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Abstract

In this paper, we compare two methods to model the formation of choice sets in the context
of discrete choice models. The first method is the probabilistic approach proposed by Manski
(1977), who explicitly models the choice set generation process by expressing the choice as
the joint probability of selecting a choice set and an alternative from this set. This approach
is theoretically sound and unbiased, but it is hard to implement due to the complexity that
arises from the combinatorial number of possible choice sets. The second method, known as
the Constrained Multinomial Logit (Martinez et al., 2009), models the choice set generation
process implicitly through elimination of alternatives. This approach is easier to implement
because it does not require to enumerate the possible choice sets, allowing to deal with large
choice sets, but can only be understood as an approximation of Manski’s approach.

An experimental analysis and comparison of both methods in presented. Results based on
synthetic data show that the Constrained Multinomial Logit may be a poor approximation of
Manski’s model, with some clear exceptions which are identified and analyzed.
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1 Introduction

In standard choice models, it is assumed that the alternatives considered by the decision maker

can be deterministically specified by the analyst. The choice set is characterized by determinis-

tic rules based on the characteristics of the decision maker and the choice context. For example,

single-room apartments are not considered by families with children in a house choice context,

car is not considered as a possible transportation mode if the traveler has no travel license, or

no car.

There are, however, many situations where the deterministic choice set generation procedure

is not satisfactory, or even possible. Data may be unavailable (the number of children in the

household is unknown to the analyst), or rules are fuzzy by nature. For instance, train is not

considered as a transportation mode if it involves a long walk to reach the train station. But

how long is a “long walk”?

Modeling explicitly the choice set generation process involves a combinatorial complexity,

which makes the models intractable except for some specific instances. Manski (1977) defines

the theoretical framework in a two stage process, where the probability that decision maker n

chooses alternative i is given by

Pn(i) =
∑
Cm⊆C

Pn(i|Cm)Pn(Cm) (1)

where Pn(i|Cm) is the probability for individual n to choose alternative i conditional to the

choice set Cm and Pn(Cm) is the probability for individual n to consider choice set Cm. The

sum runs on every possible subset Cm of the universal choice set C.

Swait and Ben-Akiva (1987) and Ben-Akiva and Boccara (1995) build on this framework and

use explicit random constraints to determine the choice set generation probability. The proba-

bility of considering a choice set Cm is a function of the consideration of the different alterna-

tives in the universal choice set:

Pn(Cm) =

∏
i∈Cm

φin

∏
j /∈Cm

(1 − φjn)

1 − ∏
k∈C(1 − φkn)

(2)

where φin is the probability that alternative i is considered by user n, which may be mod-

eled by a binary logit model that depends on the alternative’s attributes. Note that 2 assumes

independence of the consideration probabilities across alternatives.

Swait (2001) proposes to model the choice set generation as an implicit part of the choice pro-

cess in a multivariate extreme value (MEV) framework, requiring no exogenous information.

Here, choice sets are not separate constructs but another expression of preferences. The proba-
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bility of considering a choice set is defined as the probability for that choice set to correspond

to the maximum expected utility for an individual n:

Pn(Cm) =
eμIn,Cm∑
Ck⊆C eμIn,Ck

(3)

where μ is the scale parameter for the higher level decision (choice set selection) and In,Cm is

the inclusive value (the “logsum” or expected maximum utility) of choice set Cm for decision

maker n:

In,Cm =
1

μm
ln

∑
j∈Cm

eμmVnj . (4)

Here, μm is the scale parameter and Vnj is the deterministic utility of alternative i for deci-

sion maker n. Swait’s probabilistic choice set generation approach does not require additional

assumptions by the analyst about which attributes affect an alternative’s availability.

Clearly, these methods are hardly applicable to medium and large scale choice problems due

to the computational complexity that arises from the combinatorial number of possible choice

sets. If the number of alternatives in the universal choice set is J , the number of possible choice

sets is (2J − 1).

