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Abstract

This paper examines whether a household buys arwaif, how much it drives that car. In this pager
approach based on the Multiple Discrete-Continibdseeme Value Model (MDCEV). The MDCEV

has been developed by Chandra R. Bhat (2005). & 006) he adapted the Model to car choice and
use. In this paper households could choose to eweral cars and how much to use them. His approach
has two drawbacks: First the total annual numbé&iametres a household drives is considered to be
fixed and second the fact that holding cars cafilsed costs is neglected.

I now adapted the model, such that householdsidedtssbased on an economic rational decision. This
decision incorporates that owing cars causes fixsts and that households decide on the number of
kilometres they want to drive per year. So far,rttaglel has been developed to the case where
households may choose between none or one canghe annual distance they want to drive.

Model parameters were estimated by use of Swissatatar use on household level. Policy simulations
yield similar fuel price elasticities as found imdrnational studies. The model shows further, that
reduction of fuel demand by higher fuel prices @&ty caused by households owning cars but using
them less. The contribution of households switcliiagn owning a car to not owning a car to the
reduction in fuel demand is very low. The firstgea for this is, that not many households will stvito

not owning a car due to higher fuel prices. Th@sdageason is, that these people did not drive many
kilometres before when they owned a car. Furttart®show that household location - urban versus
rural area - plays an important role both on denfandriving and on the decision whether to owraa c

or not. With respect to the choice of policiesrieducing fuel demand, results show that not ordy th
type and height of taxes on fuel and cars may ateiynportant role, but also spatial planning.
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The Determinants of Energy Demand of the Swiss Prate
Transportation Sector

1.1 Introduction of the Model

In contrast to the discrete-continuous choice aggraf Dubin and McFadden (1984), which can only
capture exclusive choices between car types, se\véral car types are involved, bundles of cars, th
model can capture non-exclusive choices of a sers including the choice of not owning a car.sThi
extension is very relevant for Swiss data, sinc&witzerland 19% of households do not own a car
and 30% of households own two or more cars.

The model based on the Multiple Discrete-Continuexiseme Value Model (MDCEYV) introduced by
Bhat (2004) is applied to car choice and use int B206). Bhat assumes that total driving distaace
given for each household and is equal to the sukilaheters driven by the vehicles that households
declared in a survey. Further Bhat's approach gwntthe assumption that households are not
restricted by either the households' budget orfitked costs when owning one or several cars.
Therefore, that model only captures householddemrce for car types but does not capture the
households' economic behavior. For instance, Bivattiel does not capture that it is economically not
rational for households to own a vast number of.c@he purpose of the extension of Bhat's model is
therefore to transform the model so that it repressthe economic behavior of the household.

In the following, the foundations of the models gresented in section 1.1. In section 1.2 the most
simple model where households can choose betwermgw car and choose the driving distance, or
not owning a car is derived for the case wheredfigests of car ownership are neglected. In section
1.3 the model is extended to the case where ovantay implies a fixed cost.

This introduction is structured as follows: Fir¢tetbasic principle of the model framework is
presented. Second the microeconomic optimizatiawblpm is stated in a general form where
households may choose between several cars. Tame sllustration for the two good case is
presented. Fourth the problem of unobservabilitthofisehold preferences is by the researcher is
stated and how this problem is captured by the nigd#gescribed. Fifth, the utility function used in
this framework is presented and it is discussed, this distinct function was chosen.

The basic principle of the model framework
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The model presented in the following describes rttieroeconomic decision of a household with
respect to car ownership and use. In its general fbis assumed that households can choose from a
set of cars one or several cars. The choice is miricted in the way, that households may not
choose two cars from of the same type. It is asduthat the decision of deciding for one or several
car types and the choice of distance driven wighabrresponding cars is simultaneous. The household
can also decide not to own a car. The househa@dsamed to maximize its utility for a given budget.
The utility function values the utility the houséthgields by driving cars of different types andrfr a
consumption good. The consumption good includegatls apart from driving cars: Housing, health,
food, insurances etc. The household can choose aeeoor several cars out of a set of different car
types. Each car type can only be chosen one tithe.blidget constraint contains expenditures for
driving one or several cars, namely the numberilofreters multiplied by the cost per kilometer
driven by a specific car type. The budget constraiso contains - apart from the simplified cases,
where fixed costs are neglected - the fixed co$tewmning one or several cars. The remaining
expenditure is spent on the consumption good. Mbl@sion of fixed cost of car holding allows for a
realistic description of households' behavior wéhpect to the decision whether to own or not ta ow

a car. This decision is especially relevant for datwld with low income. It is assumed that the
consumer has perfect information. This means hegtconsumer exactly knows its preferences and is
informed about the features of all car types itldoohoose. In contrast, from the researchers'
perspective the utility function of the househaotdle not known exactly and are therefore stochastic
functions. For empirical research parametrizedtytfunctions will be used. Some parameters are
stochastic accounting for the fact that the utifityictions are stochastic. Some of the parameters
depend on household and car characteristics. Thasemeters will be estimated by Maximum
Likelihood estimation. In order to get a simplenfmda for the Maximum Likelihood function the
utility function must be of a certain type and aertassumptions on the distribution of the stocbast
term are necessary. The concrete utility functiseduand the assumptions on the parameters are
presented in the last part of this introduction.

The microeconomic optimization problem

Now, the microeconomic problem solved by a housgiobtiescribed. The household is considered to
behave as if it maximizes a utility function

maxu(Xx), (1.1.1)
subject to:
J J
Y3 pxt  pxt  Loo(x)kandx30" & 1.J. (1.2.1)
i=2 i=2

The amount of consumption of good one is denote x oyndexi=2.J is an index for car types. The
annual distance in kilometers driven by car typedenoted b'X . Vectorx contains al X . Variable
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P denotes the cost per kilometer for car drivingchyi. The costs per kilometer consist of fuel costs
and depreciation caused by driving the car, egrwkthe mechanical components and tires. Variable
k, refers to the annual fixed of holding a car. Thiésed costs consist of parking cost, insurance
costs, taxes and depreciation. In this contextredggtion only captures the loss of value caused by
factors unrelated to the use of cars, like ruséing loss in value due to technical obsolescenas. It
assumed that if a household owns a car househdidcals® drive by this car and therefore annual
distance X is assumed to be strictly positive in this caséaeWa household decides not to own a
certain car type, then the corresponding distar X is zero. Therefore ownership of car types
equivalent to a positive vall X . Since fixed costs only arise if a car is ownedjralicator is needed
when summing up the fixed cost of the different tyges. Indicat0|l,ﬁ>o(xi) is one if X is greater

than zero and zero otherwise.

The microeconomic optimization problem stated aldiffers from the standard problem as described
in many textbooks where the budget restrictiorinsdr in all x . The difference arises because the
budget restriction is now non-linear x " = 2..N due to the indicator functicl,,(X;) . Therefore

the optimization problem cannot be solved by stethdhagrangian approach. Instead, the
maximization problem has to be solved by the Kuboker approach. To show that, it is necessary to

restate the constraints (1.1.2):

J

9sa(X¥)=a(x)- ¥ O, (1.1.3a)

i=1
whereq (%) =1,.,(%)*k +p X, with k =0 and

9,(x)=-%x£0,j=123,..7 (1.1.3b)
This problem can be stated as Lagrangian:

In the following it is shown, that the Kuhn-Tuckapproach can be applied to the maximization
problem stated by (1.1.1) and (1.1.2). This willdme by the Kuhn-Tucker Theorem. This theorem
relates to the Lagrangian representation of (1.1.3)

J+1

L=u(x)- /;9(x. (1.14)

=1

The Kuhn-Tucker Theorem states, the x fsolves (1.1.1) and the constraints (1.1.3) ho/x” atthen
there exists a set of Kuhn-Tucker multipli /J. 30, fori=1, 2,..J+1such that

Varian (1992), page 505.
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1M(X)Z”U,Q@iflJ 92, (1.1.5)
1 j=1 : X

Furthermore, there are the so called complemestackness conditions for:

/;>0,if g,(x)=0, (1.1.6a)
/;=0,if g;(x)<o0, (1.1.6b)
where j=1,2,.J+1.

The Kuhn-Tucker sufficienéytheorem states, that x° complies (1.1.5) and (1.1.6) if solves the
maximization problem stated by (1.1.1) and (1.]jf2}u(x) is a quasi-concave functibrand
g (x) i=1, 2,.J+ lare convex functions.

Note that any utility function must be quasi-convexsatisfy the fundamental axioms on preference
relations. Since gl(x) is not a convex function, the Kuhn-Tucker sufficg theorem does not apply
to the problem stated by (1.1.4) and (1.1.5). Tioeee the problem has to be restated as follows:
Assume that the household first chooses zero, oseweral cars out of the ¢S, of cars plus always
the consumer good at choice St Each car of the siS. may only be chosen once. The household
then maximizes the utility conditional on the cle S , wherek =1,2,..K is an index for all possible
choices §,. That means that its budget will be reduced byfitked costs of the cars in the €S

causes. Given this reduced budget, householdheiti solve the following maximization problem:

mTaSi(u(x) ,with x; =0, j1 §/§, (1.1.7)
X i
subject to:
J
y*px+t pxt  kandx30"li S. (1.1.8)
i=1 i1s,

2See Varian (1992), page 503.

3 See Mas-Colell, page 49.

“The property of strictly-convex preferences impliest a utility function is strict quasi-concavegsMas-Colell et al (1995),
page 49. Strictly-convex preferences are definedtastly convex if for everyx, we have thaX Y, X X and x1 y
implies ay+(1-a)z xforall al (0,1, see Mas- Colell et al (1995), page 44. Strictsgoancavity is defined as if
u(a x+(1-a) y)> min( u( X, Y ))) for anyx, yand ai (0,1, thenu( ) is a*, Mas-Colell, page 44. The assumption of a
strict-convex utility function is an additional tastion, but most commonly used utility functioage strictly-convex. The
utility function that will be used for the modelgsented here is also strictly-convex . Note thatyefunction that is strictly-
convex is also quasi-convex .

*See Varian (1992), page 503.
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Now, for eact S, the Lagrangian has to be set up:

L=u(x)-  /;9(X), with x, =0, ji §/§. (1.1.9)
i

Restrictionsg; (x)=- x£ 0,1 § are defined as
g;(x)=-x£0,j S, (1.1.10a)
9;(x)=0, il S/%. (1.1.10b)

Restrictiong,,, () is now defined as

ga(¥)=  px+ k- ¥EO. (1.1.10c)
i s i S
Note that gM(x) does now depend linearly (X, il S and in this case it is a convex function. The

same holds fo g;(x),iT S. Conditionsg;(x)=0, jT S/$ (1.1.10b) are not relevant, since they
are always fulfilled.

9 (X)

Since all restriction are now convex, the Kuhn-Tucker sufficiency Theotelds. Therefore,

if x is feasible and solves (1.1.11) and fulfills (12), thenx” solves the maximization problems
stated in (1.1.7) and (1.1.8).

fu(x) =Y M,i is., (1.1.11)

™ . T

with the corresponding complementary slacknessitiond:

/,>0,if g;(x)=0,if (1.1.12a)
/;=0,if g,(x) <0, (1.1.12b)
whereil S, .

Solving this maximization problem the householdl wiéld optimal consumption level and driving
distance for the seS,. The utility household gets form this consumptisimall be denoted by
U = U( X) . The household will now compuu, for any possible choicS, . The household will then
choose the choice €S that yields the highest utility.

lllustration of the maximization principle in the case of two goods
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In the following, there is some intuitive preseittiatof the model where households can choose
between two goods with one of them causing fixestcéor any positive consumption level. It will be
shown, how changes in prices, income and prefesemie®ptimal solution is. This is done for the case
where only one car or no car can be chosen.

| want to start by illustrating the maximizatiorutme described in paragraph above:

X,

D X
Diagram 1.1.1:Optimal consumption for given fixed cost for caivirg

The dashed line represents the budget constraign We household decides not to own a car and
therefore does not have to bear fixed cost. Ingditigtion all income is spent on the consumption
good. The optimal consumption bundle when decidioigto own a car is represented D,” The
household will compare the utility when spendingradome only for the consumption good to the
situation where it decides also to drive by cathis situation the budget line is on a lower level
because a part of the income is spent for the fixet of owning a car. The household now decides
the optimal amount of driving. The slope of the gpetdine is equal to the price of the consumingdyoo
divided by the marginal cost of driving. Since prif the consumption good is normalized to one, the
slope of the budget line is equal to one divideghbge of good two. Utility maximization calculusrf
the case where the household is supposed to ownsana car yields optimal consumption burD,2
The solid line represents the iso-utility leveltioé maximal utility that can be reached with theoime
net the fixed costs. The household will now comgheeutility level yielded given the case when
spending the whole budget on the consumption godiget case when owing and using a car. In the
case as illustrated in the diagram above, the migevould yield a higher utility when owning a car
since D, is below the utility level yielded kD, . Note that for the same utility function, this dan

can change, when fixed costs are increasing: WiRed tosts are increasing, solid budget line will
shift towards to the origin of the diagram and #fere alscD, does. From this it follows that the
crossing of the solid lined iso-utility function héhift towards the left. At some poirD, will be
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above the iso-utility function and for this casesibptimal not to own a car. Diagram below illasts

such a situation.

