
A Parallel Framework for Large Spatial Microsim-
ulations

David Charypar
Andreas Horni
Kay W. Axhausen

2010



A Parallel Framework for Large Spatial Microsimulations 2010

A Parallel Framework for Large Spatial Microsimulations

David Charypar
Institute for Transport Plan-
ning and Systems
ETH Zurich
CH-8093 Zurich
phone: +41-44-633 35 62
fax: +41-44-633 10 57
charypar@ivt.baug.ethz.ch

Andreas Horni
Institute for Transport Plan-
ning and Systems
ETH Zurich
CH-8093 Zurich
phone: +41-44-633 31 51
fax: +41-44-633 10 57
horni@ivt.baug.ethz.ch

Kay W. Axhausen
Institute for Transport Plan-
ning and Systems
ETH Zurich
CH-8093 Zurich
phone: +41-44-633 39 43
fax: +41-44-633 10 57
axhausen@ivt.baug.ethz.ch

2010

Abstract

This paper describes the concept of a versatile transport simulation framework to be used for
the development of integrated transport simulation models. It is designed to improve modular-
ization and thereby simplify the collaboration between scientists and engineers from different
fields. Modularization is believed to be important due to the increasing complexity of the im-
plementation task if models from different areas are to be integrated. In performance critical
software projects this complexity is often further increased by the desire or the need for an
implementation that can be run in parallel on multiple processors. Furthermore, developing an
efficient parallel simulation is not trivial. In addition to the complexity of the modeling task as
such one has to deal with communication delays and data availability issues. The idea of the
presented framework is to handle this complexity by defining simple rules according to which
user developed modules must act. These rules include certain minimum delays between the
observation of a change in the system and the triggered reactions, limited vision, and limited
traveling speed. To illustrate how the framework is to be used a simples modeling scenario
is created and a possible implementation employing the framework is sketched. The example
scenario consists of the integration of a pedestrian simulation with a load estimation module
and a travel time estimator. Finally, an outlook on the next steps in the development of the
framework is given.

Keywords
transport simulation, framework, concept, microsimulation, integrated model

1



A Parallel Framework for Large Spatial Microsimulations 2010

1 Introduction

In recent years microscopic, dynamic demand and traffic simulations modeling has caught in-
creased attention and found broader use in the field of traffic forecasting and transport planning.
One advantage such approaches is that the necessary behavioral models are relatively simple.
The reason for this is that they only model directly the behavior of one individual or a small
group of individuals (e. g. households). The rest of the behavioral richness is assumed to emerge
from the interaction of thousands of such individuals that in the end form a complex system.
Onother advantage is and that during analysis it is possible to follow the line of influence down
to the individuals, which makes the interpretation of the results more intuitive.

However, microscopic simulations have (at least) one important and well known drawback: for
any reasonable sized scenario they are computationally demanding, as each of the individuals
naturally must be represented separately.

This in turn makes them relatively inefficient for solving low resolution scenarios (for instance
based on coarse zonal data). The reason for this is that during the necessary disaggregation
process, a lot of random detail is generated and afterwards simulated. Clearly, this detail does
not contribute to the explanatory power of the output and must be interpreted as overhead of
such simulation approaches.

On the other hand, if high resolution data is available microsimulations become comparably
efficient as, to provide the same precision, any aggregated model needs to refine the zoning
to the degree where it fits the level of detail of the input data. Consequently, the resulting
OD-matrices become huge as their size grows quadratically with the number of zones.

Overall, it seems to be worthwhile to develop and use microscopic transport models, and they
have already been successfully applied to large real world problems. Often, the average work
day is under investigation—a problem that can be addressed with equilibrium models. Such
modeling challenges can already be handled with available models (e. g. (Balmer et al., 2009a)
even though they require a lot or resources both in time and computing power. One way to
reduce the computation time is through parallel execution of simulation programs. While this
is becoming more common through multi-core processors that are available nowadays it is still
a challenging task to develop parallel software. At the same time it is necessary to follow the
path of parallelization in future microsimulation software developments to increase the range
of problems that can be addressed.