Therefore, various heuristics have been proposed in the literature that derive tractable models

by approximating the choice set generation process.

In the context of route choice, Frejinger et al. (forthcoming) assume that all decision makers

consider the universal choice set, so that Pn(Cm) = 0 when Cm �= C, and only one term remains

in (1). However, this may not be appropriate in other contexts.

The most promising heuristics are based on the use of penalties of the utility functions, and

have been proposed by Cascetta and Papola (2001) (the Implicit Availability/Perception (IAP)

model) and expanded by Martinez et al. (2009) (the Constrained Multinomial Logit (CMNL)

model). In the next section, we briefly describe the CMNL model and provide its theoretical

background in the context of choice set generation. In Section 3, we compare the CMNL with

the theoretical framework (1), first through a simple example and, second, by estimating both

models on synthetic data. Section 4 concludes the paper and identifies possible further work.

3



A comparative analysis of implicit and explicit methods to model choice set generation September 2009

2 Choice set generation with the CMNL model

Assuming that Cn is the choice set that the decision maker is actually considering, the choice

model is given by

Pn(i|Cn) = Pr (Uin ≥ Ujn, ∀j ∈ Cn) , (5)

where Uin is the random utility associated with alternative i by decision maker n. If Cn is known

to the analyst, it can be characterized by indicators of the consideration of each alternative by

the decision maker:

Ain =

{
1 if alternative i is considered by individual n,

0 otherwise.
(6)

The choice model can be equivalently written as

Pn(i|Cn) = Pr (Uin ≥ Ujn, ∀j ∈ Cn)

= Pr (Uin + ln Ain ≥ Ujn + ln Ajn, ∀j ∈ C) . (7)

For an unconsidered alternative, this adds ln 0 = −∞ to its utility, so that the choice probability

is 0, whereas the addition of ln 1 = 0 has no effect on the utility of a considered alternative.

In the case of a logit model, the choice probabilities are

Pn(i) =
eVin+lnAin∑

j∈C eVjn+ln Ajn
. (8)

The heuristics proposed by Cascetta and Papola (2001) and Martinez et al. (2009) consist in

replacing the indicators Ain by the probability φin that individual n considers alternative i.

Cascetta and Papola (2001) introduce the IAP model as a way to incorporate awareness of paths

into route choice modeling without requiring an explicit choice set generation step. A similar

approach that penalizes the utilities of “dominated” alternatives is proposed by Cascetta et al.

(2007).

Martinez et al. (2009) expand the IAP idea and propose the CMNL model. The functional

form for φin is assumed to be a binary logit, considering that the availability of an alternative

is related with bound constraints on its attributes. For example, if Xink is the kth variable of

alternative i for decision maker n that influences the consideration of i, we have

φu
in(Xink; uk, ωk) =

1

1 + exp(ωk(Xink − uk))
(9)
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where the uk parameter is the value at which the constraint is most likely to bind, and ωk is

the scale parameter of the binary logit. For instance, Xink may be the walking distance to the

train station, and uk may be the maximum distance that individual n is willing to walk. Both

uk and ωk are to be estimated. The intuition is that when the attribute Xink exceeds uk, the

consideration probability φu
in tends to zero, while this availability tends to one when the value

of the attribute is below uk.

Expression 9 represents an upper value cut-off, where uk represents the maximum value that

the attribute Xink can have in order for alternative i to be considered. To model a lower value

cut-off, we only need to invert the sign of the scale parameter ωk:

φ�
in(Xink; �k, ωk) =

1

1 + exp(−ωk(Xink − �k))
. (10)

Functions 9 and 10 can be generalized to account for more than one constraint:

φin(Xin; �, u, ω) =
∏
k

φu
in(Xink; uk, ωk)φ

�
in(Xink; �k, ωk). (11)

The CMNL approach has an operational advantage over Manski’s framework since it does not

require enumerating the choice sets, which makes it easier to specify and estimate. However,

the CMNL model is a heuristic that is based on convenient assumptions about the functional

form of the utility function. The CMNL model can thus be understood as an approximation.