Diagram 1.1.2:Optimal consumption for high fixed cost for goodtw

Compared to the situation illustrated in diagram.{) decision of owning a car can change when
income is lower, since fixed costs will decreasailable income by a larger share.

>,

Diagram 1.1.3:Optimal consumption for given fixed cost for go@gbtwhen income is low

When income is decreasing, optimum consumption le. D, shifts towards the origin and therefore
also iso-utility function does. Since the distahetween the two budget lines remains the same, at
some point, D; will be above the iso-utility function and theregat will be optimal not to own a car.
This is quite intuitive, since for lower income thiged costs are getting relatively higher. In the
extreme case, fixed cost would lower availabl®ine to zero and household could not consume any
goods.
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In the following case the effect of an increas¢hefprice of good two is examined.

XzA

.
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~
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~
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~
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~
.

X

Diagram 1.1.4:Optimal consumption for given fixed cost for goagtwhen price of good two is
high

The above diagram shows that if price of good mardases, optimal consumption of good two given
good two is decreasing. From this, the iso-utliity is crossing thiX, axis closer to the budget line.
Since the distance between the crossing of thediunhgs on thex axis is still the sameD, is now

in the better set of iso-utility line corresponditagthe case where good two is consumed. Theréfore

the case illustrated above, household will choadegmbuy a car.

The model does now not only capture the effechahges in economic variables incoynéixed cost
of owning a cak,, and cost of driving a kilometer with that (p, as presented above but also

individual preferences.

XZA

Diagram 1.1.5:Optimal consumption with strong and weak preferdncear driving

10
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On the left, optimal solution of a household wittoeg preference for car driving is illustrated.id'h
household will choose to own a car and consume lbLD,. On the right, optimal solution of a
household with weak preference for car drivindlisstrated. This household will choose not to own a
car and consume buncD, .

The key issue of the model is now to explain tiretative preferences of households by data. These
preferences can depend on household characterlgtecthe number of household members or on the
type of household location, like city versus rasdas. Given these preferences, change in belavior
households behavior when economic variable likerime and prices changes can be simulated. The
following diagram shows the predicted outcome wadruseholds with a given preference but
varying income could decide for no car, a small adig car or both a small and a big car. In @sttr

to the preceding examples households can now dbeitseen no car, a small car with low fixed and
variable costs and a big car with high fixed aralde cost. It is assumed, that the big car yields
higher utility than the small car, since the bigisanore comfortable an provides more space for
transporting goods.

case | case 2

=
T
I

¥}
T

&~
T

! fa

O I ] 1 I 1 1
0 2 4 6 8 10 12 14

income y

consumption, driving x R

Diagram 1.1.4:Engel-curves for consumption and driving for giyeaferences

“Diagram was computed based on the utility funcU =w, {x_+a)" +w, kx, 8)" (% & subject to fixed and
marginal cost. Parameters werea, =0,a,=0.7,3,= 1w = 1w, = 0.8w,= 1.2d= 0. and economic variables were
p,=0.95p,=1.05p,= 0.8k = Ok, = I = 1. Note thal w,>w, denotes relative preference of driving a big gaod
three) being greater than relative preference iofrdy a small car (good two). Utility was maximizgesen different income
levelsy. Price p, > p, denotes, that marginal costs of driving a bigararhigher that driving a small car. The same hfads
fixed costs k, > k,. Relation a, > a, implies that marginal utility of driving a smalhcdecreases faster that driving a small
car. This is quite reasonable, since for instanogng) long distances by a small car gets fastémgithan driving the same

distance by a big car.
For a detailed description of the maximization mo@tsee in the following sections.

11
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In this case when household income increases,rostar would be chosen and the whole income
would be spent on consumption goxl This choice is denoted as “case 1" above. Wheame
increases first the small car will be chosen tealmwith - X, - due to its lower fixed cost, “case 2".
When income increases further, the household wdlose to drive the big caix, - due to its higher
preference for it, despite to its higher fix costsase 3”. When the income is high enough, the
household will choose to drive both cars, “caseld’this case the household will drive more by the
more expensive car due to its higher preferencehiier car type, despite of higher marginal costs.
Note the steps in the Engel curves are due toatiettiat fixed costs arise when owning a car. These
fixed costs will reduce the disposable income. #teriesting detail is the jump in distance driveanir
zero to a positive value when the car is boughttdug higher income. This seems reasonable since
only owning but not driving a car yields utility @mo one would bare the fixed costs when the only
change would be, that the consumption level of dbesumer good has to be reduced due to the

decrease of available income.

Until now, preferences were assumed to be knowmedtity however, not all factors that determine
individual preferences are available and secorsl nbt exactly known how the factors influence the
individual preferences. From this follows that widual preferences cannot be exactly described from
researchers perspective. Hence, whether a housettddses to own a car or not - given observed
household characteristics and economic variablean-be predicted by the researcher only with a
certain probability. Also for the case a househubidoses to own a car, the amount consumed of good
one and the distance driven cannot exactly be méted. It is only possible to compute probabilities

that these amounts are within certain intervals.

The chapter is structured as follows: First, intisecl.2, the model is introduced for the simpleeca
when there are only two goods and no fixed codienTin section 1.3. the two good case is extended
to the case with fixed cost. After that, the madedxpanded to the case of three goods, firsedtian

1.4 without fixed cost and later including fixedst® in section 1.5.

1.2 Model with two goods and no fixed cost

| first start with this very simple model becaude tbasic implications can be studied in a
comprehensive way. Further the basic problems vdeeiving the ML function can be examined and
presented in the most simple way. The ML functiesalibes the probability observing the household
given model parameters. It will be used to deteertihe model parameters by use of the MLE
procedure. In this section the model with two goatdno fixed cost is described. First the basic
assumptions are presented and some implicatiotieeahodel are illustrated by diagrams. Finally the
ML function necessary for estimating the parametdren observing data is derived.

12
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The model is based on a additive utility functibattincludes a random term. This random term stands
for the fact that researchers may not be able teraéne consumers true utility function. There are
two goods. Good twi X, denotes the kilometres driven by the car. In thiglel owning a car does
not implicate fixed costs. Good o1 X, denotes a bundle of goods containing any goods &pan

driving car. The utility function is defined as lfmvs:
U =u (X)) +u(X,) =exp( m+x,) £ X +a)" 4exf m %) (xx +4, (1.2.1)

Where:mj =g, %s +d *; | £ 2.

Since the marginal utility is decreasing X; and X, both d, and d, are bound to the interval
between zero and oﬁ<0<dj <1, j=1,2. The lowerd, the more rapid the marginal utility of gopd
decreases whe X, increases. Parametea, and a, are shifting parameters. Since marginal utility of
X, and X, are infinite al X, =-a and X, =- a, respectively - a, and - a, define lower limits for

X, and X, for optimal solutions fo X; and X, when the ranges of the solutions are not bounded.
Since good on X, is essentiala, must be non negative in order to insure that thetien for X, is
always positive. Since good two is not essera, | must be positive. This allows for negative
solutions for X, that will be bounded to zero. Express exp(mj +Xj) is Weighting(Xj ta )dj . The
higher exp(mj +X, ) the stronger the preference for go@pd This weight is determined by
sociodemographic variabless and characteristics bj of the corresponding good;j,

m =g xs +d %, | % 2. This means for instance that households with nmaembers usually have a
higher preference for driving a car. Therefore ah e expected that the number of people of a
household would increa:m, and therefore utility of goo X, would be weighted higher compared to
good X, for such households. The random terx;srepresent sociodemographic variat s:sand
vehicle characteristich that cannot be observed by the researcher. Thesem terms are assumed
to be iid Gumbel distributéd

LU
x;?
concave and therefore the Hessian matrix is negésiemi-) definite:

LR AV ALY

=d, >(dj -1) >exp( m 19(j) (x)§ -@)d"z §,ifand only if 0 ¢ < This implies also, that the utility function is

0
™2 IXIX,|[IX U U KV .
= = % >0 and <0, ifandonlyif0<d; <1, j=1,2 and X, >- a and
ﬂZU ﬂ{J 0 ﬂ{) ﬂXlZ ﬂxzz ﬂXlZ y J J 1 ai
XIX, X2 X,
Xz >- .
The term Y is equal to zero because the utility functionfiadditive separable type.

1 2

®The Gumbel distribution is a non symmetric disttiba but is shaped similarly to the normal disttibo, see figure in the
appendix Al. The Gumbel distribution also has hamesuseful properties necessary for getting a Micfion that is an

13
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x, iidgu(0,0), f,(x)=e exp( -e*). (1.2.2)

Both the choice of this special form of the utilitynction and the assumption on the error terms are
done because it allows for some formal simplifiasi when derivating the ML function. These
simplifications will yield a ML function in closetbrm. Further, the cumulated density function that
will appear in the ML function is of a simple foramd therefore permits a short computation times. It
assumed that the household maximizes its utilitghyosing optimal values fcX, and X,. For this

it has to take into account its budget constraint:

y=pXX, +p X%, (1.2.3)

Note that for this case there are no fixed cosssiraed for good two. The maximization of the

household can be represented by solving the fatigwiagrangian:

L=exp(m +x){X, +a)" ox{m +) (X, &% #(y o X o X, (@124

X, >0, X,3 0.

Note that in the followin¢X; and X, that represent unobserved characteristics artetress given.

This is for formal reasons but is also reasonablece households known their characteristics.
Therefore random ternx; and X, are considered as known by the households.

The corresponding first order conditions are:
U/X, - / xp, =0, (1.2.5)
U/9X, - / xp, £0. (1.2.6)

The third first order condition is budget consttaifh.2.3). By plugging in the expressions for the
marginal utility functions and reformulating, (152and (1.2.6) can be written as follows:

1
d1>9Xp(”1 +X1) *—1q # B, (1.2.7)
(x+a)
1
d2>eXp(mz +X2) *—\tq, £ p. (1.2.8)
(% +a,)

explicit function of the parameters, see in theesmulix. The Gumbel distribution is also often callextreme value

distribution of type I.

14
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The reason why (1.2.6) is an inequality but (1.2s53n equality is thea, =0 that implies optimal
X, >0 solutions while a:a, >0 that allows for negative solutior X,, that have to be bound too
zero. Because (a, being greater than zero, solutions X, that are bound to zero are possible. For
this case the marginal utility (X, is strictly smaller than the Lagrangian multip!/ rtimes p,. The
reason why onh X, can yield bounded solution will become clear wkigs case will be illustrated
below. Intuitively it can be imagined that housetsostart solving the system of equations by chgosin
a very high positive value for the Lagrangian npliéir / . Given this valu¢/ , the household solves
(1.2.7) for X, = x (/) and (1.2.7) foI X, = max(O,xz(/ )) . Household will then check if the budget
constraint is violatecy3 px Xl(/) R X&Q ) Since for very high value/ the valuesxl(/) and
X,(/) are small, the budget constraint will not be wieta Since bottx,(/) and x,(/) depend
negatively on/ ° the household will lowe / . It will do this until the whole budget is usedr fo
consumption due to increasing values for txl(/) and xz(/ ) This optimization process can be

illustrated by the following diagrams:

A U/, =/, p,
U/, =/, p,

Diagram 1.2.1:The maximization calculd$

1 e(m %) ¢ 1%/ /
g W =- P <0
1MWMMW) e / e den ma) ks f@
1d, >exp(m, . ) 1 0 / L 1
- =" d (1' dz) exp( m+ Xz)x 2d,
d/ (% +a,)
1d, >exp(m, +. ) 1 @
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Here the results for two valui/ are illustrated/, >/ . For /, the optimal value o X, has to be
bound to zero, since f(U/x, =/, p, the value foI X, would be smaller than zero. Becai X, is
bound to zero and therefore increased compardttodn bounded solution, marginal utility X, is
smaller thar/,p,, U/, (X, =0) </, p,. Further it is assumed that 1/, budget is not completely
used up y> px%(/,) +p, max(0,%( ,)). Therefore the household can still increase itityuby
decreasin¢/ . This will increase in each ca X, and in the case as illustrated above, at some poin
X, will change from being zero to a positive valuehet / has been decreased /,, the whole
budget is used up and household has maximizedility..Note that diagram 1.2.1 does also illustrat
the role of the shifting parametea, and a,: -3, and - &, define the minimum value of the
consumption of good one and good two when maximgiziuithout restricting values to be positive.
From diagram 1.2.1 and formula (1.2.7) it can Engbat marginal utility o X; goes to infinity when

X, goes to zero. Therefore optimal solutior X, is strictly positive for any finit¢/ . Contrary tca,,

a, is greater than zero for allowing negative nortrigied solutions for X, > - a, that have to be
bound to zero. Since in the context of the appbeat X, always has to be positiva, is chosen to

be zero for insuring non-bound solutio X, >0. In contras @, is chosen to be greater than zero what
allows for solutions o X, that are bound to zer X, =0 as described above. Here the shape of the
utility function, the prices and the income arefstitat for this case boi X, and X, are greater than
zero when choice is optimal. When income woulduhghat it would be used up at le'/_ then the
optimal solution for X, would be equal to zero. When the correspondingrmelevels for these two
cases are denot'y, andY,, the two optimal solutions for these cases caifiustrated as follows:

4“
- .
a2 .-

Diagram 1.2.2:Optimal consumption for different levels of income

%An alternative illustration of the maximization calus by choosing / such that the expenditures is equal to income, is
presented in the appendix A2.
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Solution denoted bA indicates the optimal solution bun((Xla, XZa)* for incomeYy,, in that case
(Xa %.) =(Ys/ B.,0). The solutions denoted iBindicates the optimum solution levi(X,,, Xon)
that are both positive. Both solutions correspanscenario described above and illustrated in
diagram 1.2.1 in a different way. Agéa, anda, play an important role. As illustrated by diagram
1.2.2, the slope of the isoquant goes to infiniben X; goes tc- &= 0 and goes to zero whix,
goes tc- a,. The reason for this Ixil(r;qoﬂu/ﬂ)(1 =¥ andle(i@r»nazﬂu/ﬂx2 =¥ . Due to this X, can never
be zero for any income and price, wt X, can be zero for some prices and incomes.