There are, however, different modeling task that cannot be solved using equilibrium models.
One important examples is the simulation of unpredictable events like accidents, emergencies,
or disasters. Another example is the simulation of longer periods than a single day. Multi-day
simulations increase the computation time of microscopic equilibrium models in two distinct

2



A Parallel Framework for Large Spatial Microsimulations 2010

ways: First, since the period of interest is longer the simulation of this period naturally also
takes longer. Basically doubling the simulated time doubles the computation time. In agent-
based microsimulations finding the equilibrium is often approximated by a learning loop of
the agents (e. g. in MATSim (Balmer et al., 2009b) or in TRANSSIMS (Rickert and Nagel,
2001)). This loop represents an iterative algorithm converging towards the desired result. The
number of iterations necessary to achieve a result of a certain precision naturally depends on
the complexity of the solution and hence also on the size of the solution vector: More complex
solutions need more iterations to be found. It is clear that finding the equilibrium for a 7-day
period is substantially more complex than finding it for a single day.

When combining both considerations above it can be seen that the computational burden of
the described iterated approach really becomes en issue. The computation time increases dis-
proportionally with the length of the study period. Consequently, there is a relatively short
(computational) limit of what time periods can be investigated using agent-based models with
an iteration-type learning loop.

Further more, there exists another argument against iterative learning and against modeling
long periods as an equilibrium: In the agent-based context, an (admittedly simplified) interpre-
tation of an equilibrium is that all agents have considered (all) possible choices and found the
sequence of actions that maximizes their utility in the given environment. It can be doubted if
real people really plan their weeks, months, or even years completely in advance.

Another problem is the assumption that two consecutive runs of the same simulation with only
minimal perturbations yield the same result when the list of planned actions is kept the same.
One has to remember that complex systems (as the transport infrastructure) tend to amplify
disturbances, and this can lead to completely different results at the end. Such effects have been
observed in at least one implementation of a microscopic integrated demand model (Rieser and
Nagel, 2008).

We believe that it would make much more sense to model longer, multi-day periods as a con-
tinuously evolving scenario, where the modeled persons (agents) constantly make decisions on
the following time frame. Märki et al. (see e. g. forthcoming) However, this makes it necessary
to make current information about the state of the system available to all objects in the simu-
lation. The online estimation of state variables during a running simulation and consequently
the propagation thereof represents a substantial increase in complexity of the simulation. In
iterative frameworks this information exchanges happens at the end of the iteration where the
generated output is analyzed, processed and made available as static information to agents for
re-planning.

In the proposed framework online information processing and spreading across the simulation
is provided as a service. This makes it possible that entities in the simulation (e. g. agents) can

3



A Parallel Framework for Large Spatial Microsimulations 2010

use them for their continuous planning process.

Based on the above line of reasoning, the development of a framework for large continuous
spacial microsimulation was started. The purpose of this tool is to encapsulate all necessary
complexity for parallelization and spacial information interchange and hide it from the user.
Consequently, a module employing the framework will be comparably simple as it will be able
to rely on the framework’s functionality provided through a clear interface.

The remainder of this paper is structured as follows: The next section discusses related work,
after that the proposed framework is specified and an implementation of three basic modules of
an integrated agent-based microsimulation is sketched as it could be done using the described
framework. Finally an outlook on planned future steps is given, and a discussion concludes the
paper.

2 Related Work

The following is a short overview about other work that was performed either in the field of
parallel microsimulations or in the design of frameworks for transport or urban modeling.

2.1 Parallel Traffic Simulations

There are numerous examples of parallel implementations of traffic simulations. Barceló et al.

(1998) showed a parallel implementation of their microsimulator AIMSUN achieving a par-
allel speedup of 3.5 when run on 8 processors. The parallelization concept was to make all
data globally accessible.PTV’s VISSIM traffic microsimulator also has the capability to run in
parallel using a multi-threaded concept. (PTV America, 2010)

Nagel and Rickert (Nagel and Rickert, 2001; Rickert and Nagel, 2001) showed a parallel ver-
sion of a cellular automaton used for traffic flow simulation in TRANSIMS (Nagel et al., 1998).
They used message passing between processors and achieved a speedup of 10 with 32 proces-
sors. They reported latency problems due to Ethernet data communications.