The next section evaluates the quality of this approximation.

3 Comparison of CMNL with Manski’s model

This section compares the CMNL model with Manski’s model. For this, we first present a

simple example where we analytically analyze the difference between the choice probabilities

obtained using both models. Second, we estimate the CMNL model and Manski’s model over

synthetic data and compare the results. For notational simplicity, we subsequently omit the

index n for the decision maker.

3.1 Simple example

Consider a logit model with only 2 alternatives, where alternative 1 is always considered (φ1 =

1) and alternative 2 has probability φ2 of being considered by the decision maker. Figure

1 shows the structure of Manski’s framework if we consider every possible combination of
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alternatives as a choice set. This simple situation corresponds to a case where the decision

maker is captive to alternative 1 with probability 1 − φ2 (see also the captivity logit model

proposed by Gaudry and Dagenais (1979)).

Root

{1} {2} {1,2}

1 2

Choice sets

Alternatives

Figure 1: Example of a model in Manski’s framework

The CMNL model defines the probability of choosing alternative 1 as

P (1) =
eV1

eV1 + eV2+ln φ2
. (12)

Manski’s model (1) defines the probability of choosing alternative 1 as

P (1) = P ({1})e
V1

eV1
+ P ({1, 2}) eV1

eV1 + eV2
(13)

where P ({1}) is the probability of considering the choice set composed only of alternative

1 and P ({1, 2}) is the probability of considering the choice set containing both alternatives.

According to (2), the choice set probabilities are

P ({1}) =
φ1(1 − φ2)

1 − (1 − φ1)(1 − φ2)
= 1 − φ2 (14)

and

P ({1, 2}) =
φ1φ2

1 − (1 − φ1)(1 − φ2)
= φ2. (15)

The probability of considering choice set {2} is zero because alternative 1 is always be avail-
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able. Therefore, (13) becomes

P (1) = (1 − φ2) + φ2
eV1

eV1 + eV2
(16)

In the deterministic limit (φ2 = 0 or φ2 = 1), both models are equivalent. However, this is not

the case anymore when φ2 takes values between zero and one. The resulting choice probabili-

ties are shown in Figure 2, assuming the same utility level V1 = V2 for both alternatives.

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

P
1

φ2

V1 = V2

CMNL
Manski

Figure 2: Choice probability of alternative 1 (V1 = V2)

This figure shows that the CMNL is a good approximation of Manski’s model only when φ2 is

close to either zero or one, but it underestimates the probability of alternative 1 elsewhere. If the

utility for alternative 1 is larger than the utility for alternative 2 (Figure 3), the approximation

improves. This makes sense since the more an alternative is dominated, the less important it is

to know if it really belongs to the choice set.

However, as the utility of alternative 1 becomes smaller and smaller compared to the utility of

alternative 2, the CMNL becomes a poorer and poorer approximation of Manski’s model for

intermediate φ2 values, which is demonstrated in Figures 4 and 5.

These results can be interpreted as an unwanted compensatory effect in the CMNL model. The

constraint is enforced by modifying the utility of the constrained alternative. However, when

the utility of this alternative is high, it compensates the penalty. We analyze the performance

of the CMNL on synthetic data in the next section.
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Figure 3: Probability of alternative 1 (V1 > V2)
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Figure 4: Choice probability of alternative 1 (V1 < V2)

3.2 Synthetic data

This section describes a series of controlled experiments where some of the data is synthetically

generated. We start from a real stated preference data set that was collected for the analysis of

a hypothetical high speed train in Switzerland (Bierlaire et al., 2001). The alternatives are:
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Figure 5: Choice probability of alternative 1 (V1 < V2)

1. Driving a car (CAR)

2. Regular train (TRAIN)

3. Swissmetro, the future high speed train (SM)

From this data set, which consists of 5607 observations, we use the attributes of the alternatives

and simulate synthetic choices based on a postulated “true” model. It is a logit model with

linear-in-parameters utility functions. The specification table as well as the “true” values of the

parameters are reported in Table 1. The values have been obtained by estimating the model on

real choices, and by rounding the estimates.