Curveic is the income consumption path. Since househakfer@nces are homothétjadhe income
consumption part is linear increasing above a teleael of income, denoted ty,. The
corresponding budget line would cross p@nBelow income leve y, consumption path is
horizontal, sinct X, is always bound to zero.

Up until now all solutions were presented for givatuesx; and x,. When a couple of households
would be observed, then even if all paramea,tsa,, m, m,, d;» d,, prices P;, P, and incomey
would be given, optimal vaIue(Xl, X2) will vary between the households. This is becahseautility
functions of the households dependsX;rand X, and therefore also the optimal vah(Xl, XZ) will
be random variables too. The following diagramsiliates the solution for twenty households with
equal parameters but different realizations of camdierms X; and x,. In top left diagram the optimal
consumption bundle for a given preference is ithatstd. Diagrams in the second columns are
histograms of the amounts consumed by the diffdrenseholds. Top right diagram is just for
projecting the consumption values of realized v& X, 2from the vertical axis to the horizontal axis.

1 Note, that the utility function is homothetic witkspect tc(>g +q) and therefore the income consumption curve for
(% +g) is a straight line increasing line in the case nstx is not bounded. The kink at poiC is because X, is
bounded to zero for income levels lower tl Y 1
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X X,

Diagram 1.2.3:Distribution of optimal consumption for twenty hsaholds with identical
parameters

Diagram above shows optimal consumption valuefdoiseholds that all have the same incgaf,
are faced with the same pric p, = p,=1, have the same deterministic part of the preferenc

m = m=1 and have the same shape paramea :a,, d, andd, . Difference in optimal
consumption only arises due to different realizatiof the random tern X, andx,. The solution
shows a wide range of optimal values. Note thattlaee a couple of bounded soluticx, =0.

Bounded solutions result if relative preferencediving a car -exp(m, +.x,)/ ex{ m +x,) *-is so

small that households will choose not to own a car.

The aim of this model is now to estimate the vakiethe parameteta,, a,, m, m,, d., d,. when
the prices p;, P, and the income:y, and the values(xi,xz)n of householdsn=1,2,..N are
observed. This will be done by Maximum Likelihoogtimation: Parameters have to be changed such

that the probability of observir(xl, Xz) is maximized,

n=1,2,..N

2The parameters were chosen as follc a,=0,a,=2,d,=d,=0.001,m = m = Zand the price p, = p,=1.

“Note, that utility function is ordinal and therefoequivalent to any positive transformation. Appdyitransformation

f(u)=(exp(m +x)) " xu yields u(x, %) =( %+ a)" +exp( m+x,)/ exd m+x) % x +g“. Therefore
exp(m, +.x,)/ ex{m +x,) can be considered as weight (x, +a,)* relative to(x, +a,)".
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P((Xl = X X = in)nzlvzy__y,\, g, B, B, %1,2...N) , Whereq:(ap a, d, d,, a, &, m, r@) (1.2.9)

Since it is assumed that the observations of thisdtmwlds are independent, probability (1.2.9) @an b
rewritten as:

N
P((Xfxzm Xo= %) a0 n 1T RS B )él,z,..N)=O B X= % %= %, B B Y. 1210

n=1

This means, that probabili P(( X, = x,, X,=%,)|¢, R, B, ¥) has to be calculated. To do this, two

cases have to be distinguished: Case one that thiggwobability of observing a bounded solution fo

X, and case two where both optimal vali X,sand X, are positive. For case one, a probability and
for case two a density function has to be calcdlaBefore calculating the probability functions for

these two cases the first order conditions (1.206) (1.2.8) have to be reformulated.

V,+x,=In(/) (1.2.11)
V,+x,£In(/) (1.2.12)
with:

V,=In(d)- In(p)+ m- (¢ ¥ In( X+ g), (1.2.13)
V,=In(d,)- In(p,)+ m- (2 d¥ In( X+ a). (1.2.14)

Case 1 Only good one is consumed

This means, that the realisation of good two isnoed, X,=0. Therefore (1.2.12) is a strict
inequality. By plugging (1.2.11) in (1.2.12), th@léwing inequality has to be fulfilled:

X, <V, - V,+ X, (1.2.15)

Since from X, =0 follows that the whole budget is spent for good gielding X, = y/ p, . Therefore

valuesV, andV, are known and fixed. Derivating probability of ebgng X, =0 will be done in
two steps. First step is to compute probabilitylof.13) conditional 0 X;:

P(x, <V,- V,+ x,|x)= F(Vr V& x) (1.2.16)

“Note that in fact both bot X; and X, are continuous random variables, but with somerelis probability a X, =0,

X, =Y/ p respectively. For a simpler formulation, notat P(( Xy = Xy X5 = XZn)n:l,z,..,N lg. n, B, ¥=1,2...N) is used.
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By integrating ou X, the unconditional probabilitP(x, <V, - V,+ x,) can be calculatet:

¥ eV1

Px, <V, - Vot x)= FX(\/:I.( X)- Vi X %’( f( ¥ dzm. (1.2.17)'
z=-¥
Therefore probability of observir X, =y/ p and X, =0 is
P X:lUX =0 = e 1.2.18)"
1 B 2 VP (1.2.18)

Note thaiV, andyv, are equal to (1.2.13) and (1.2.14) evaluate X, = y/ p and X, =0.

Case 2:Both goods are consumed

In this case, both first order conditions (1.2.a44y (1.2.15) are equalities since optimal solutfon
non-bounded. From this follows

X, =V, - V,+ X (1.2.19)

In a first step X, has to be expressed as a functionX, by use of budget restriction (1.2.3).

ThereforeV, becomes a functic X,:

Vi(X))=In(d)- In(p)+ me (2 df In LBXKe o (1.2.20)

1

In a second step probability of observi X, =X, has to be determined. Sinle(Xz)' Vz(xz) is

strictly increasing irX, ,*® (1.1.10), can be solved as folloWs:

“This follows by applying the law of total probabiti P(A)= P(A B)xH B), if B,il {12,..n} is a finite or
countably infinite partition of a probability spaaed each s¢B, is measurable.

18 Apply rule 6 in appendix Al.

This result can also been directly yielded by aimgiyrule 3 of appendix Al t X, <V, - V,+ xU0 x; x W V, Since
by this rule the cumulated density functior Z =x, - x; is Z FXM(Z) :]/(1+ é) it follows, that the probability of case 1
1 et

is: P(X2 - X< Vl_ Vz): le (Vi_l VZ): 1+¢ (v Vz)_ gi+gl’

L0 () (D) T IV(X) % TP 1-d op 14
qz 1z 1z ﬂ)g 1z Tz 1)( )Z+ a 4P z ,a .

*Applying theorem "Densities of transformed randoaniables” yields (1.2.21), with
hy(X,) =Vi( X;) - Vo( X))+ x; and
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_ 1-d p, r d
Tspeoom (2= 3 p221+a1>‘5: -Z+82 £ (M(2 M(3 %) (1.2.21)
D,

Probability density functio fXZU(x2>o) (Z) can be obtained by integrating (X;tfrom (1.2.21%°

1- dl o 1 d2 . gz(z)'vl(z)

Xx—= + >
Y‘ppz Zyg P Zt3 (1+ eVz(Z)'\ﬂ(z))
1

fXZU(X2>O) (Z) = (1.2.22)

Note that fxz(z) refers to the case whenX, is not bounded, which means that
X, =V, (X,) - V,( X,)+ x, is always true. Note th: fy,(¥/P.) goes to infinity, but that does not
imply, that the probability foP(X, = y/ p,)= A X =0) does have a finite value, what would be in
contrast to that parameta, forces the possible range for optimal solution: X;fto values greater
than zero, -a=0.* Note also, that integrating (1.2..22) vyields phby X, >0,
P(X,>0)=1- P( X,= 0).%

__1-d P +1- d,
y- pzz+a1 P z+a yields (1.2.21).

P

20 Applying rule 8 in A.1 or f, (Vl(z) - \,( 2+ Xl) yields this results.
2 For a proof see appendix A3.

2proof: Since (1.2.19 x, =V, ( X,) - Vy( X,)+ x,. SinceV,(X,) - V,( X,) is strictly increasing it X,, V;(X,) - V,( X,) is
greater tharV,(0)- V,(0) for any positive valucX, . Thereforex, that always has to matcX, =V,(X,) - Vo( X,)+ x;,
will take any value greater thiV, (0) - \,(0) , when X, is increasing from zero to its maximal va X, = y/ p, . Therefore
integrating (1.2.22) ove X2 is equivalent to probability x, >V1(0) - V2(0)+ x,. This probability is counter probability of
(1.2.17) and therefor P( X, >0) =1- P( X,= 0).
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The graph of functio f, , ., (2)= f (2xA( % >0) " is as follows:

I X,>0)

fx:|.\'z>u(~‘32)

0.05F : 8

Diagram 1.2.4:Probability density function for good two

The density is rather like a uniform distributiontiwa sharp increase at the boundary of the feasibl
range of X, . In the next section it will be shown how this gaachanges when the variance of the
error term is changed. Before the effect of suchange is discussed, first this case will be brotgh
an end. From previous resul P((X1= Xps Xy = x2n) g, n, P, )4) can now be calculatéd Before
this is done, this probability can be restatedees X, is a function ot X, and y. Therefore the

probability measure (1.2.9) for the ML estimatisn i
P(z= %19, B, B Y= Loxso 3%( 220 +B X =0 1 z 9 (1.2.23)

where | (z>0) and | (z :0) are indicator functions being one, when the arqunetrue and zero
otherwise. The probabilit P( X, =0) is defined in (1.2.18) and the dens fx2|x2>o(2) is defined in
(1.2.22). By plugging (1.2.23) in the ML functioth.2.10) all parameters can be estimated for given

data (X1n! X2n’ yn)nzl,z,..,N :

Note that in the following the observed variables @oted without inder.

ZNote that also the probabilitit P( X, >0) , P( X, :O) and the probability density functic f (z) are also conditional

X,1%X,>0

on the parameter values but in this notation fitoisexplicitly noted.

22



The Determinants of Energy Demand of the Swiss Private Transportation Sector
The Multiple Discrete-Continuous Extreme Value Model (MDCEV) August, 2009

Change of the variance of the error term

As diagram 1.2.4 shows the solutions of was shaw X, conditional on that they are positive is
almost uniformly distributed over the interval adakible solutions. This means that unobserved
preferences have a large impact on the outcomes wkien income and prices are the same for all
households. It seems reasonable that the spresoluifons could be smaller in reality, i.e. these i
more concentration of solutions around a value iwithe interval of feasible solutions X,. This
outcome should now also replicated by the modethénfollowing it is shown that a concentration of
realisations X, around a certain value - means that the densigtion will reach a maximum at this
value - can be realised by decreasing the variahtke error term:x,, x,. The following diagram
shows the outcome, when the variance of |x, x, is reduced by factor 0.36 all parameters, prices

and income being the same as in diagram 1.2.3.