There has been some work on parallel queue-based models (e. g. Cetin, 2005; Cetin et al.,
2003; Charypar et al., 2007, 2009) Using message passing between cluster nodes, the queue-
based model presented in (Cetin, 2005; Cetin et al., 2003) achieved a speed-up of 32 using
64 CPUs when simulating a peak period. In (Charypar et al., 2009) the authors report a parallel
speedup of 53 when using 64 processors for simulating a large scenario.

A number parallel implementations of mesoscopic transport models have been presented in the

4



A Parallel Framework for Large Spatial Microsimulations 2010

past. METROPOLIS(Marchal, 2001; de Palma and Marchal, 2002) is able to simulate large
scenarios efficiently by using a parallel implementation based on up to 16 threads. Dyna-
MIT(Ben-Akiva et al., 1998; DynaMIT, 2006) does not parallelize the traffic flow simulation
itself but uses task parallelization i.e. different modules are run in parallel. Unfortunately this
limits the number of usable processors to the number of modules. DYNEMO(Schwerdtfeger,
1984; Nökel and Schmidt, 2002) was run in parallel (Nökel and Schmidt, 2002) by using a mes-
sage passing technique on 19 CPUs for simulating small scenarios. Larger numbers of CPUs
were reported to be inefficient.

2.2 Frameworks for Integrated Modeling

Ferreira et al. (2008) present a framework (MAS-T2er) for integrated multi-agent systems.
Their focus is on control strategies and intelligent transport systems. The intended use of their
software is “...for cooperative design, visualization and engineering, allowing for the coopera-
tive decision-making by different traffic and transport experts”. Their framework is designed
to run on distributed systems. It is still under development.

The goal of UrbanSim(Waddell, 2002) is to model and simulate urban development by mod-
eling the interactions of many different actors that make decisions in the markets for land,
housing, non-residential space and transportation.

The Multi-Agent Transport Simulation Toolkit (MATSim-T) (Balmer et al., 2009b) is a simu-
lation framework for modular development of an integrated transport simulation for large-scale
applications. Several modules that where written for/in MATSim run in parallel, e. g. certain
versions of the traffic flow simulator(e. g. Charypar et al., 2009), the processing of simulation
events, and the activity planning module. However, the program code of the framework itself
is executed sequentially.

3 Framework

In this section first, the problematics that necessitate the creation of the described programming
framework are discussed, second, the model concept is derived from these problematics, and
third, the design of the software is elaborated on.

5



A Parallel Framework for Large Spatial Microsimulations 2010

3.1 Motivation

The context of this work is the microsimulation of different aspects of travel. Microsimulation
can be a very powerful tool to gain insight into travel behavior, emerging dynamics of systems
with human actors, and effects resulting from external measures. Unfortunately, microsimula-
tion models are computationally demanding, which makes it hard to apply them to sufficiently
large problems. Consequently, a tool that accelerates the development and execution of mi-
crosimulation models would increase their range of application.

Integrating different models in one more complex microsimulation also widens the range ap-
plications: It enables researchers to investigate interactions between different aspects of the
modeled scenario. For instance integrating a traffic simulator and a routing module with a lo-
cation choice module makes it possible to study the effect of congestion on location choice. To
keep the modeling task as simple as possible it is desirable to have a high level of modulariza-
tion and to have the development process of modules as isolated as possible. This also helps to
control code complexity.

In many research projects emerging phenomena (e. g. urban gridlock) are of special interest.
Such emergence naturally only occurs in sufficiently large systems, and hence researchers must
be able to cope with such systems computationally. Here, being able to efficiently use parallel
computers might make the difference if interesting effects might be investigated or not.

Unfortunately, until now developing parallel programs tremendously increases the complexity
of a coding project and makes it hard to handle.

The classical modeling approach in transport planning is to compute a user equilibrium to in-
vestigate long term effects of changes. Recently the immediate response to unexpected events
is caching more and more interest. To be able to model such effects, users of the system
(i. e. agents) must have access to estimates of the current state of the system. When develop-
ing a simulation software, including online state estimation corresponds to integrating another
module. Obviously this further increases software complexity.

Based on the above considerations it seems that a framework solving the described problems
with code complexity while at the same time simplifying parallel and modular programming
would be very useful. It would facilitate further research in the field of integrated transport
microsimulations.