It is assumed that the TRAIN and the SM alternatives are always considered, whereas the

consideration of the CAR alternative depends on the travel time according to

φCAR =
1

1 + exp(ω(TTCAR/60 − a))
, (17)

which states that the probability of considering CAR as an available alternative decreases with

the travel time TTCAR, in minutes, and that this probability is 0.5 when the availability thresh-

old a, in hours, is reached.

This implies that, depending on the availability of the CAR alternative, there are two pos-

sible choice sets: the full choice set and the choice set containing only the TRAIN and the

SM alternative. The random constraints approach (Ben-Akiva and Boccara, 1995) defines the
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Parameter Value Car Train Swissmetro

ASCCAR 0.3 1 0 0
ASCSM 0.4 0 0 1
βcost -0.001 Cost (CHF) Cost (CHF) Cost (CHF)

βtt -0.001 In veh. travel time (min-

utes)

In veh. travel time (min-

utes)

In veh. travel time (min-

utes)

βhe -0.005 0 Headway (minutes) Headway (minutes)

a 3 Consideration threshold of car (hours)

ω 1,2,3,5,10 Consideration dispersion of car

Table 1: Parameter descriptions and values

probability of each choice set as follows:

P ({TRAIN, SM}) =
φTRAINφSM(1 − φCAR)

1 − (1 − φCAR)(1 − φTRAIN)(1 − φSM)

= 1 − φCAR (18)

and, accordingly,

P ({CAR, TRAIN, SM}) = φCAR. (19)

The synthetic choices are generated by (i) simulating a choice set for each decision maker

according to (18) and (19), and (ii) simulating a choice for each decision maker using the

“true” model specified in Table 1.

100 choice data sets are simulated for each value of ω. These values generate constraints

with different levels of uncertainty. Figure 6 shows the shape of these constraint functions.

Estimation results for both the Manski and the CMNL model are given in Tables 2 and 3.

For each parameter β, the average value β̄ and the standard error σ over 100 simulations are

computed. In the tables, both β̄ and the t-statistic (β̄ −β)/σ are reported, the latter value being

used to test if the estimated value is significantly different from the true one.

The estimates of Manski’s model are unbiased. We cannot reject the hypothesis that the true

value of any parameters is equal to the postulated value, at 95% level. Several estimates of the

CMNL model are biased (marked with *), the hypothesis that the true value of the parameter

is equal to the postulated value being rejected at the 95% level. The quality of the CMNL esti-

mates improves with decreasing dispersion (increasing ω). This is consistent with the findings

of Section 3.1.
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Figure 6: Shape of the constraint for different values of ω

Figure 7 shows the t-statistics for the cost and travel time parameter over different ω values for

Manski’s model and the CMNL model. The quality of the estimates is constant across different

values of ω for Manski’s model. The quality of the CMNL estimates increases with ω, and their

t-statistics reach acceptable values when the constraint function becomes steep.

4 Conclusions and further work

We have shown on simple examples that the Constrained Multinomial Logit (CMNL) model

is not adequate to model the choice set generation process consistently with Manski’s frame-

work. Consequently, the CMNL model should be considered as a model on its own, derived

from semi-compensatory assumptions as described by Martinez et al. (2009), but not as a way

to capture the choice set generation process. Its complexity is linear with the number of alter-

natives, while Manski’s framework exhibits an exponential complexity.

We have started to investigate if a modified version of the CMNL could approximate better

Manski’s framework, but have been unsuccessful so far. The derivation of a good approxi-

mation of Manski’s model with the complexity of the CMNL would be particularly useful to

handle models with a large number of alternatives.
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Figure 7: t-statistics for the cost and time parameter over ω
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