10 " ‘ ; ; 10
8 8
6r 6
& &
4 4
2t 2
OO 2 4 6 8 10 0O 2 4 6 8 10
1 T2

0 2 4 6 8 10

Diagram 1.2.5:Distribution of optimal consumption when varianoeeiror terms is reducéd

This diagram shows that the realization: X, are now more concentrated around the v X, =3.
Further the probability ¢ X, being zero is strongly reduced. Again the derfsitition of X, and the

ZThe parameters were chosen as folloa, =0, a, =2,d, = d, =0.001,m = m = ? and the price p, = p,=1. The variance
of variance of botlx,, x, - that are iid standard Gumbel distributed - tueed by factor 0.36.
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probability X, being zero is calculated for use for the ML fuawtiln the following the error term
will be bx,, bx, instead 0X;, X, .
Case 1 Only good one is consumed, changed variancerof tarms

This means, that the realisation of good two isnoled, X, =0. Again the situation is the same as in
the case where the error terms x;, X,, but now the error terms a bx;, bx,.

bx, <V, - V,+ bx, (1.2.24)

with V; andV, being the same functions as in the case befoneelya

Vi=In(d)- In(p)+ m- (& o In( X+ g), (1.2.25)
Vv, :ln(dz)' |n( p2)+ m- (1 df) |n( X+ EE) (1.2.26)

By use of rule 3 of Gumbel distributed random Jalea as stated in the attachment A 1, the
probability P(bx, - bx,< V;- V,) can be calculated straight forward:

1
P(bx- bX,< Vi VoF Fon (M ViF T (1.2.27)

1+e”?
Case 2:Both goods are consumed

Also in this case the situation is the same akéncase where the error terms %> X2, but now with
error terms ar bx,, bx,.

bx,- bx=V- V, (1.2.28)

In a first steg X, has to be expressed as a functiol X, fby use of the budget restriction. Therefore
V, andV, are again like in the previous case:

V(X:)=in(a)-In(p)r m- (£ ¢ In Y5 g (12.29)

V(X;)=In(d,)- In(p)}+ m- ( df In( X%+ a). (1.2.30)
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Now the densit fxer( x,50) can be calculated by applying property 3 of attaeht A 12

Feoi) (D)= Tog e (M(D- V() 4((3- ¥(3) _ (1.2.31)

dz
1
- (2 w(3) Ld
1, e v L4 prd ymX,,
2 a4
b 1+e—%(vl(z}vz(z)) y- pzxx2+a1 P Z+a R

P

The shape of the density X, changes now from u-shape for high val & g0 hump shape for low
values® . For =2, b =1 and & = 0.6 the probability density functions are as follows:

Diagram 1.2.6:Probability density function for good two for difent variances of the error term

This diagram shows that the smaller the variancehef error term the more concentrated the
realisations are around the levX,=4. When the variance of the error term goes to zte,
realisations will converge to lev X, =4 - the level when there are no stochastic comper.x;nand

X, - with probability one.

Plz<x<zedy _  Pu(zrad- V(2 dx ¥ ¥ ¥ K K)o )

dz dz® 0 dz

—lim P(V1(2+ dj' \!( z d)Z< bx- bxs y )Z )l = lim bAFbXZ( 6/)2 z(V)')Z bxlFbxz( 1('V Z') dzz(-V Z))di

dz® 0 dz dz® 0 dz

:_de)(l—bxz(Vl(Z)_ \4(3)_ Z) V % f(ﬁl(? }'(»

dZ h bxl bxz(
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a5 9, 09103)

1.3 Model with two goods and fixed cost for good two
1.3.1 Model setup and calculation of the ML function

In this case car driving, denoted by good two, aanected with fixed cost when consuming any
positive amount. The household has to decidewhitts to bear the fixed costs or if it wants torgpe

all income on the consumption good one only. Itefatase it has the disadvantage of decreasing
marginal utility of consumption good and in fornwse it can spread the income on two goods and
yield higher marginal utility but has to bear dibtyt by disposable income lowered by the fixedtcos
caused by car ownership. The impact of changesdanie, fixed cost and prices on household's
decision on consumption has already discusseckiinthoductory section. In the following, the focus
shall now be on the impact of changes of househpidference for car driving. To understand this
impact and its implications is crucial when dergithe observation probabilities of household's
consumption choices. In the following optimal camgtion decision for households with equal
income at given prices but with different preferemndor good two car driving, is illustrated. Note,
that variable X, denotes the annual kilometers driven by the haldeh

10 ¥ w 10
WL
8 ‘»\ J 8t
'
6 3 6
g )
4 4
2 : 2
0
0 2 4 6 8 10 2 4 6 8 10
T T2

Diagram 1.3.1:Optimal consumption for households with differergfprences

Top left diagram shows budget line and iso-utifiijmctions at maximal utility of households with
different preference for car driving. The higheistpreference the higher are optimal val x, sand
therefore the lower are optimal valux, and the more to the bottom-right the iso-utilignétions
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shift. When preference for car driving gets beloeedain level, households will decide not to own a
car any more and to spend all income on consumpgiaa one. The point, where households switch

between these two types of consumption schemeslisated by the green dashed line and the dash-
dotted iso-utility function. This case shows alg@t for given income and fixed cost the realizadio

of good two will either be zero or above a certimit that is indicated by this boundary. This is
plausible: For instance no household would beaffidesl costs of holding a car and then not driving
it. Iso-utility functions corresponding to utilitiunctions with preferences lower than this thredhol
level are illustrated by the magenta coloured cicressing at consumption buncx, =10, x, = 0.

Before deriving probabilities for observing houskelgo consumption decisions, household's
maximization problem shall be formulated for thése. Utility function and distribution are stilleth
same as in the case without fixed cost describgmemious section, see (1.2.1) and (1.2.2). Far thi
model, budget restriction has changed:

y=pox o (%) B % (1.3.3)

Note that for this case there are now fixed cosssimed for good two. FuncticF, ( ) is an indicator
function, being one if the argument is positive dming zero otherwise. Maximization of the

household can be represented by solving the faigwiagrangian:

L=exp(m +x){ X, +a)* +ex{m +,) kX, @)
Ay -p X -k OB (%) -p %), (1.3.4)

X,>0, X,3 0,

As in the previous sectiolX; and X, represent unobserved characteristics and areedrest given

since it is assumed that these values are knowtheblgouseholds.

The corresponding first order conditions can betemias:

1
doexpm +) *———5 # B 3.
( )(x1+a1) 1 (1.3.5)
1
dyoexp(m, ) ——— £ (k K(X) B
( )(x2+a2) -2 (& K{(X) B (1.3.6)

Function f,(X,) is the derivative of functionF,(X,) and goes to infinity atX,=0,
XIir@rl fk(XZ) =¥ . Therefore, there are always two solutic X, =0 and X, ! 0. These two types of
solutions are denoted - like in previous secticas-‘case 1" and “case 2”. Note that in case two,
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solutions X, <0 will be bound to zero. Indicator functicF, (X,) provides nothing else than that for
solutions X, >0 household's available income is reduced by fixedsk, .

In the following, the decision between consuminghbgoods or only good one is discussed in more
detail. The two diagrams below show the two casesvhich households decide for case one, where
all budget is used to consume good one, and casewiere households decide to buy a car and to
bear its fixed cost. Below diagram is already pnése in top-left part of diagram (1.3.1) in a semnil
way. Again in both diagrams below, income, fixedtcand price are identical for both households. On
the left side, household has a higher preferencelrging, while as on the left side household has

lower preference for car driving.

“A

Diagram 1.3.2:Optimal consumption for given fixed cost for goagi X,

The two straight lines depict the budget lines. $okd budget line corresponds to the income net th
fixed cost for good two for the case of positivensamption of good two and the dashed line
corresponds to the income that is relevant wX; s chosen to be zero and therefore there arenalso
fixed cost for that good. In the left diagram a $ehold with strong preference for car driving clezos
to buy a car (case 2). This is due to decreasimgimal utility of good one. Because of this, spegd
the income on both goods but accepting the lossvafable income due to fixed costs yields a higher
utility. In the situation illustrated in diagram ¢ime right household has low preference for carinigi
The loss of available income when owning a car &adronger effect than the gain by spreading
consumption on both goods. Therefore spending th@erincome on good one yields a higher utility

(case 1).

The following diagram offers an alternative illegton of that decision:
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Diagram 1.3.3:The maximization calculds

Here the results for two valu/ are illustrated/, >/ . For /, the optimal value oXx, is positive
since for qU/qX, =/, p, the value forx, is positive. Variable/, is chosen so that the whole
disposable incomy- k, is used up for consumption. Variak/  is the value corresponding the
solution when the whole income is spent for gooe and there are no fixed cc X, =y/ p, X, =0.

In the example illustrated the case when all inc@srspent on good one yields higher utility thageca
when the income is spent for both goods and fixasd bave to be beared: Diagram above shows, that
sum of partial utilities of amoun %, and x,, corresponding t(/, (case 2) yields lower utility than
sum of partial utilities of amoun %, and x,, corresponding to “case 1"

u (%) + W( %) >u( %)+ u( %) O u(X=%=yRr X%=0>dX= % %X X).

Calculation of the Maximum Likelihood function

Again probability for observingX, =0 and the density function for observiiX,>0 has to be
calculated for ML function (1.2.10). Also when ftkeosts are included in the model, probability
function P(X2 :0) (case 1) and density functic szU(X2>O)(Z) (case 2) have to be computed. The
difficulty in this extended model is th X, being zero cannot only result when the realizatibthe
random paramete x; and x, are such that for given disposable income yieldsundary solution for
X, . For this model X, can also be zero when optimal solutior X, at disposable incorry- K, is

an interior solution (case 2) but saving the fixedt for good one and spending the whole income on

'Note thaiu, (x)=exp(m +x) X x +a)" is partial utility of good.
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good one (case 1) would yield a higher income. thix latter comparison utility levels have to be
computed for both cases. In the following firstiofal consumption values and utilities are computed
After that, condition when utility for case 1 isegter than utility for case 2 is stated and prdhegsi

are computed. By use of this condition it will bespible to compute the probability that case 1 is

observed.

Case 1 Only good one is consumed

This means, that the realisation of good two isnoledl, X, = 0. For this case, utility is

U(y/p.0)lg.xx,= ex{m+x)y p +a)". (1.3.7)

Case 2:Both goods are consumed

In this case, like in the case without fixed castndition (1.2.19) holds but now available incorse i
reduced to income minus fixed ccy- k,. Therefore function (1.2.20) changes to

Vi(X)=in(d)-In(p)r m- (& @) in Y PR g 38

and density (1.2.22) changes to

1-d D + d evz(z)'\'ﬂ(ﬁ
fo ;) = h x2 4 2 x . 1.3.9
it (2 Y-k B2, b zta @+&M%MY 29
P

Now, probability P(X2 =O) has to be determined. Note, tI X, can be zero for two reasons. The

first reason is, that interior solution in casead gield negative values fiX,. In the following, this
first reason is denoted as condition one and cooreds té

X, <V, - V,+ X, (1.3.10)

The second reason is that consumption scheme & Zasn yield lower utility than spending all
income for the consumption good number one as s da In the following, this second reason is
denoted as condition two. Condition two is equimtléo comparing the sum of partial utilities
U (%) + W( %) to U (x,)+u,(x%,) in diagram 1.3.3. The function that would yiela thtility of

2See also “case 1” in section 1.2.
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case 2 for any income, price and preference pasmét the indirect utility function. Using this

function, condition two would be then:
U(y/p.0) g x> vy k. R R) 7 XX, (1.3.11)
whereq=(a, &, d,, d,, m, m).

U () denotes the direct utility function av( ) the indirect utility function provided that optiina

consumption levels of the two goods are not boorzkto.

It is important to note, that condition two is remuivalent to condition one. The following diagram
where the decision of two households is presetitggtrates this fact. Both households face the same
income and prices and differ only in preference dar driving. First household on the left has
preference for car driving such that it is indiffat between owning a car an bearing the fixed aodt
spending all income for consumption good one. S&dwyusehold's preference for car driving is so
that it would not drive car when being forced tddha car. This household's preference correspands t

the case, where case two would yield a boundantisal X, =02

X
“A A

Diagram 1.3.4:Optimal consumption at critical preference levelsdar driving

Diagrams above show that preference for car drivihgre households would switch from bounded to
interior solutions given they own a car is much éowhan preference where household would switch

from not owning to owning a car, given they take=fl costs of car ownership into account.

Note that indirect utility function is based on Aoound solutions for optimal consumption of the two

goods. Therefore, negative solutions for car dgwvame not excluded. This leads to the questioioy if

*Note, that the lower preference for car drivingti®e more optimal consumpticD, shifts to the bottom along the solid
budget line, since optimal amount of car drivingléxreasing in this case.
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very low preference for car driving the value dfityt function in (1.3.11) could become again large
than the value of the direct utility function atn® point. The following diagram illustrates such a

situation.

XzA

Diagram 1.3.4:Optimal consumption at critical preference levelsdar driving

This diagram illustrates that for some prefereesell for car driving it was optimal to choose smnt
Athat was inferior to solutioB, that illustrates case 1, where all income is sparconsumption good

one. Despite of that, for very small preferencescér driving, relation (1.3.11) can change again.

The question is now, if there are any parametaresabf utility function (1.2.1) for which a solution
as illustrated in diagram 1.3.4 is possible. In fiblowing it will be shown that foild =d, = d, the
answer is no. For proving this, first the indiretiity function v(y- k, p, B)1g.x.X, has to be
determined. This will be done by deriving the naubded Marshallian demand functions and then

plugging in these in the direct utility function.

Marshallian demand function can be computed byisghagrangian (1.3.4). Note that this time
parameters are choosen to d =d, =d,. This is necessary since only 1d =d, =d, the indirect

utility will be of explicit functional form. Lateit will become obvious why this is important.