3.2 Concept

The main objective for the described framework is to create a tool that simplifies the modular-
ization of a complex transport modeling/simulation project and to reduce the code complexity

6



A Parallel Framework for Large Spatial Microsimulations 2010

of the modules at the same time. This is achieved through taking over the tasks of code paral-
lelization and distribution of the workload on different computers/processors, and information
distribution and interchange between different entities of the simulation.

To enable the collaboration between user-developed modules and the framework, respectively
it is necessary to specify the cut line between their individual fields of responsibility. One of
the key aspects of the presented framework is to limit the vision and motion capabilities of
object in the simulation. This is done to avoid a problem that otherwise often occurs when a
simulation program is later enhanced to run an a parallel computer. The following paragraph
should illustrate that problem

When developing a simple simulation program (i. e. at the beginning of the coding project),
initially the visibility of information about spatially distributed objects is usually assumed to
be global, for the sake of simplicity. For example when developing a car following model the
speed and position of all cars on a road might be stored in an array representing the state of the
system, and this state is stored at one specific spot in computer memory. As the model grows,
larger simulation are being performed and the desire for a parallel implementation arises. Often
distribution across multiple threads is tried here first, unfortunately with limited speedup of the
simulation. The problem is that all objects in the simulation access the same data set (the array
described above) and also make changes there. As a result this part of the simulation becomes
a bottleneck, essentially slowing down the simulation to single-CPU speed.

The underlying problem is, that all data is visible globally and instantly in the simulation.
As a result, when a data point is changed by one processor this new information must be
propagated to all other processors before they can continue with their individual tasks. Since
communication speed between processors is physically limited the simulation essentially stalls
until the message has been propagated.

Our approach to this problem is to limit the assumed visibility of information and the speed
of its propagation and hence give the processors more time to synchronize the state of their
memory. This avoids stalling the CPUs and hence improves the simulation speed.

The first such constraint is limited visibility of information. To reduce the amount of data that
must be held readily available to an observer, we assume a maximum radius of vision. This
radius can be chosen by the user at the beginning of the simulation run. It will depend to a great
extent on the problem at hand. In case of a pedestrian simulation for evacuations of buildings
it might be set to e. g. 20 meters. In another example, where we want to simulate freeway car
traffic, some 500 meters might be more appropriate. After having specified such a visibility
radius it is assumed that no module will request or need information from farther away and on
the other hand that data provided by the framework is complete inside this radius.

The second introduced constraint is delayed perception. One can imagine this as a reaction

7



A Parallel Framework for Large Spatial Microsimulations 2010

time. Virtually any system shows delayed reaction to external information. In the case of a car
following simulation this might be set to half a second. This is the time from the moment an
information can be perceived by some entity to the moment this object can take some action
based on it.

The third and maybe most important constraint is limited speed of motion and information

propagation. If at one point in the simulation there is some change to the state of the system,
this change cannot be observed instantly in the whole area around this point. Rather, the infor-
mation has to travel (at a certain speed) through the system much like a sound wave travels from
the source. Observers will not take notice of the change until this information front hits them.
Similarly, moving objects are not allowed to move faster than a certain maximum speed. While
this last constraint can be observed in reality (objects and information cannot travel faster than
light), it might seem odd to limit the speed in a simulation somewhat arbitrarily to a relatively
low value.

The final set of constraints is illustrated in Figure 1, where the perception of an object (blue)
is shown in a space time diagram. svisibility is the visibility range, treact is the reaction time,
c is the speed of information propagation, t represents time, and s space.The thin black line
represents the front of information available to the blue object. The green object is stationary
and changed its state from red to green at a certain point in the past. Since the blue object is
relatively far away this change can not yet be perceived and hence the red state is still relevant
to the blue object. The gray object is moving and the position where its path intersects the
information front is the latest position visible to blue.

One basic concept of our simulation is to map the spatial ordering of the simulated area to the
processors and hence to computer memory. In a sense, if information travels through the virtual
domain of the simulation, it travels from processor to processor and from memory bank to
memory bank involved in the computation. Since we effectively limit the speed of information
propagation in the virtual world, the data also travels at limited speed between the involved
computers. This in turn increases the achievable computing speed as the reduced requirements
are more easily satisfied.

