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Abstract

In this paper we present two novel approachestimat® the travel times between subsequent
detector stations in a freeway network, with lomgjathces between detector stations and several
unobserved on- and off-ramps.

The network under investigation is a two-lane fragpwThe maximum distance between
detector stations, for which travel times werenested is about 20 km with four unobserved
on- and off-ramps in between.

The algorithms were applied on real data sets, whas led to reasonable estimates. However,
due to unknown actual (‘true’) travel times, a qenbince assessment was not possible. The
algorithms were also applied on simulated data \kitbwn travel times. This allowed the
verification of the estimated travel times. Thedimted data were generated by the microscopic
traffic simulation tool AIMSUN NG®. The detectorasibns were assumed to be equipped with
widespread double loop detectors, i.e., for eatiicles the only information used was its length
(with a superimposed measurement noise) and tivaladime at the detector stations.

The estimated travel times show that with both mdshall relevant travel time characteristics
were correctly identified for the investigated smeos. Moreover, a comparison of the estimates
with the actual travel times has shown very goanigcy.

Besides the fact that the methods work well eveteurnindered conditions (long distance,

unobserved ramps), some additional practical bisnafie: provided that single car data are
available with sufficient accuracy, no additionavestments are required; both methods work
fully anonymous; extensions to more sophisticatedeation technologies that provide

additional vehicle features are straightforward: ttavel time estimates form a good basis for
any travel time prediction method.
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1. Introduction

The knowledge of travel times on road networks fissital importance, both for network
operators and driverQperatorscan use travel time information (current and/@ducted) to
improve the control of their networkBrivers can select their optimal route, either pre-trip or
en-route, based on the travel time information labée and the drivers' individual
preferences. Fotransport companieshe knowledge of travel time helps to increaserthei
delivery service quality. Moreover, they can chotis®r routes dynamically according to the
current and predicted traffic state and thus irszeheir efficiency.

The distribution of the information can be doneheitby collective information channels
(e.g., variable message signs (VMS), radio (inchffic Message Channel TMC)), or by
individual information services (e.g., mobile see/applications).

In the last decades, various methods were develimpechvel time estimation and prediction.

The focus of the presented paper is on travel wstenation, i.e. the online estimation of

travel times for vehicles from data provided bydbdetector stations with double inductance
loops.

Based on the vehicle length provided by double atahce loops, Coifman and co-workers
(Coifman (1998a, 1998b, 2002), Coifman and Casg@®9p2), Coifman and Ergueta (2003),
Coifman and Krishnamurthy (2007)) as well as Abdukllind Tabib (2003) and others have
made important contributions during the last decadther approaches use raw vehicle
signatures from inductance loops (e.g., Pfannkrgti984), Kwon (2006)). However,
signature data are in general not available, oy with additional infrastructure investments.

It is important to note here, that by using loopedtors, no distinct vehicle reidentification is
possible.

One of the selling points of the methods presehie is, that they can applied on many
freeway sections, since loop detectors are widsgduThus, provided that single car data are
available online and in sufficient quality (i.e. aiinlength measurement error, no bias), no
additional infrastructure investments are requiredrthermore, both methods work fully
anonymous and therefore no violations of privacisear Finally, extensions to more
sophisticated detection technologies that providdditeonal vehicle features are
straightforward, but will not be investigated instlvork.



2. Methods

In this section we present two new methods foreréavne estimation on freeway sections.
Both methods use only vehicle length and the titamp per detector station as input data.

2.1 Method 1: Travel time estimation with patternr  ecognition and
image processing

In this section we briefly outline the first appoba which combines pattern recognition and
image processing techniques.

2.1.1 Overall procedure

The method presented here aims to estimate theltteme between subsequent detector
stations, where only noisy length measurementsndividual vehicles are available. We
further assume, that the error of the length messents (i.e., its standard deviation) is
known and that it is constant over time. Furtheeméime stamps are captured as the vehicles
pass the detector stations.