Solving Lagrangian (1.3.4) yields the followingstiorder conditions:

“Note that (1.2.1) iU =u (X)) +u( X,) =exp( m+x) ¥ X, +8* +exf{ m %) (xX% +3* and that this utility function

is always used for MDCEV models.
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dexp(m +q) kX, &) #p, (1.3.12)
dep(n& +X2) exz 'Bz)d_l £ p, (1.3.13)

Form these first order conditions follows

- 1-
X,=BX{ X, +a) -a,with B= Pesexp( m-1) = % xexp ;d , (1.3.14)

1
where V= x - x andm=m, - m.

Note that expressionexp(m+|/) denotes preference for car driving relative tofemence for
consumption goo#l.

Plugging (1.3.14) in the budget restriction andiisg for X, yields?

x,= Yk P (Ba-a)

8
0B +p, (1.3.15)
Solution for X, can be computed by plugging (1.3.15) in (1.3.14):
- k- Bxa -
X1=y (B Q)+B>@ -4, (1.3.16)

P+ p, B’
with B as defined in (1.3.14) for both (1.3.15) and (163.1

dexp(m +) kX, &) /P X +a

, donp(m w) €X, )" _/p o Xora Pexp(m, - m+ x,- )0
R

1 1
o Xet2 —plxexp(mz— m+ X,- X,) 1-dU X*ta R exp - T Xy Xy

X+ta, B X+a R 1-d

®Note that any positive transformation of utilitynfttion (1.2.1) yields the same Marschallian demfamdtions and leave
relation same relation (1.3.17) unchanged. Digdh.2.1) byexp(ml +xl) is a linear positive transformation that yields:
U(x,%)=(x+a)" +exp( m- m+x- xx( x+ @), ifitis assumed thed = d, = d,.

7X1= B>(X2 +az) - &,

y- k= px(BXX, +a) -a) +pxx Oy k- p{ Ba- p= peBxx +pxx 0xE kz'p’fB(iaz'Q)

¥t is important to note, that relation betwe X, and X, would be non-linear fod, * d,. Consequently expression that
would yield when plugging (1.3.14) in
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Plugging in these two Marshallian demand functiomghe utility function yields the indirect utility
function:

d d
- + Xa + X - + Xxa +
v(y- k. p p)lg.be Y "2p +plpi1<5-lg 2 4 exfme hx Y l&g 22 B2 sy
1 2 I}

Therefore condition twv(y- k, g, p) 1,V U( Y R.0 |¢,} (1.3.11) can be rewritten as:

d d
y- k+ plxalflpzxaz +exp(m+ V) x y-k+pxa +p g
P+ p, B nB M
d

> Yia +exp(m+)) .

1

(1.3.18)

Now, the probability that these conditions areifigd simultaneously has to be calculated. One
important feature is that both conditions depeni¢ on one random variable, name /. Before the
probability that both conditions are fulfilled isalculated, conditions one and two have to be

transformed:

_y-k* pxa+pg.
& (V) 5B +p, 3, (1.3.23)

y- k- px(Bxa - 3) i

_ B

gZ(V) Pt P, xB* TEe -{
L (B< i ) d d

+exp(m+ V) x 2. < plFfB +p282 VY sa -exp(m+V)xa (1.3.24)

Condition one and two are fulfilled, whe gl(l/)>0, gz(|/)>o respectively. It can be shown, that
09,(V) and g, (1) have the following shage:

°For a proof, see A5.
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A gl(V) gZ(V)

Diagram 1.3.7:The principle of calculating the probability of gbtwo being zero

Since both function are increasing V1in the relevant rang V> V, both condition one and two are
fulfilled in the range V/ being abovemax( Y/, ¥). It can be provet that g,(14) is always smaller
than zero and botg, (1) and g, () are increasing for an V> V. From this it follows tha I > ¥
and thereforimax(l{, ¥) = }.** This result is rather intuitive: Condition onersa for the case when
households choose whetl X, shall be consumed regardless of fixed costs, vesilen condition two,
they also take into account that consuming gooditwmaies fixed costs. It quite natural, that intémt
case households will switch to consume good twg @tla higher level of relative preferen s
namely at preference lev V> V. Given preference leve 14, probability that households choose

X, =0 is equal to the probability th VV is smaller than this critical level:

=

P(X,=0)I(% = y- k. R, B I9)= ‘ BV die B Y, (1.3.25)

ey

See appendix A5.

“Note, that it is also necessary to proof gz(l/) <0 for any V< V. If this was not the case, then a case where @ain
car but not driving it would be a rational choi@nce it can be proven th gz(V) <0 for any V< V this counterintuitive

case is excluded in this framework.
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1

with F,(z) = Tie

being the cumulative density function V£

Since 1 is the root o1g, (), which can not be solved fi4 as an explicit functior |4 has to be

computed numerically.

What remains to calculate is the density functiérthe X, being a positive solution. Again this
density is the same like in the case with no fixadbt but in this case with parameter values
d=d,=d:

) A2 (3
1- d P rd €

f y =Yy ’ ’ = f ..
w0 (2% = y- k. B, Bl9) VK 87, zva (1+evz(z)_vl(z))2 (1.3.26)
Py
with V() =- In(p) (¢ d In %‘% a and
1
V,(2)=In(d)-In(p)+ m(t &in( 2z .
Therefore the Likelihood function is as follows:
- IXz\
(@ %) (W ko )= RO =08 g (%)™ (1.3.27)
wherel, (X,)= X,>0:1
: X,£0:0

Note that for notational simplicit)P(X2i :0) was not explicitly written to be conditional on
parameter.g as done correctly in (1.3.25) and (1.3.26).

The shape of density (1.3.26) depends on all pasma,,a,,d and economic variables.

Change of the variance of the error term

Again, also in the case where fixed costs are densd, changes in variance of error terms charge th
shape of probability density function. A smallerigace than in the standard Gumbel case a computed

above would lead to a more realistic distributibwvalues in diagram 1.3.1:
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Diagram 1.3.8:Optimal consumption for households with small difeces in preferences

Probability P(X2 =O) and density functiol fXZU(x2>o)(Z) can be computed as illustrated in chapter

1.2. The functions yield then:

ey
1,V
— b s I,:/—E , (1.3.28)

P(X,=0)I(% = y- k. R, R lg)= 5

Vey

with F, % = 1 — being the cumulative density function Vfand
1+e?
fruxoo (D10% = V- k. B R1g)= (1.3.28)
1 L d L d e%(vz(z)- %(3)
e e dh :
y- K- Bz p, z+3a 1 ,(2)- ’
. +3 1+eb(V( )- \(3)
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1.3.2 Parameter estimation and empirical results

In this section first the basic principle and sagpecific problems in ML estimating the parametdrs o
this model are discussed. Second the estimatioceduve is described. Third some information on
data and their use for the model are given anchasibn results (of different model specificationst

done yet) are presented.

The basic principle of ML estimation

ML estimation yields to maximize probability of ayging data of a dataset. This is done by changing
the parameters such that the probability functibthe model fits the observed data the “best”.

Following histogram shows distance driven from Swi®useholds in an income category about
84'000 swiss francs per year. Households liveurban area.

x10”

OO 05 1 15 2 25 3 35 4 45 5 553 6 65 7 75
T2

4
x 10
Diagram 1.3.9 Observed data of, of households with income 84000Fr living in urlzaea

Note that in diagram above observations where lmids do not drive a car are filtered out. The aim
is now in principle to choose parameters so thastiape of density function (1.3.28) fits best this
histogram and at the same time that probability.2B) is as close as possible the share of howdshol
not owning a car. It is important to note that Mitimation tries - in prociple - to fit all histogre for

all income categories and all places of living. Bldeantage of this model compared to more simple
structures like the Tobit model is that the diffgrsnodel parameters affect the shape of the dessiti
and the value of the probability for observing heludds without cars in quite different ways. This
property allows for a good fit of the model withettata despite of the small number of parameters.
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In the following the impact on the shape of denaitd the valu P(X, =0)[(¥% = y- k. R, R |9)
is illustrated for all parameters of the q=(a2, d, mb) 2. Note that the driving force of the

densities below is random varial V2

First the effect of a change wfshall be examined:

-5

x 10 ' '
y = 84000
5 ko = 7000 |
i p1=1
_ | () = sss2s260 e = 03
A as = 10
B —m = —2, Py = 0.0347 d=01
\\-::3- ............. A/;} — 0.45 n
: |
b //-\\
‘ \im = —2.5, P = 0.0985
l-~ \\
[
0 T 2 3 4 5 6 7 8 9 1o
2 x 10

Diagram 1.3.10pdf of X, or different relative (deterministic) preferemodor car driving

This diagram shows that an increase in relativeepeace for car driving shifts the density functton
towards the right. Higher annual kilometres dribecome more likely. At the same time, probability
that households do not own a car is reduced. Nateprrobabilities that households do not on own a
car is represented by the surface below the dattbetiines. One important feature of a changain
is that it does not affect the minimum distanceadehold does drive when deciding to own a car.

’Note that q=(a2, d, m) is assumed to be zero and transformation of wtfiilnction - as presented in footnote
corresponding to (1.3.14) - showed, that onlyedéhce m= m - m matters. Therefore parameter g:thas been reduced

by some parameters.
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Diagram 1.3.10pdf of X, for different ,variance paramete &

This diagram shows that a decrease in ,variancanpeters' & concentrates density function to a

certain value and reduces density for high annilaiietres dramatically. At the same time,
probability that households do not own a car isiced. Again, one important feature of a change in

b is that it does not affect the minimum distan¢easehold does drive when deciding to own a car.

-5
T T

6X 10 ! 3 g
—X5(Ca) = 5882.5 y = 84000
: < Xo(C2) = 95485 kz = 7000 .-
i pi=1
S b Ll k—d = 0.25, Py = 0.3696 p2=03 |
A " as = 10
ERE 3 =045

—d = 0.1, Py = 0.0985

Diagram 1.3.11 pdf of X, for different ,shape parameted
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Diagram above shows that an decrease in ,shapepteeld decreases the minimum distance a
household does drive when deciding to own a cas iSldue to the fact thdtdetermines the decrease
of marginal utility: The lowed, the faster the utility of car driving decreag@es.the other hand the

first some kilometres yield higher utility thantime case wheré is high. Therefore for lower values

of d households rather try to spread consumption ah ¢p@ods even if their income is decreased by
the fixed costs arising when owning a car. Thathat explains the decrease in the minimum distance
a household does drive when deciding to own areather, decreasing strongly decreases the

probability that households do not own a car.

Diagram 1.3.12 pdf of X, for different ,shift parameters,

Diagram above shows that an increase in ,shiftpatar“a, only increases the minimum distance of
a household does drive when deciding to own aTltas. is due to the fact that pushes expression
(x2 + az)d to a range, where the first kilometre drivengset lower marginal utility. Also here,

shifting this minimum distance to a higher valuer@ases the probability of not owning a car.

The problem of discontinuity

Diagram above shows that x, =10000 is observed, then a, was &, =10 this observation has a
positive probability. When increasita,, at some point probability of observiix, =10000 switches

to zero. The problem is, that such a discontinigityot feasible when computing MLE: As soon as one
observations probability of one observation yietdso the probability for observing all data getozer
and therefore any change of parameters do not ehtinegprobability of observing the dataset. The
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problem that one observation probability can geb zman arise, when varyind. Therefore MLE

procedure must be modified.

Estimation procedure

As mentioned above, standard MLE procedure mayadapplied due to the discontinuity problem.
For solving this problem, the following estimatiautine is applied:

1. Choose some value fa, andd.

2. Eliminate all positive observations that are inititerval (0, X, (15)) .
3. Estimate & and g, wherem= gxs with s being sociodemographic variables

4. Check if simulatec |5( X,=0 |c},dat% and E( X, |c},date) are the same like in dalg is the

set of parameters set and estimated respectivelgsasibed above.

5. Evaluate the result by a valuation functibh This function is increasing in difference of
simulated and empirical probability ¢ X, being X, =0 and simulated expectation value and
empirical mean of distance driven and increasintheanumber of eliminated observation in

step 2.