3.3 Design

In our framework the simulation domain is subdivided using a uniform grid with cells of side
length s = treact ·c, which is defined during the configuration phase of the framework. This size
of the cells was selected as it simplifies the information exchange across processor boundaries.

As a result, the maximum number of processors that can be used is equal to the number of cells
used to subdivide the domain. However, it is possible to join multiple cells to use on single

8



A Parallel Framework for Large Spatial Microsimulations 2010

Figure 1: Limited Perception of Information Based on Introduced Constraints

CPU, eliminating the need for physical communication between these parts of the simulation.
This is desirable if scenarios show differently loaded cells. Cells with comparably little work
to do should be joined and assigned to a single CPU while heavily loaded cells should be
simulated exclusively on a separate processor.

Internally, the framework holds a comprehensive list of replicated cells for each real cell, that
is simulated. These lists form a discretized form of the information front described in Figure 1.
Further more it is expanded to represent not only the information for one single point but
from the union of all data that might be needed by any entity situated in the cell during one
time period as long as the reaction time. A graphical representation of this can be found in
Figure 2. Further more, to simplify the process of exchanging information between adjacent
cells it is useful to discretize the information domain in a similar way as the simulation domain
is discretized into square cells. This is illustrated in Figure 3 which shows a discretized form
of Figure 2.

The goal of the framework described in this paper is to encapsulate as much complexity asso-
ciated with information interchange and parallelization, and hide it from application program-
mers developing a module that is part of a larger integrated simulation. The basic approach
is to employ a client-server architecture where both, framework and user modules take a dual
role. On the one hand the framework is the server and modules are clients during phases where

9



A Parallel Framework for Large Spatial Microsimulations 2010

Figure 2: Information Potentially Needed in a Cell During a Certain Time Period

Figure 3: Discretized Information Domain in a Cell

information about the state of the environment is requested by the modules. On the other hand
the framework becomes the client after computations have been completed by user modules
and the resulting new information needs to be published to the system which is when modules
are in the server role.

10



A Parallel Framework for Large Spatial Microsimulations 2010

It seems to be straightforward to define two interfaces here. One defining how information
about the state of the system can be gathered by user-developed modules (the gathering inter-

face) and a second interface for the opposite direction of data flow, the publishing interface The
gathering interface consists basically of a function called with the following arguments:

• cell_index: Index of the cell of interest for the current query.
• start_time: Start time of the query period.
• end_time: End time of the query period.
• predicate: A mathematical predicate. True for relevant information.

The function returns a list of information objects that all are relevant in the given cell during
the given time period and satisfy the query predicate. Information objects represent published
information about simulation entities that might be relevant to other entities. For example, in
a car following model this might be information about the current position, speed, and accel-
eration of a car, but it would usually not contain the route, the destination, or its desired speed
of the car. The querying module can assume that no information objects are forgotten and that
now new relevant information may become available during the processing of the current time
period. It is clear that this is only possible if the current simulation time tnow, the reaction time
treact, the query start time tstart, and end time tend satisfy certain condition:

tend − tstart ≤ treact (1)

tend ≤ tnow (2)

In the other direction of information exchange the interface looks very similar. Each of the
simulated entities, and hence the implemented modules must provide a function that can be
called by the framework to obtain all information objects. At the end of a simulation time step
the framework goes through all cells and for each entity the calls the data providing function
with the following arguments:

• start_time: Start time of the query period.
• end_time: End time of the query period.

The object should react with a list of information objects that describe all publicly available
information about the object at hand.

4 Example Modules

Using a small example, we would like to sketch how the described framework would be em-
ployed to solve a real modeling task, involving the implementation of a couple of modules. The

11



A Parallel Framework for Large Spatial Microsimulations 2010

scene of interest is a music festival with many visitors that in general spend many hours on the
festival venue. During their stay they have to get something to food and drink from time to
time. For this purpose there is a number of food stands distributed on the periphery of the area
while the main stage can be found near the center. The modeling task is now to simulate (and
maybe predict) the movements conducted by pedestrians looking for available food stands. It
would not be realistic to assume that the one food stand closest to the stage would have the
capacity to serve all visitors in a reasonable time. For the modeling task at hand it is of partic-
ular interest how visitors would use more distant and hence less crowded stands to get served
in shorter time.