Figure 1 Overall procedure of the first approach.
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2.1.2 The individual steps
Computation of the scores

A score is calculated for each combination of viglsié and j observed at the up- and
downstream station, respectively:

3 2 2 2 2
s =aexm - (b 4) /0 Leam)® +azem- (- ¢ VAP . @
Contribution by length comparison Conutin by travel time comparison
of vehicles ang with ‘a priori' inforrtian (optional)

where §; is the score resulting from the feature comparisovehiclesi (upstream station)
and j (downstream station); andL; denote the measured vehicles lengths at upstredm a
downstream detector stations, respectively,;,, represents the assumed estimation error of
these measurements, WitbLqgin, =2|D_noiseL, t, and t; denote the time stamps as the

vehicles pass the detector statiori3; represents the assumed error of 'a priori' trawes
estimates, and finallyz, and a, are two weighting factors. Currently we s2{=1 and

a, =0, i.e., only the vehicle length is used to detemrtime score.

The score matrix: superposition of the scores

Once we have the scores available for each combmat vehiclesi and j, we use them to

build a score matrids. This is explained in the following.

The score matrix is of dimensio[1Y’ X]. The number of rows X) is equal to the

considered arrival time range (7 hours in our case, Figure 2) divided by time interval

(resolution) Dt =5sec Each column x, with x1 {1x} represents a time interval

[tX-Dt,tX) with t, = xDt and thusXDt is equal to the arrival time range. The number of
rows (Y ) is equal to the travel time range (depends oncOmbination, see Figures 2a to 2d),

again divided byDt. Each rowy, with yi {1Y} represents a time intervaly-Dt,ty)

with t, = yDt, and thusyDt is equal to the whole travel time range.

For eachij -combination we know the arrival time of vehicjeat the destinationt() and the
travel time fromz;; =t; - § . With this, we are now able to determine the (gilen by row
y and columnx) within score matrixS to which scores; needs to be added. The column

number x results from determining, such thatt, -Dt£ t;<t,, i.e,, x= t,/Dt . The row

number (y) results from determining, such thatt, -Dt£t;- t< t,, ie,y= ty/Dt Af



more than one score needs to be placed to saméheellalue is simply added to the existing
entry. The procedure described above can formallyiitten as

S(xy)= § "0 o0 dx{r.¥ . yv{L.}, @
t-DUE tj< ty
ty-DtEIj- ti< ty

where , and 4 denote the number of vehicles that have passedupiséream and

downstream detector station, respectively, durirggdonsidered arrival time range. All other
variables and relations were introduced before.

A visualisation of a score matri® can be found in Figure 2a. What we see is, that rmaeas
are dark blue, while some are light-blue. The lighte cells hold higher scores than the dark
blue cells and indicate that they include more rimi@ation. However, with only this
information, we cannot estimate any travel timeerEfiore some post-processing steps are
required, which we briefly explain now.

Post-processing: convolution, normalisation and résaping

The basic idea of theonvolutionused in this context is to “link” cells with higétores in
matrix S. The matrix after the convolution step is showirigure 2b. It is obvious that some
structures become visible, but it is still no pbsito draw conclusions about the travel time.

In a next step, we performmormalisationof the diagonal elements of the matrix as provided
after the convolution step, such that the diagae#ls sum up to one. The result after this
procedure is shown in Figure 2c. Again, the infailoracontents increased, which can be see
by the revealing “structures”. Nonetheless, sonmhér processing is required.

We reshapethe matrix (image) with dimensio~ X to an image with dimensiorM " N .
This step was motivated by the fact that, giveredain relation between height and width,
the human eye is able to see structures more edsigyassumption was, that we can reveal
the same information by using image filters.

Filtering

The filtering step applies d%order 2D-Butterworth band pass on the reshapeddmas we
can see in Figure 2d, the resulting image revealsrly some interesting structures. Areas
with light-blue to red indicate that the travel &rgraph might cross these areas.

Computation of the shortest path

To connect the light-blue to red areas of Figurea@d thus compute meaningful travel times,
we use a shortest path method as follows: For eatlhc, processed from left to right
(columns) and top to bottom (rows), we search b d@e(left of cell ¢ and within a allowed



vertical range) from which the costs for movingnfral to ¢ become minimal. The minimal
costs to get tac are stored in a matrix. Once the matrix is comghutee compute the path
with the minimal costs by starting at an approgrie¢ll at the right boundary of the matrix
and thus derive the estimated travel time. Examga@sbe found in Figures 9 b, d, f, and h.