6. Change a, andd until M has reached its minimum value.

Empirical results

In the following survey data from Mikrozensus zumrkéhrsverhalten 2005, BfS (2005), was used.
These data are cross section data of more thab@BS®&iss households. Among other information,
these households reported the total amount of lbtoes they drove by their car or their cars, irecas
they had more than one. Theses distances were slimpnfor each household and is considered as
driving distance X, in the model. According to assumptions of the nhdtdevas assumed that
households have no cost, when switching from not@ame car an vice versa. This means that the
loss of value of the car when selling it due tooinfation symmetry between seller and buyer and
transactions costs were neglected. In principle éhenomic environment of the households is
considered as if households would rent their cansce there is only one car type captured in the
model it is assumed that households can chooseebaetwo car and a standard car. This standard car
has a fixed cost of 7000sFr per year. Variablescast assumed to be 0.2sFr plus the fuel costslbas
on a fuel consumption of 8 1/100km. Both fixed castl variable costs are based on calculations of
TCS (2009) for a typical middle class car. Fueteris based on the average fuel price of the [ast 1
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month before the household was interviewed. Hoddehawning more than one car where considered
as if they had only one car. The dataset was ctbinen entries where households would spend more
than one third of their income just for drivingogle more than 65'000 km a year and of households
that stated they were driving less than 1000 krelsyear. In all those cases it was assumed that
households were giving wrong information on theiividg distance or that they use the car

professionally. After removing these dataset, soamelom sample entries of households owning no
car were removed in order to keep the share ofdfmlds owning no car remains the same. From this
sample, again a random subsample was taken im trdeep computation time low. As household

specific variables, only a dummy for householdniyin rural area was used. This variable turned out

to be most influential in other models.
Estimation routine was performed as described ragraph above. Resulting parameters where:
d=0.1895] 4 =0, & = 0.8184,

and the parameters determining the relative prnebéeréor driving carsn are

~

G =- (6_569:?6’25 = %?3%9882 b= ((36%96‘, with m=g,+gxural and j being a parameter
determining the variance of the unobserved pretererf the households as defined in (1.3.28). Since
parameter. g, g, and b are estimated by Maximum Likelihood estimatiomnslard errors could be
computed. Standard errors of parameters estimageth drackets. All values are highly significant.
Parametelg, is greater than zero what implies that househtaisg in rural areas have stronger
preference for driving. This is a rather intuitifleding since distance to facilities is larger vesage
and offer of public transportation is less in sackas. Estimated parameters yield density functions

for demand for drivin¢ X, that fits data quite well, as diagrams below show.

rural urban

Diagram 11: Observed data of, and pdf for income 84000Fr: Rural and urban areas
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Simulation results

Given these estimated parameters it is now integesd compute changes of household behaviour if
variables like prices and fixed costs change. k& tbntext of determining fuel demand and car
holding, it is interesting to compute changes impexted demand of driving and probability of
deciding not to own a car:

Xosim= Ey Xz( B P ¥ kz) |:q!:"’lvAdAmV . (1.3.29)

P(X,=0),,= R, X%(n n vk la'a dm=0 (1.3.30)

Summing up the change in unconditional expectedevaf demand in car driving for each household
will yield the expected total change of drivingtbé whole population.

Policy effects

In this paragraph the results of some policy charage presented. The first policy of interest is an

increase in costs per kilometri p,:

A change in costs per kilometrep, by one percent yields a change in total kilometiregen of

1.32%. Since fuel price contribute only about dmiedtof the variable costs of the €arand increase

of fuel prices would decrease total kilometers ehiwnly by 0.44%. Therefore fuel price elasticgy i
about 0.44. This value is in the range as founotlier international studié$An interesting result is
also that in this case the share of householdsdihatot own a car only decreases by 0.119% from
21.295% to 21.176%. This is a very small shareiemgdies that the reduction in aggregate driving
distance and therefore in aggregate fuel demandlyniai contributed by households still using a car
but using that car less. Moreover this effect isyv@mall since model implies that only households
that already drove low annual distances wouldtkell car.

Another interesting policy is to increase taxescanownership. A tax that would increase fixed cost
of cars by one percent, would presumably decrdasatare of households owning a car and reduce
their budget available. A one percent increaséxidfcost would increase the share of householts no
owning a car from 21.295% to 21.65% and total distadriven would decrease by fuel consumption
would decrease by 0.266%. Later figure is harohterpret, since no elasticity can derived fronsthi
figure. One possibility to compare the effect abttax to an increase in fuel taxes is to calcullage
total tax revenue. The effect on fuel demand can the related to the tax revenue. The tax having
more effect per tax revenue, may then be the “tidtz.

“The average fuel price was 1.46, share of fuelwastonly about one thiri1.26x0.0%( 1.26x0.08+0)2 =0.3..

1“See Dahl et al. (1991), Graham et al. (2002) oteBuiger (1996).
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Comparing these taxes yields:

1% tax on fuel 1% tax on fix cost
abs. effect one average driving distance 67.67km 39.03kn
abs. effect one car ownership driving distance 3.99% 35.30%
rel. effect one average driving distance 0.46% 0.27%
Average tax revenue per household 18.3 55.1
abs. effect one average driving distance per Esfradvenue | 3.69km /sFr| 0.71km /sF
rel. effect one average driving distance per lakrévenue | 0.025% /sFr, 0.005% /sF
abs. effect on share of car ownership per 1sFreigenue 0.22% /sFr 0.64% /sFr

Table 1.3.1 Effects of a tax on fuel to a tax on car ownersng driving distance

This table shows that per tax revenue a tax oniguabout five times more effective than a tax an c
ownership with respect to a reduction in annuarketres driven. On the other hand, a tax on car
ownership is three times more effective when theiaito reduce the share of household owning a car.

Another interesting information is how much peopteuld drive more, if they moved from an urban
area to a rural area and vice versa. The modeigisetie following changes:

present location urban rural
share of household on total population 19% 21%
average annual km's before move 13420 19262
average annual km's after move 22181 11784
absolute change in average annual km's 3761 17478
share of no-car households before move P4% 12%
share of no-car households after move 6% 6%
absolute change in share of no-car households 18% %|-14

Table 1.3.2 Effects of household location on car ownership dixing distance

The model predicts a huge change in car ownerstdcar use when household change from urban to
rural areas and vice versa as is shown in tablgeabén interesting detail is, that urban housesold
would drive more additional kilometers if they maweea rural than rural households would drive less.
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The reason for this might be that average incomarb&n households is higher than that of rural
households, namely 81'759sFr compared to 75'900sFr.

With respect to policies for reducing fuel demaregults above show that not only the type and lheigh
of taxes on fuel and cars may play an importar, folit also spatial planning.
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Appendix
A 1 Gumbel distribution

The Gumbel distribution as used in the contexh paper is defined as follows:
X gu(0,3), f.(x)=e"exp( -e7), (AL1)

The shape of the probability density function isa®ws:

Diagram A.1.1: Probability functions of the standard Gumbel areldtandard normal distribution

The shape of the cumulated density function ilevs:

Diagram A.1.2: Cumulated density functions of the standard Gundral the standard normal
distribution

The diagram show, that the shapes of the densitgtifin of the standard Gumbel and the standard
normal distribution are very similar. The stand@&uambel is non symmetric an the mean is non zero,

namely equal the Euler Mascherioni constE[ X]=/ =0.577.. The variance is lower, namely

var[ X]=p?/6=0.523.. In contrast to the standard normal distributiars lsome very properties.
Here the most important of them are listed:
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1. mediarf X =-1In(In(2))= 0.3665. :
2. modd X =02

3. If X; and X, are iid standard Gumbel and are linear transdtions with the same shifting

parameter, name Y1 =@, *0 X, andY; =@, +0 X, thenZ=Y,- ,=a,- a+ b( % X)
is distributed a$:

1F,(z)=exp(- €*)= 0.80- x lod lod 0.§) =x  lof lof P

ﬂfiéz):-e'xexp(- ex)r ‘ex'exexp( 'ex): 0 ¢ ex()' eé) e éex(:') Cé =8 £ x|

2

*Proof: First the cumulated density functionZzofonditional on x2 has to be calculated:

z-ata,

Fax, (Z) = Ry, b

X, .

Z-a+a

Note, that fron Z =Y,- Y= a,+ b X- a; b X, it follows X, = 2+X,.
Using F,(2) = E,, Fyy (2 it follows that:
X, =¥ R z-al+aAX2 X=¥ R z-apazkx2
F(z)= e~ >exp( -'exz) exp -e ° dz= & xexp -& - e’ g
Xp=-¥ Xp=-¥
Ceapa,
Xo=¥ . z-ag—ag % Xp=¥ -xgtln ke ?
= e"xxp -e* lte dx = g2 xexp -e dx, =
Xp=-¥ Xp=-¥
carar zaas,, ravas, zavay
-In ke 4 X=¥ -xIhte 4 % Inte ° -In e 4
=e x e 8Xp € dx,= e =
Xp=-¥
_ 1
- z-arra,
1+e 7
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The corresponding density function is:

4. If X; and X; are iid standard Gumbel and are linear transfaomay namelyY, =a, +b X,

andY,=a, +b X,, thenZ=max(Y,,,) is distributed a$:

&)
%)

S
o)

SN
.
®

Z F(2)=exp-e

The corresponding density function is:

a ap
z b b z
- Z.lneke - =
b b

Z f(z)=—xe BXp €

)
i

This means that is distributed as if

a a,

Z=hX+In € +€&  wherexXis standard Gumbeél.

5. Applying property four tZ=max(Y,,Y,,...Y,), whereY, =& +b X and X; is iid standard

Gumbel yields:
“‘Proof:
R X=Z %=2 X=Z %=z X =z %=z
F(2)=P(XEZ2UXE3}= F.(x ¥ dxde SOXOH0C Kk dxde o f xogx o f Ix g
X =¥ XxF-¥ X¥ RX¥ X =¥ Xz-¥
L ra . Zay oz a a, -£+In ea_"1+e‘972 - i-In e%— e%2
=F, (2)<F (2 =xp -e * -e” =exp-e” &+ & =exp-e ’ =exp-e

a a, a

4 a
5Notetha1X:%-ln e’+e U % In é+ é = %U ZbXIn & &

IS

The proof for this property is straight forward:
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distributed as

1
z F(Z)_ Lzaray) - that Z is
b
l+e

This means

a a;

Z=bX+hn & +¢& , whereX is standard GumbélI.

6. E, F X+a __1 —= ¢ —, where X is standard GumbeF,( ) is the CDF of
s 1+es 1+e
standard Gumbél.
X+a X+b _ 1
7. B K B xF, S = o, whereX is standard Gumbel arF,( ) is the
l+es +e°
CDF of standard Gumbg@l.
TE, (Fyx (X, )
8. E(fn(X.8)= « (Fa ): £(a).
fa
, : 1 X+a :
Applying this rule to the case wheEy ( fa,X(X, a)) = E ;Xfx S , f)(( ) being the
density of a standard Gumbel distributed random iabér, vyields:
1
1., X+ TR ﬂ'gl P21 e
EX _fo a‘ —_— S —_ 1+e5 = X S e;(; = _x—z
S S Ta Ta S - S a
1+es 1+es

X=Z %=Z XN=2Z
Ko (X X0 @ dx dxex

F(z2)=P(XE£EZUXEN.UX £} =
X=-¥ Xz-¥ Xg-¥
N . Z- &

X=Z Y%=z
= (x)dx i (%)dx f (%) dx =
X =-¥ Xz-¥ Xg-¥
d NCA N di Z . N G
NotethatX= — -In e U %In &= =0 Z X In é
b i=1 =1 b i=1
X+a z=¥ _zta l z 1 oz z=¥ 1 . za z .z
%Proof: E, F, = expes x—® Xexpe dz = — exp € & e dz
S =¥ S S =S
=¥ 1 .z S oz 1 z=¥ -$£+ In ]_+erS oz
= —xxpes x1 €° e dz = xexp e ex dz
z=-¥ S z=-¥
1 -In lv-eE z=¥ - §Z+ In % eg - ;Zv In 4 éf In+ 'e;a z=¥ 1 z a
== exp e L] dz =e x — %X— Innl € dz
S z=-¥ 7=-¥ S S
.2 a
B -In Hes _ 1 B es
=€ - a T a
l+es 1l+¢€
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whereX is standard Gumbe fX( ) is the PDF an FX( ) is the CDF of a standard Gumbel
distributed random variable. Note that he fa|x (X,a) = fx( X+ a)

n

-8
£Y ew:l

0. B« Of(X+a) =mx——17
. 1+ €@

i=1
whereX is standard Gumbel aiF, ( ) is the CDF of standard Gumbel.
10. Theorem: (Densities of transformed random viées3

Shall X =(X,,...,X) a random vector with densi fx, and shallY, = h( X, ..., %), for
i =1,...K, such that

1. h,..,h is continuous;

2. for everyxI ¥, such thaly, =h(X) for all i =1...K we write thenx =1 (y),

i=1..K I=h" can also denoted “inverse functiontf, wherel =, ...J,) and
hZ(h,L,...,h(),

3. derivativesfix /Ty exist and are continuous.

ThenY, =(Y, ..., Y) has density

B (v) = e (L(Y)s -h(¥)43(),

X+a X+b X+ a X+ b - X - Xeb
*Proof: Ex F, A BB/ R E expe ® expe’
X+a X+b
X+a X+b X+ a X+ b - -
:EX F)( XFX :EX |:X x :Ex exp e s exp e g
S S S S
~ X+a } X+b ) X+a R X+b 5 . a b
=E, expe ° xexpe ° =E expe°® +e ° =E exp e x e +¢€ =
a2 b
a b
~ SLM o5k a5 X - In e+ e’ 1 1
=E, expe =E kK = 2 5 a b*
S Ines+es l+e_§+e;

1+e

See Shao (2003), page 23.
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A 2 The maximum utility calculus: An alternative il lustration

In the following the maximum utility calculus isag illustrated. In contrast to illustration in sea
1.2 the illustration is based on the first ordemditons (1.2.7) and (1.2.8). For the illustratitve first
order conditions are reformulated first:

ﬁ’exlo(ml ) "17111 # (A.2.1)
P (x+a)™ -
B explm, +) o (A.2.2)
D, (X2+82) , . 2.