The following is a relatively straight forward example of how the above modeling task might
be solved. Certainly it is not very sophisticated and leaves a lot of room for improvements. The
proposed realization is meant to be illustrative rather then comprehensive and should give an
idea how the framework would be employed.

Clearly, one necessary module is a pedestrian simulation that models how people walk around
based on their direct surrounding. One possible choice for the underlying simulation model
might be (Helbing and Molnár, 1995) as it already implements attraction through other objects
that might be used to model how visitors generally want to get as close to the central stage
as possible. A second module would have to be added with the task of estimating the current
loading of all food stands. Finally, a third module for estimating pedestrian densities would
provide a way of estimating travel times to different locations.

For each of the modules it must be now decided what are the simulated entities, what is the
information these entities needed about the environment for proper operation, and what is the
information generated. For the generated information it is especially instructive to think about
for what the information is to be used and what new information will be generated from it in
turn. In the case of the pedestrian simulation it is relatively clear that the simulated entities
are pedestrians and that they need information about surrounding persons to be able to act an
react. Symmetrically, the information pedestrians need to publish is their position, velocity,
plus current activity, namely if the are waiting for food or not. This part will be important
later in this section. Now, when a pedestrian receives the positions and velocities of all other
pedestrians near by (within a range of svisibility), it has sufficient information to take its next
actions. (E. g. decelerating, avoiding a collision, or changing direction).

When it comes to the pedestrian density estimator a simple grid based approach is used in this
example. The simulated entities are nodes an a square lattice with a spacing of one visibility
range of a pedestrian. Each node uses the gathering interface to get the positions of all pedes-
trians near by. From this the node can easily compute a local density estimate using a kernel
method for instance. It is clear that at this point in time the node cannot know anything about
pedestrian densities outside the visibility range. For this reason it is essential that this local

12



A Parallel Framework for Large Spatial Microsimulations 2010

estimate is published by the node. In the next turn, each node not only gets the information
about pedestrians near by but also the (local) density estimates of neighboring nodes. By stor-
ing them, the node can construct a density map of an area larger than the visibility range. In the
next turn, this whole density map is published through the framework, providing information
to nodes even farther away By iterating this procedure, very soon each node will possess an
estimate of the pedestrian densities in the whole simulated domain. This is actually a density
map and can be used e. g. for routing and travel time estimation.

The food stand loading estimator (FSLE) has as similar task as the density estimator. For this
reason its design is similar and it also operates in a similar way. The FSLE is also designed
using nodes. Each node holds a list of all food stands in the domain and how many visitors
are currently near them waiting for food. This list is initially empty and filled with information
as the simulation progresses. In a first step the loading of local (to the node) food stands is
estimated from the pedestrians’ positions and their current activity. The value is stored in the
list. In the next step, each node takes its updated list and publishes it using the communication
framework. Then the new information is collected once again through the gathering interface
and the estimates from neighboring FSLE nodes are merged into the current list of food stand
loads. At this point the list already contains more information. In each turn, the content of
the food stand loading list grows, until each FSLE node has a complete list of food stand load
estimates.

At this point all parts of our simulation are ready to be used. We would like to show now the
steps taken if a pedestrian in the simulation becomes hungry and hence wants to find an avail-
able food stand: In the first step it gets the last version of the food stand loading list published
by the nearest FSLE node. This functionality is made available by the data gathering interface.
Now, for each food stand that is no overcrowded, a travel time is estimated using the last pub-
lished pedestrian density map. This data is also received through the data gathering interface
of our framework. Finally, the pedestrian selects the best of the available choices, consider-
ing expected waiting time at the food stand, travel times, and travel distances. The pedestrian
starts to walk towards the selected food stand, thereby reacting to all other pedestrians that he
encounters.

5 Future Work

The described framework is still in a relatively early state of development. The implementa-
tions must be tagged as prototypes and the interfaces are not yet finalized. One of the aspects
we are still working on is how information objects are transported from one simulation cell to
the others. There are different paradigms that one can follow here. In general one has to trade
off between communication and processing overhead. One extreme is the very sophisticated

13



A Parallel Framework for Large Spatial Microsimulations 2010

selection of only the bare minimum of information that needs to be transfered between proces-
sors to guarantee correct results. This obviously comes at the expense of spending a lot of time
evaluating the necessity of a data point. At the other and of the scale stands the preference for
quick checks selecting a relatively large volume of data for transfer to other cells. Hence, using
this design, processor loads will be relatively low while communication demands will be high.