2.1.3 A graphical representation at the differents  teps

Figure 2 Representation of information at the uasisteps (a) score matrix, (b) after
convolution, (c) after normalisation, (d) aftetdiling.
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2.2 Method 2: Travel time estimation with global se  quence
alignment

This part of the paper presents the applicatioa gliobal alignment algorithm on vehicle data
measured at freeway dual-loop detectors to deterrtia travel. Most existing methods for
extracting travel time information from loop detmctdata rely on matching individual
vehicles between detector stations at rather stligtances. We will show that a global
alignment algorithm which aligns entire vehicle ddms sequences from two subsequent
detectors allows us to determine a time resolvadetrtime estimation. We will demonstrate
that this algorithm does even work under diffiatdinditions like unobserved ramps between
the detectors, long detector distances and deafe.tThe utilized method is based on the
Needleman-Wunsch algorithm (Needleman-Wunsch], lwhécwell known and frequently
used in the field of biological sequence alignm@ng. DNA sequences, protein sequences).
We have adapted the algorithm to align sequencenai$y vehicle length sequences,
implemented it in the statistical programming laagel R, and successfully applied it to real
life data and reference data from a microscopi€i¢raimulation tool.

2.2.1 Overall procedure

Vehicle data from freeway dual-loop detectors pdevior each detected vehicle the passing
time and the vehicle length. The presented metlsed a global alignment algorithm to align
the vehicle length sequences, which were recortédaasubsequent detectors (at origin and
destination) over several hours. Details of thgratient algorithms are described in the
following sections. From the global alignment tived stamps from each matching vehicle

pair are extracted, which give directly the arritiate at destinatiort® and the travel time

between origin and destination as difference otweetime stampstD - t° (see Figure 3).



Figure 3 Overall procedure to determine the tréwed from global sequence alignment
of lengths sequences measured at an origin anthatést detector station. In
the global alignment a match is indicatedMya mismatch or substitution by
MM, a deletion byDel., and an insertion bins. The established matches are

numerated and the destination passing tieand the travel timeaP® - t© is
extracted from each maitch.

Detectors at origin and destination measure time and length
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2.2.2 Introduction

Sequence alignment aims on revealing which mutsatébd lead from an original sequence to
a subsequent sequence which has evolved from thm.olt also is pinpointing regions of
high similarity in two compared sequences. Mostusege alignment algorithms were
developed in the field of bioinformatics for comipgr DNA, RNA or Protein sequences. In
these cases the sequences consist of a very limitedber of different units — in the case of
DNA and RNA molecules we have only 4 different lsaé&, G, C, T}. Figure 4 shows two
different alignments of two DNA sequences.

The general assumption in sequence alignment tsoti&a sequence evolves from the other
sequence by the application of a number of simplesformations:

a) Deletion (gap in the second sequence): deleti@am unit in the origin sequence
b) Insertion (gap in the origin sequence): insartban unit in the origin sequence
C) Replacement/substitution/mismatch: one uniemaces another unit



An alignment can be assessed quantitatively whenogaing system is defined. A scoring
system defines rewards for matching units and piesalor mismatches or gaps (see Figure
4).

Figure 4 Here two possible alignments of two DNAwnces | and Il are visualized. As
common in many applications each position in thegnatent is scored
independently and summed up to determine the swfotiee entire alignment,
e.g. a match may contributes with a score ore m@wér1, a mismatch with a
negative score or penalty of -1 and a gap withrelpg of -2.

Example:

Sequence I: GCGCATGGATTGAGCGA

Sequence Il: TGCGCCATTGATGACCA

A possible Alignment of sequences | and II:
-GCGC-ATGGATTGAGCGA
TGCGCCATTGAT-GACC-A

scoring: —2+1+1+1+1-1+1+1-1+1+1+1-2+1+1-1+1-2+1 =4

Resulting score: (+1x13) + (-1x3) + (-2x3) = 4

Another possible Alignment of sequences | and Il:
—————— GCGCATGGATTGAGCGA
TGCGCC--—-ATTGATGACCA--
Scoring: —2-2-2-2-2-2-2-2-2-2+1+1-1+1+1+1-1-1-1-1 -1-2-2= -25
Resulting score: (+1x5) + (-1x6) + (-2x12) = -25

The goal of alignment is usually to determine tdagnment with an optimal overall score.