The reformulated first order condition (A.1.1) daa interpreted as “the marginal utility of spending
an additional unit of the income for good one hmbd equal t¢/ for an optimal choice ¢X “. The
same holds foX; when X; is positive. WhetX; is bound to zero, the marginal utility of spergan

additional unit of the income for good two will Isenaller thar/ . Using (A 1.1) and (A 1.2) the
choice can be illustrated as follows:

P, D,

(%)

- az )&2a 0 ' X.la X5 Xllb

Diagram A 2.1: The maximization calculus

Again this illustration shows, that the paramet@;and & define the minimum consumption level

of X, and X, since forX =-@ and X; =-& marginal utilities of spending one additional uait

income goes to infinity. This illustration also siothat expenditures increase wl/ rdecreases.
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A 3 Probability of observing good one to be zero

This section relates to the two good case withowtdf cost as describer in section 1.2. In the
-y

following it is proven, why probabilty P(X,=0)=P xz_? is  zero.
2

It is important that despit fx2|><2>0(z) goes to infinity forz=y/ p the discrete probability for
X, =Y/ B, X =0 is zero. This would not be compatible with thetfmt X, =- &= 0 is a lower
limit of the possible range of realisations X;. For prove X, = y/ B, X, =0 being zero, first the

functional form  of fxz|x2>o(z) in the limt z=y/p has to be -calculated:

10

- In n n Y PrXg In ¥ P2% p2<X2+al
e-Vi(Xz) —e In(di} In(py m @ &)l P a _ e-ln(dl)Hn(pl)- M e Py -
-,
=g In(dy)r In(p} m o y- BX XZ +a
P
2
lim %) =0 |im (1+ evz(z)-w(a) -0
®y/p ®yp
-1
. ) 1-d td ; &
lim fX2|X2>0(Z): lim ¢ — xPe = B gl Vi(0) -+ Va0 =
Y p ® Y/ py y [21224_6'1 p, zZ+a e 4 g2
v
1d, -1
= fim @ 1 d ,p Fd gh@rnym Y B % & o Oé(o) : _
YR y- I022+a1 p z+a R ehl0) 4 ()
Py

I il 4 g0 Vo PXX ' P zta R
P
v,(0 -
= lim @40 gty m €77 o Ld Py
@ y/p ¥ + g0 y- px x2+al "R
Py

Since Z(QQ;‘Q fx2|x2>o(z) =¥ there is some doubt th X2 = ¥/ B % =0 could be greater than zero. But

this has not necessarily have to be: The “areavbéhe flexz>0(z) can still be zero, when the length

of the interval considered arouz=y/ B goes to zero. This means that the following irdebas to
be calculated:
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. =y p . . .. . - . .
Izl®nl y pz_eflexzw(z) dz. For checking if this integral yields a finite ual it makes the following

transformation is feasible:

=y p

im Z=y/Q_Eflexfo(z) dz:Ii&eXfX2|X2>o( z=y p -€. (Check that !l) Plugging in the functional

form of f><2|x2>o(z) in the limit z=y/ p, this formula yields:

. =y p .
|z|®me =y p-e 1E><z|><z>0(z) dz= llglex f><z|><z>0( z=y R _e) =
-1
B R P R « 1-d B
evl(o) + e\/Z(O) _ X _ d pl
v-px(yn-e),
P

V2(0) !
= ose/pre) g(ayin(m m o € 1-d p _
e € I B

— Sld VoY P-e) & In(dy In _
= g4 gy Pre) g in(ddin(p) m er1(0)7+€\/2(0) (>1 q_)_Qz_ =

ThereforeP(X, = y/ p,, % =0)=0is proven.
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A 4 Minimum consumption threshold of good two

In this section the sign of the influence y,k,, p, p, and parameterd. &, on the minimum
consumption threshold of good tv xz(Vz) shall be examined. All proves are based on apgplihe

implicit function theorem owgz(y, K, B, P d a, 6}) =0
The first prove that the influence k, on Xz(Vz) is positive. This is done by

™o (14)_ T9.(vk R P daa Tk ix, I,
Tk, 19 (v k. ppdaal)iv iV 1k

(A4.1)

First, 19, (Y. k. B, B. d 8, 8,1)/1 Vis calculated:

fo. (vl R d a3 ) do( BB
1w B TV

d 7 B 2 -d d d i

2D apone fo (e o) tor (), snceq( 41) >a
M: &ﬁexp m+V Yl —1 —B— Bg( (0>2

woop, 1-d = d 1dp

Therefore, in the relevant range, namely X; > X,(¥) the sign oifg, (v, k, B, B, d a, 3,1)/1 |

is positive. Now, the sign ¢19,(V, k, B, p, d a, Q,V)/ﬂ k has to be determined. Again derivation

by applying chain rule is used:

1+ gt @ P B

&: Py = Py = 1+&>B d (zd-l & 0< (Ad.2)
Tk, Tk, Tk, o) Tk,
sinceﬁz-L< 0

k.,  m*+pxB
Furthet*
X, _ . 1 LB Bx 0
1w < (B) pBl+p B 1-d p g (A4.3)
“ﬂx2=ﬂQ2(B)x1E =Q,(B) % 1B % Pupixo sincele L R g
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and
X, -1
= <0
fk, p+pxB (A4.4)

Therefore X, (15)/1k, >0

Next the negative influence @, on Xz(Vz) is proven. This is done by

™, (Y)_ 99.(y k. B P da a8 1%,

. A4.5
Ta, 19.(v kB R daal/Iv 1V T3 (A4.5)

The only component that has not been calculat 19, (V. k., B, B, d a, 3,1)/1 3:

9. (vl B R d 3 a1 _ o,
fla,

: <2 g (Qrt a4l B (A4.6)?

sinceQ(V>a," ¥ )
Further

X, _1Q ,_ P, pxB*
= - 1= E- < 0
fa, Ta, ple1 +p, n Bl 0 (A4.7)

Plugging these results in (A 4.5) yields:

ﬂgz(ykzn.pquql/) delQ&#B%d de%l—Qx ngBdXQ =
R

Ta, da, R i
_d d-1 2 'd—>& &d g»<1 ;:pz d psz—d >< =
< p+pxB R Q nB' n R &
:d>61-d d¢1 p2 d‘—p& B1>q d»xl :=p2 d p2 >Bld d¢1 -
12 @ Seee T ey, TRt
=g B+ le_& P dPox Bk Q% pz==B d-P2 g ¥ x -
poRtRxB o p R+R8 R

—dxgtd gttt B L B B o Be g¢% £ g LxdPope =
e P PptR*XB p+p B R ? R i R # i

=dx2 I;j B“’(QZdl a° 1) 9 for Q >a, X, 0 respectively.
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dxPz grd (del 3¢ 1)

ﬂxﬁ(Vz):_ plp L q(8) Bl+ % 11d& i pll;B:
a, (1- d)xé)B‘d 6(32(8) @d) Py P, R X R
'1.dde>Q2(B) BlB'i B % Léd%xsj X%B:Q -
1
:'-LXQZ( ®) p1511+ D 5 11d% B plBB'—x?-i-pz:
T1- dXQZ( °) pl%xflg 11d_% @flTx?—lQ -
- plslBiBipzy (1-do|)2 2 (8) % ¥

since g, /1V>0, 19,/7a, >0 and

Basically the influence of the parameters are @#ing, since it has to examined which parameters

influences X, (1) . This is important to know, since a shift X, (%) leads to the problem, that the

Maximum Likelihood function will not be differentide, it there is any observation within the intdrv

(0.%,(15)).

Next the influence cin on X, (%) is proven. This is done by

™Xo(Y)_ 99 (ko pda g WIBIBIOIX, X, _ X, , X, _

m 16, (¥ k. B B, d & al)/1 BIBW Wwoam v Im

since

etc...
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A 5 Calculating the observation probability for thr ee goods without
fixed costs

In the following it is shown, how random variableformula (1.4.17) is integrated out.
First, for a simpler notation, (1.4.17) has to &enitten as

X=¥

B, (foewe (D12) = 1(2% 1(Y -4+ JxE(Y -V + X xf( ) o, (A5.1)
T” y- Bz z
where v, Y- B2 -V, (2= ¥ 92, z . V,=V,(0) and B, .
P p L(2) =

Now, the explicit expressions «f, (V, - V,+ x) and F,(V, - V,;+ x) has to be plugged in and then

integral (A 5.1) has to be solved:

EX1 ( fXZUcase ( Z) |X1) =

=1,(z2) ><X:¥ exp( gl X)) st % ) SXF( ol v X)) ex;é -ex) < dx
X=-¥

=|Z(Z) XX:¥ exp( -(e'(vl' Va) +e'(V1' Vs) +]) Xéx) 39(\/1 v,) (@)2 dx =
X=-¥

=1, (2) ) o exp( (é(\a W) el ) ﬂ) xe*) ( )@)2 N

X=-¥

Now substitutiory=-€*, dy= e* dx {¥ ¥-¥ , ¥ =) 0 allows for simplifications. The new
integral limits arey(-¥ F-¥ , ¥ 9 O:

EX1 ( fXZUcasQ ( Z) |X1) =
y=0
:IZ(Z)>e'(v1-v2) X exp((é(vl v) gl Vi) _‘) 9 ( xyz ( xy.l dy
=-¥
y .
:-IZ(Z)xe'(Vl- Vo) o eXp((é(Vl W el Vi) +]) >3) % gy =
=¥
yy:O
=- IZ(Z)xe'(vl- V2) exp((e(v1 V) gl Vi) +]) ’S) % dy

y=-¥
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Substitution

s (e'(vf Vo) 4 gl %) +1) Xy dsz( @V v ﬂ) xdy

1

y= (e‘(Vr Vo) + e‘(Vr Vs) +l)_l XS dy:( 'éVf V,) + ‘éVr Vs) _H_) XC
with the corresponding integration lims(-¥ }=-¥ , (0} 0 yields further simplifications:

E)(l ( fXZUcase ( Z) |X1) =

s=0

=-1,(zxe™ % x exp(9 fe W €W 4T (&Y #W Qi ds
esz(jl V,) s=0

:-|Z(Z)X x exp(s) &ds

(e' (Vr Vo) 4 e.(vl- V) +:|.)3 S=¥

s=0 x=b x=b

Integral exp(s) xsds is now be solved by integration by pa UVQUX=( U\)izz - udvd:

S=-¥ X=a X=a

E)(l ( fXZUcase ( Z) |X1) =

=-1,(z)x et ™ x(exp(s) §S:0 . ex{ 9 ds :
z (e_ (V- V) + e.(vl- A +1)3 s=-¥ .y

fo {exp(s)”" ) =

e' (Vl' VZ)

(e' (Vr Vz) + e‘ (Vl' V3) +1)3
- (Ve V2)
= 3 >€O '1) =
(e‘ (Ve V) + e‘(Vr Va) +1)
e' (Vl' VZ)

(e' (M Va) 4 e'(Vl' V) +1)3 .

The final result is therefore:

e' (Vl' VZ)

fi e (2) = 1(2) [ (A5.1)

whereV, =V, y-plpzz LV, =V, 3 andV, =V, (0) .
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A 6 Calculating the observation probability for thr ee goods when
there are fixed costs

In contrast to the case where there are no finstitbe probabilities for the different cases anfotr
are not functions of closed form, but have to beutated by simulation routine. Therefore, densitie
have now to be determined conditional on a cedase:

fXZUcase(Z) = le casé( ) F{ C&Sé (A 61)

Now for case 2, conditional probability density X, (1.5.12) has to be proven. First, formulate the
density forl instead forz.

y- bz

1

From| =1 ,Z and (1.5.12) follows

f (1) |case2,x = {( 1+x). (A6.2)

Applying rule 8 of appendix A 1 yields

&
f_(1)lcase2= E ( f()]cas@x)= f #x) =W' (A6.3)
From this, density ¢ X, can be calculated:

e—l
fe, (1) |casa:ﬁxl( 2 where| (z) = di(2) . (A6.4)

(1+ € ) dz

E, 6fx(x+a) E, Qexp( (X3 )xe(“‘) = E Oexp( Exé)xé xt

n n

n n -y - 3 n n
=E, (e‘x) exp -eX¥ x et e =er  E ( é) exp & x'd =
i=1 i=1
B, na1 X=¥ n n
=e"™ X (e‘x) 8Xp -e’x g? >exp( -éx) Xe* dx =
X=-¥ i=1
- n a X=¥ L » n )
=e"™ X (e ) gxp € x1 + &% dx =
X=-¥ i=1
T a n -(nD)  x=y n n+l n
ze® x1+ €t x e° % + & exp & Xk +€ dx
i=1 X=-¥ i=1 i=1
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n

Substitutinct=€*x1 + €% ,dt=-e*x & dx t=¥0yjelds

i=1 i=1
4 - " a n '(ml) x=0
Ex Of(X+3) =-e= x1+ ¢° x t % dt
i=1 i=1 X=¥
- " a n -(Wl) X=¥
e x1+ g@ x f & dt (A6.5)
i=1 x=0
X=¥
Integral  t">e 'dt has to be solved by integration by parts in ansee way:
x=0
X=¥ t=0 X=¥ =¥
§= txe'di=-te' - {3 % d=nx"t"" & dt =, where
x=0 - x=0 x=0
X=¥ »  t=0 .
$= e d= -e =1 From this follows
x=0
X=¥
S = t'xe'dt=n, (A 6.6)
x=0

By use of this result, equation (A 6.5) can be ediv

n

-
A e i=1
EX O fx(X+a) =n n n+l (AG?)
i=1 1+ e_a

i=1
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A 5 Two goods with fixed costs: Critical relative p reference

In the following the critical relative preferencé@re households switch from spending all budget for
good one to spending budget for both goods onevemdwhere good two is the good with fixed cost,
is computed. It will be proven, that critical valumethe case where there are no fixed cost is lpwer
than in the case where good has positive fixetl ésspresented in section 1.3, roots of functighs
and g2 are relevant, namely

v

Since the density 0 is known as will be shown later, the vall 15 and ¥4 have now to be

calculated. Further it has to be proven tg,(V) and g,(1) have a unique solutions, means that

their first derivative is always negative.