The next steps will be to finalize the communication paradigm based on performance and com-
plexity considerations, finalize the interfaces to user modules, and then create a first published
version of our framework. Since the presented software is meant to ease collaboration on in-
tegrated transport modeling projects we seek cooperation with other interested researchers that
would like to implement modules using the framework. Consequently, the software is meant to
be released to public domain.

We are currently working on one first project employing our parallelization framework. In that
project we are aiming to simulate periods of more than 30 days in an integrated agent-based
environment. A special focus is the activity planning process, especially the resulting weekly
rhythms and effects of business-holidays on infrastructure usage. The activity planning module
is currently under development and shows first promising results (Märki et al., forthcoming).
Apart from activity planning there are other modules necessary for the functioning of this in-
tegrated simulation: For the adaptive creation of routes there is a on-line travel time estimator
under development. Furthermore, we envisage a location choice module based on current load
factors to represent the flexible choice of shopping and leisure locations.

Apart from getting interesting insights into modeling and simulation of multi-day periods, we
plan to measure the effectiveness of our framework by testing different scenario size with vari-
ous numbers of processors for parallelization. If our approach proves to be right, we should be
able to demonstrate good scaling of performance with the number of processors.

6 Discussion and Conclusion

The concept of a parallel framework to be used in the development of integrated transport mi-
crosimulations was presented. It should increase and ease the cooperation between researchers
and engineers from different fields by allowing for strict modularization of different model
parts.

The framework takes care of the complex tasks of parallelization and information exchange
between modules. In the experience of the authors these are often critical parts of integrated
simulations which often lead to problems in performance, reproducibility of results, and stabil-
ity of the over all software package. By assuming a two dimensional domain for all modules
(this can be easily extended to three dimensions) and by setting explicit limits on what actions

14



A Parallel Framework for Large Spatial Microsimulations 2010

can be performed (maximum speed of motion), how quickly they can be perceived (reaction
time), and how far away they are visible (visibility radius) it becomes possible to confine the
tasks of parallelization and information exchange in the described framework.

It must be noted that the introduced limits might also produce problems in certain cases. Many
models implicitly assume global availability of information and it is not clear in advance if
and how they can be fit into the described framework. Also some modules might not have
an obvious spatial interpretation. However, the authors believe that mapping everything to 2D
space and assuming a certain delay in the propagation of information does not represent a real
problem in all but very few cases.

In the example shown it was demonstrated how the framework would be used for a simulation
of intelligent pedestrians performing food stand location choice based on load estimates and
route calculation through crowded areas. Employing the framework in this example was shown
to be straightforward.

The current prototype implementations of the framework show reasonable parallel perfor-
mance. However, future test will have to show the performance when simulating real integrated
models. There certainly will be an overhead involved with our framework, as there always is
when introducing a layer of abstraction. However, we believe that the benefit through im-
proved efficiency in the development of integrated simulations will by far exceed the moderate
simulation overheads.

References

Balmer, M., A. Horni, K. Meister, F. Ciari, D. Charypar and K. W. Axhausen (2009a) Wirkun-
gen der Westumfahrung Zürich: Eine Analyse mit einer Agenten-basierten Mikrosimulation,
Final Report, Baudirektion Kanton Zurich, IVT, ETH Zurich, Zurich, February 2009.

Balmer, M., M. Rieser, K. Meister, D. Charypar, N. Lefebvre and K. Nagel (2009b) MATSim-
T: Architecture and simulation times, in A. L. C. Bazzan and F. Klügl (eds.) Multi-Agent

Systems for Traffic and Transportation Engineering, 57–78, Information Science Reference,
Hershey.

Barceló, J., J. L. Ferrer, D. Garcia, M. Florian and E. Le Saux (1998) Microscopic traffic
simulation, in P. Marcotte and S. Nguyen (eds.) Equilibrium and Advanced Transportation

Modelling, chap. 1, 1–26, Kluwer, Dordrecht.