If two sequences are aligned along their entirgtle the result is called global alignment.
Performing a global alignment is reasonable, whenexpect that the two sequences are
related over their entire lengths. When dealinghvgartly overlapping sequences, a global
alignment that down weights gap penalties at theemities of the sequences is indicated.

2.2.3 Special considerations for aligning vehicle | ength sequences

In the case of vehicle sequences we observe aatelat an insertion if a vehicle has left or
entered the observed lane. A replacement implies dme vehicle has left the lane and
another car has joined the lane and has taketaite n the sequence.

To decide if two vehicle lengths observed at twbsagquent detector stations could stem from
the same car, we need to consider the measurement Ehe manufacturer of the dual-loop
detectors, from which our data are derived, spexifin accuracy of £ 20 cm on lengths
measurements. Accordingly, two measured lengthg€@msidered as match if they are equal
within the accuracy range.

10



The length sequence from the first detector statambe given as vectot,, = (%, %,.... %),

where n is the number of detected vehicles, analogousiymfthe second detector we get the

length sequence’, =( %, M-, ¥n) With m detected vehicles. We observe these length

sequences at both detector stations during the semgerange. This means that the last
couple of vehicles which have been observed atfstream station are not observed at the
downstream station, and analogously the first secgi@art from the downstream station has
no counterpart at the upstream sequence. Therafoignment algorithm should be used
which is adapted to overlapping sequences and igesajaps at the overlapping ends much
less than gaps (deletions/insertions) in the sexpigtierior.

2.2.4 Global alignment based on the Needleman-Wunsc  h algorithm

Given a scoring scheme, we need to have an algoritiat computes the highest-scoring
alignment of two sequences. The Needleman-Wunggtritim is a dynamic program that
solves the problem to determine the best globagnaient of two sequences

Xn=(%, %, %) and Yy, =( %, Y., ¥n) - The basic idea of the algorithm is to build up an
optimal alignment using previous solutions for ol alignments of smaller substrings. The
Needleman-Wunsch algorithm mainly defines how tmgote ann” m-matrix F in which

F(i,j) equals the best score of the alignment of the gwlnstrings X; = (%, %,...,X) and
Y; :(yL, Voo 31) (see Figure 5). The lower right diagonal elemg&iih, m) of this matrix
gives then the score of the optimal global alignhrthe sequenceX,, = (%, X, ..., %,) and

Y = (o Yoees i) -

Figure 5 Scoring matriX¥ . a) All other elements$-(i, j) are recursively computed from
one of their diagonal, above, and left neighbourelgmentsF(i- 1,j- 1),
F(@,j-1) or F(i-1,j), respectively. The starting point i5(0,0)=0, b)
Extension procedure: Each elemdntj) can be reached from three possible
prefixes. We choose that way which yields the rstjseoreF(i, j) .

0 SR B W g i [
a) 0 F{0,0)
n
2
(k)
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b) Three possible ways to reach the elentienj:

1) Diagonal way coming from: (i-1, j-1) to (i, j) mean s that we start from the prefixes
X1 andY j; andalign x i againsty  j to get an alignment for X pandY :
X1 ... X 2 X1 X
YiY 2 Y Y

The score of this alignment is: F(i, j) = F(i-1, j- )+sx i,y j)
where s gives an positive reward, in case of x i matchesy  or a negative penalty in
case of a substitution (mismatch) between x jandy
2) Left way coming from: (i-1, j) to (i, j) means that we start from the prefixes X in and
Y; and sincey j is already aligned in Y j we have to align x i against a gap:
X1...X 2 Xi1 X
Yi..¥ ja Yij -
The score of this alignment is: F(i, j) = F(i-1, ) -d
where d is the penalty for a deletion (gap in th e subsequent sequence)
3) Upper way coming from: (i, j-1) to (i, j) means tha t we start from the prefixes X i and
Y1 and since x i is already aligned in X i we have to aligny j against a gap:

X1...X i1 X -

Yi¥Y 2Yi Y

The score of this alignment: F(i, j) = F(i, j-1) - d

where d is the penalty for a insertion (gap in the origin sequence)

Knowing the optimal alignment score, we now turriite question of how to obtain an actual
alignment which has this optimal score. While cotmmuthe scored=(i, j) one should also
memorize from which of the three possible prefittes element was reached. Most easily this
information is stored in an independent matrix. Wiis knowledge we can trace back the
alignment path which leads to an optimal globajraient (see Figure 6).