First, condition one is considered. The solutian \)is:

_ P, _ P &,
Y=(1-d)xIn(B)-In = - m S « R S .
( ) ( ) P, , where B, y- k+ px (A3.1)

Next it has to be proven, if this solution is uréqiThis is the case, when the first derivative g, (1)

does not change sign.

ﬂg%s/ W _ ﬂg%é E(‘(;)) Yﬂi( 3 0, with 6,(1) = au(B( ), (A3.2)

99,(B -
since ol (V)): Y- g DLXQ+%xazxp1’( 1) B 9 and
1B(V) (ple'l +p2)

_y-ktpxa+tpxa _ 4 Y-k+pxa+p g
0 ><B—l+ a2U )Bl
. P P R 0
- - R PB
Oy = pxaxB' U B= L :
kK & a= pxa V- kot nxa
1

1-d

al y ¥ pa B a graxB +pxal

B= ﬂxexp(m #) 0B’ :%wxp(mﬂy U%Zl xB? =exf m+)y O In% xBY  =m+ VU
2
01 in Paprd o

b

10(V_ X, _9Q __y-kt Barpa,, ¢y g
w qv 1V (plel+p2)

P
v

1

_ Y-kt qu+%xa2*‘p1>(-il.)>8'2 )ill-d exp m4 1
(ple'1 +p2) p, 1-d x d
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1
B L-d m+V 1 1
—( V) Y exp X = B« O
w p 1-d 2 d 1 d

Therefore, solutiol Y of condition one is unique.

Since for condition two an explicit solution (V4 does not exist and therefore needs to be calculate
numerically, it has to be proven tF g?(l/) is positive in the relevant range to assure fonmue

solution V5. Again the prove is done by derivation first witlspect td and therB with respect tc V:

19.(V) _ ﬂQZ(B(V)) YﬂB( )
1w (Y Tv

(A3.3)

Since 1B(1)/1 Vis greater than zero as shown above, it is safficio provefg, (B(1))/18( iy >0.

Therefore, expressiorgz() has first to be expressed as a function Bofby plugging in

exp(m+ 1) =22 g s

Py

gZ(B)le(B)d +%xg'd Q( ad _é _% B¢ g (A3.4)

. _Y-kt+ pxa+pxa _Y-kt pxa+pxg
with Ql(B)_ ple_l +p, ansz(B)— B+ P, B .

Derivation 119, (B)/1B yields now!

1
3p — pl vd pl —_g-d M _pz d
B= —Lexp(m +) Uerx;(mH/)—B 0 extp m+ )/_ExB
2

2

g SUT 0 9B (g Boas agy AP 1§28 4

Q(B)=B"xQ(B),
IQ(B)_ y-kt pxa+pa, - o P
1B (p+ p2><B)2 P =-Q(B) P+ p,xB’
ﬂQz(B) ) y- k2+ pxa + R, -H:QZ(B) x#x& :Qz(B) .xli —&

B (ple-l +p2)2 B? pxB'+p, B p+pxB B

A-18



The Determinants of Energy Demand of the Swiss Private Transportation Sector
The Multiple Discrete-Continuous Extreme Value Model (MDCEYV)

January 18, 2008
dgz(B) — P - d d d
1B —(1- d)xE%B (>Q2(B) ez)_

(1.3.30)
This means thatdg,(B)/dB>0 for B<B and dg,(B)/dBEO for B® B

, respectively
dg,(V)/d V50 for V< ¥ anddg,(V)/d O for V* VY and thag,(V) is the minimurf of function
9,(V) . Thereforeg, (V) andg,(V) diagram look about like:

A 9,(V) 9 (V)

Diagram A.3.1: The principle of calculating the probability of gbtwo being zero

The prove 14 > V¥ is now as follows:

Since 9:(4) <0, dg,(V)/d V>0 and finite for any V> ¥ and lim 9,(V)=¥°¢ it follows, that there

exists a uniqu ¥4, such tharg, (15)

0 if and only if the income is greater than the @ixeost k, ,

y>k - pxa where parametea, is assumed to be zero. Therefore in this case #nasts a unique
solution for g, (1) being zero, namelg,(14)=0

d
gz(vl)-gz(sl)=ol(ef+%xsfd (g’ -~ %xa—d i =
1
5 y-k ° . p y' y ko y°
-y 5 + 2 ,grd a _ Y B pid a ¥y B Y e
P ot 2 Tp plgl % n n
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If the income is smaller than the fixed ck,tthen household cannot consume good two independent

of its preference and therefore in this case prtibabf choosing a positive amount of good two is
zero.

Therefore the probability ¢ X, being zero is

P(X;=0)I(% =y- k. R, Rlg)= B(V)x} H(1- L), (1.3.31)

y>k- pxa:l

_ P; o2
herey=In =8 -m, where =0, andl, =
w 2 pl 2 W gZ(BZ) Y y£k2' plxqo

A 6 Three goods with fixed costs: Probabilities for the four cases

In the following it is shown, how the probabilititmr the case one to four depend on parameters and
economic variables. To remind, the cases are defsdollows:

Case 1:| X1>0 X2=0| X3=0
Case 2:| X1>0, X2>0| X3=0
Case 3:| X1>0 X2=0| X3>0
Case 4:| X1>0 X2>0| X3>0

Table A6.1: List of cases for the three good case

d

d
y-k+ pxa+p>g

d —

-exp(m+ V)<, =

d
; : -k + +
im g, (1) =iy rerp(me)« LETEE DR

P+ p,xB nB' 4
d d
- B
—lim o (v- k+ pxa+p>a) Yy 0
im +exp(m+1) x ot poB 0 exp(m+ V) xa,
d d
i y- kt pxa +p, & y d_
=lim exp(m+ V) x - —= - exp(m =
iy exp{m1)x Lt B Y- el 1y
d d
e=||/i®rgexp(m+l/)>< y- k2+ p1;:31+pzxaz ‘32d _ Ey =¥
2
since
1
d
lim Lo exp m+ V'
¥ p, 1-d
y- kot plI;:aﬁlozxaz>a2ifandonlyify>k2- nxa.
2
proof. Y " BXAY R G0 0y kg poar pxa>pxa O y> k- pea

P,
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In the following, first effects of changes of thenmomic variable K., P, andy on probabilities of the
different cases are examined. This is done bytiliting how the sets of case one to fou (X21X3)
space are changing compared to the baseline céiseedgnomic variables(K,.k;, k;) =(0,0.8,1.2 |
y=10, (p,p,p)=(11) and parameters (m,m,m)=(0,0,0, (a,a,a)=(0,19,

(d,,d,,d,)=(0.5,0.5,0.5. Random variabl X, is seiX =0,

Note that the brighter boundaries always indicate ltaseline case, while as the black boundaries
indicate the boundaries for he modified parametadseconomic variables.

Figure A6.1: Effect of a decrease of fixed cost of good three

A decrease of fixed cost of good three shift pdinn direction of the x- axis. This means that the
level of relative preference for good three whesadehold switch from case one to case three is how
lower. Also the line separating case three and tasas now also shifting towards the x-axis. Over
all, the area for case 4 also becomes largertah the following on probabilities can be summadz

P(casé) P(case)

P(case)- P(casd)-

Table A 5.2 : Table of changes in probabilities for a decred$ixed cost of good three

Next the case where price of good three decreaseamined.

"Fixed cost of good thre k, , has decreased from 1.2 to 1.0.
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Figure A6.2: Effect of a decrease of price of good tfree

A decrease in price of good three leads to a shiétll boundary levels of preference towards the x-
axis. This implies, that probabilities both for eame and case two are decreasing. Probabilitas# c
four is also increasing, since the area of case if@whifted towards an area, where density of
probability is highef. Probability of case three is increasing: If mileagpst for the big car is
decreasing, consumer tends to buy this type of car.

P(casd)” | P(cas®)”

P(case)- P(casd)-

Table A 5.3 : Table of changes in probabilities for a decredsearginal costs of good three

When income increases it can be expected that tiwmetimatter less and therefore that probability of
case one decreases while as all other probabititeegcreasing.

®Fixed costs of good thre k, , have decreased from 1.0 to 0.8.

*Assuming thaX> and % are standard Gumbel distributed and independémis. finding also holds for other distributions

with density centred around zero, like for instiliormal distribution with mean zero. For other digttions, this finding can
change.
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Figure A6.4: Effect of a change in parametens

For this change, an increase ™, and a decrease M, the boundaries of the cases are shifted

towards the top left. This means that the probigbitir case three has decreased and that prolyabilit
for case two has increased. For the change in pildles of case one and case four there the sign o

change will depend on the assumptions on the loligion of (%) .

P(casé)-

P(case)-

P(case)-

P(casd)-

Table A6.5 : Table of changes in probabilities for a changparameters

January 18, 2008

Next, all parameterd are decreased. That implies, that the decreasedjinal utilities of all goods

are getting smaller. Therefore spreading consumpiicer more goods tends to yield higher utility.

This change is equivalent to a shift of the bouiedanf cases one to four towards smeX;:rand X; .
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Figure A6.5: Effect of a decrease of all parameta's

Therefore probability of case one gets smaller pradbability of case four gets higher. For case two

and three the sign of change will depend on themagsons on the distribution 1(X21X3) .

P(casa)” | P(case)(-")

P(case)(-" ) | P(casd)-

Table A6.6: Table of changes in probabilities for a changparametersn

Last an increase of parameter a3 is examined. éredise of parameter a3 is increasing (x3+a3) for
given x3. Therefore it will shift partial utilityfagood three towards a range, where marginal yiit
decreasing. This effect will lead to a situationendprobability of choosing case three is decrgasin

Figure A6.6: Effect of an increase of parameteof good thre®&

Diagram above show, that the both boundaries fasextwo and three are sifted away from the x-
axis. Therefore probability for case two is inciegawhile as probability for case three is decnegsi

For distributions o (Xz-Xa) that have most mass around zero, probability &sedour is decreasing,

but for other distributions also more a increasddabe possible.

P(cas4)- P(case)-

P(cas8)™ P(casd) (_)

Table A6.7: Table of changes in probabilities for a changparametersn

parameted changed frond =(d,, d,, d,) =(0.5,0.5,0.5 to d =(0.3,0.3,0.3.

?Parametea changed frona=(a, a, &) =(0,1) to a=(0,1,3.
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A 7 Three goods with fixed costs: Optimal consumpti on in case 4

In the following, optimal consumption and utilitgrfcase 4 are computed. It is assumed, that sptutio
will be interior.
First order conditions of Lagrangian

L:exp(ml +)(l)>(Xl +a1)d +ex}:(r‘r§ -B(Z) (><X2 -b”lz)d Jex;é m )J-g (x)(S @d
Ay P R R B i) k(X)) A (A7.1)

are as follows:

%mxp(m ) kX 8)" £, 423 (A7.2)

Setting these first order condition equal, yieftls:

1
o Ld - m - X
X =B A{X +3) -awith p= 2 e TR (A73)

Using this result, budget restriction can be witses follows:
y-k- k= (B X +a)-a)- p{B¥X+d -9- (A7.4)

Solving for X; yields*

w Yk k p(Bxa- 3 p(Bra- g

3 A7.5
PoB, +D, By i, (AT:5)

1
d d1 1 d-1

ealm )% 5 8) =S ed(m ) (5 A

1
d-1 1
0 (Xi+ q): % xexp(n*] - mx - ){)Tlx( )J_(_,_ Ja)U
12 j
=
0 (Xi+ a): & 1-dxexp % >(

X, +31) 0]

0 (X+ )= Bx(X +a), with B = % e LBLILE. S A

y-k- k B (Bxa- 8- p(Bxa-ad= mBxX+pxB, X 0 X
"o xe Yk ke B (Bra-af p(Bxa- 3
: pXBy; +p, B, s
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