2010

References

Amdahl, G. M. (1967) Validity of the single processor approach to achieving large scale com-
puting capabilities, paper presented at the Spring Joint Computer Conference, New York,
April 1967.

Balmer, M. (2007) Travel demand modeling for multi-agent traffic simulations: Algorithms
and systems, Ph.D. Thesis, ETH Zurich, Zurich, May 2007.

Balmer, M., M. Rieser, K. Meister, D. Charypar, N. Lefebvre, K. Nagel and K. W. Ax-
hausen (2008) MATSim-T: Architektur und Rechenzeiten, paper presented at the Heureka
'08, Stuttgart, March 2008.

Cetin, N. (2005) Large-scale parallel graph-based simulations, Ph.D. Thesis, ETH Zurich,
Zurich.

Charypar, D., K. W. Axhausen and K. Nagel (2007) An event-driven queue-based traffic flow

microsimulation, Transportation Research Record, 2003, 35-40.

Charypar, D. and K. Nagel (2005) Generating complete all-day activity plans with genetic
algorithms, Transportation, 32 (4) 369-397.

Dobler, C. (2009) Implementations of within day replanning in MATSim-T, Working Paper,
598, IVT, ETH Zurich, Zurich.

Eymann, T. (2003) Digitale Geschdiftsagenten - Softwareagenten im Einsatz, Springer, Berlin.

Feil, M. (2010) Choosing the daily schedule: Expanding activity-based travel demand mod-
elling, Ph.D. Thesis, ETH Zurich, Zurich.

Ferber, J. (1999) Multi-Agent Systems: An Introduction to Distributed Artificial Intelligence,
Addison-Wesley, Boston.

Horni, A., D. M. Scott, M. Balmer and K. W. Axhausen (2009) Location choice modeling
for shopping and leisure activities with MATSim: Combining micro-simulation and time

geography, Transportation Research Record, 2135, 87-95.

Kliigl, F. (2001) Multiagentensimulation - Konzepte, Werkzeuge, Anwendung, Addison-Wesley,
Munich.

Michael, M. M. and M. L. Scott (1996) Simple, fast, and practical non-blocking and blocking
concurrent queue algorithms, in J. E. Burns and M. Yoram (eds.) Proceedings of the 15th
ACM Symposium on Principles of Distributed Computing, 267-275, Association for Com-
puting Machinery, New York.

24

Implementation of a Time Step Based Parallel Queue Simulation in MATSim August 2010

Neumann, A. (2008) Modellierung und Evaluation von Lichtsignalanlagen in Queue-

Simulationen, Master Thesis, Technical University Berlin, Berlin.

Rieser, M. (2010) Adding transit to an agent-based transportation simulation, Ph.D. Thesis,

Technical University Berlin, Berlin.

Waraich, R. A., D. Charypar, M. Balmer and K. W. Axhausen (2009) Performance improve-
ments for large scale traffic simulation in MATSim, paper presented at the 9¢th Swiss Trans-

port Research Conference, Ascona, September 2009.

Wooldridge, M. (2000) Reasoning about Rational Agents, MIT Press, Cambridge.

25

	Introduction
	MATSim
	Overview
	Simulation Modules
	QueueSimulation
	QSim
	DEQSim
	JDEQSim

	Simulation Approaches
	Event Driven Approach
	Time Step Based Approach
	Selection of a Simulation Approach

	Distribution of the Workload
	Object Based Distribution
	Area Based Distribution
	Selection of a Distribution Approach

	Implementation
	Objectives of the Implementation
	Analysis of the QSim
	Structure of the ParallelQSim
	Changes in the MATSim Core
	Agents Counter
	EventsCollector
	Decentralized Events Handling

	Performance Measurements
	Hardware
	Scenarios
	Results

	Conclusion and Outlook
	Bibliography