Ben-Akiva, M. E., M. Bierlaire, H. Koutsopoulos and R. Mishalani (1998) DynaMIT: A
simulation-based system for traffic prediction, paper presented at the DACCORS Short Term

Forecasting Workshop.

15



A Parallel Framework for Large Spatial Microsimulations 2010

Cetin, N. (2005) Large-scale parallel graph-based simulations, Ph.D. Thesis, ETH Zurich,
Zurich.

Cetin, N., A. Burri and K. Nagel (2003) A large-scale multi-agent traffic microsimulation based
on queue model, paper presented at the 3rd Swiss Transport Research Conference, Ascona,
March 2003.

Charypar, D., K. W. Axhausen and K. Nagel (2007) An event-driven queue-based traffic flow
microsimulation, Transportation Research Record, 2003, 35–40.

Charypar, D., M. Balmer and K. W. Axhausen (2009) High-performance traffic flow microsim-
ulation for large problems, paper presented at the 88th Annual Meeting of the Transportation

Research Board, Washington, D.C., January 2009.

de Palma, A. and F. Marchal (2002) Real cases applications of the fully dynamic METROPO-
LIS tool-box: An advocacy for large-scale mesoscopic transportation systems, Networks and

Spatial Economics, 2 (4) 347–369.

DynaMIT (2006) Intelligent transportation system program, webpage, http://mit.edu/
its/dynamit.html.

Ferreira, P. A. F., E. F. Esteves, R. J. F. Rossetti and E. C. Oliveira (2008) A cooperative sim-
ulation framework for traffic and transportation engineering, in L. Yuhua (ed.) Cooperative

Design, Visualization, and Engineering, vol. 5220 of Lecture Notes in Computer Science,
89–97, Springer, Berlin.

Helbing, D. and P. Molnár (1995) Social force model for pedestrian dynamics, Physical Review

E, 51 (5) 4282–4286.

Marchal, F. (2001) Contribution to dynamic transportation models, Ph.D. Thesis, University of
Cergy-Pontoise, Cergy-Pontoise.

Märki, F., D. Charypar and K. W. Axhausen (forthcoming) Continuous activity planning for a
continuous traffic simulation, paper presented at the 90th Annual Meeting of the Transporta-

tion Research Board, Washington, D.C.

Nagel, K. and M. Rickert (2001) Parallel implementation of the TRANSIMS micro-simulation,
Parallel Computing, 58 (2) 1611–1639.

Nagel, K., D. E. Wolf, P. Wagner and P. M. Simon (1998) Two-lane traffic rules for cellular
automata: A systematic approach, Physical Review E, 58 (2) 1611–1639.

Nökel, K. and M. Schmidt (2002) Parallel DYNEMO: Meso-scopic traffic flow simulation on
large networks, Networks and Spatial Economics, 2 (4) 387–403.

16

http://mit.edu/its/dynamit.html
http://mit.edu/its/dynamit.html


A Parallel Framework for Large Spatial Microsimulations 2010

PTV America (2010) PTV America, webpage, http://www.ptvamerica.com.

Rickert, M. and K. Nagel (2001) Dynamic traffic assignment on parallel computers in TRAN-
SIMS, Future Generation Computer Systems, 17 (5) 637–648.

Rieser, M. and K. Nagel (2008) Network breakdown “at the edge of chaos” in multi-agent traffic
simulations, The European Physical Journal B - Condensed Matter and Complex Systems,
63 (3) 321–327.

Schwerdtfeger, T. (1984) DYNEMO: A model for the simulation of traffic flow in motorway
networks, in J. Volmuller and R. Hamerslag (eds.) Proceedings of the Ninth International

Symposium on Transportation and Traffic Theory, chap. 4, 65–87, VNU Science Press,
Utrecht.

Waddell, P. (2002) Urbansim: Modeling urban development for land use, transportation, and
environmental planning, Journal of the American Planning Association, 68 (3) 297–314.

17

http://www.ptvamerica.com

	Introduction
	Related Work
	Parallel Traffic Simulations
	Frameworks for Integrated Modeling

	Framework
	Motivation
	Concept
	Design

	Example Modules
	Future Work
	Discussion and Conclusion
	Bibliography