Figure 6 Alignment example: Sequence I: A G Cequnce Il: A A A C used scoring
system: score (match) = + 1, score (mismatch) sedre (gap) = — 2.

MatrixF :
A G c Element F (4, 3) holds the optimal score ofl -
o g 12 _i _::5 of the global alignment of the two sequences
. _2\1 = determine the actual alignment the memor
aola - 1\0 - trace information is used (see red arrows)
] we can read of the following optimal alignment:
A3|-6 -3 -2 -1 AG-C
cals 5 4O AAAC

2.2.5 From the alignment to a travel time estimatio n

To determine the travel time between two subseqdetdctors stations an optimal global
alignment of the length sequences are determinettssibed above. Then we use the time

stamps from each matching vehicle pair, to deteentie arrival time at destinatia? and
the travel time between origin and destination iflerence of the two time stamp? - t©

(see Figure 3).

12



3. Application

3.1 Simulation network

The simulation network under investigation is atisecabout 20 km long and on the Swiss
national freeway Al (from Bern to Zurich). Figuresiiows a map with the network and
highlighted detector stations. Figure 8 shows timpkfied network model.

Figure 7 Real network with detector stations asldigethe simulation.

Source: Background by GoogleEarth®, with networtadsc. added by the authors

Figure 8 Simplified representation of the netwdrkwn in Figure 7.

(Destination
Detector stations
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3.2 Detector types

The detectors used on the Swiss freeway networknaialy ‘Marksman M660’ by Golden
River Ltd. According to a distributor (Taxomex (B)9and Rubin (2007), the accuracy of the
length measurements iBL,,,se <#20cm. Accordingly we conducted simulations with

assumed accuracies BL, e = 20cm.

3.3 Vehicle mix (length distribution)

To feed the simulation with a vehicle mixture thstclose to reality, distributions of the
lengths at the real detector stations were analySeamn this, we defined vehicle classes
together with appropriate properties (e.g., lengtiving characteristics (driver, vehicle)) in
AIMSUN as part of the simulation input.

3.4 Length measurement error

To simulate the length measurement errors thaegperienced in practice, for each vehicle
that is generated by the AIMSUN simulation envir@mty an error will be added to its
original length. Based on the assumptions regardouyiracy made in section 3.2, the errors
DL,,0ise @re simulated i.i.d. uniformly distributed betwee®0 cm.

14



4. Results

4.1 Method 1: Travel time estimation based on patte  rn recognition
and image processing techniques

With an assumed measurement error O, . =*20cm, for four origin-destination

combinations we show in Figure 9 (i) the filter jpuit together with the estimated travel times
(plots on the left side), and (ii) a comparisorit@ estimated and the actual travel times (plots
on the right side).

Figure 9 Estimation results fobL,,ce =+20cm and four OD-combinationsD1® D2

(a) Filter output and estimated travel times, (ltual and estimated travel
times; O1® D4 (c) Filter output and estimated travel times, fdjtual and
estimated travel time€)1® D6 (e) Filter output and estimated travel times, (f)

Actual and estimated travel timé&31® D8 (g) Filter output and estimated travel
times, (h) Actual and estimated travel times.

(b)

(d)
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The plots on the left side in Figure 9 (a, c, & ghshow the filter outputs together with the
estimated travel times (red line), and the actrtaald times for the four investigated origin-
destination combinations; The plots on the righdegib, d, f, h) show the actual travel times
(black), the smoothed actual travel times (yellame), and the estimated travel times (red
line).

We see from the four plots on the right side, foatall origin-destination combinatiortbe
estimated travel times are in very good accordawith the actual travel timesWe can
observe, that with increasing origin-destinatiostance (plots from top to bottom) the filter
output contains an increasing humber of unfeasibdas with high scores. This results from
the fact, that the number of matches increases digtance. However, the algorithm can
handle even these situations reliably.

4.2 Method 2: Travel time estimation with global se  quence
alignment

We have used the global alignment procedure on lifeadata and got plausible results.
However, since we did not know the real travel snfier these data we have assessed the
algorithm with simulated data, which were done be same segment from which we

16



analyzed real data (see Figure 7 and 8). For thelated data we know for each vehicle

which passes both detectors the actual travel tidmvever we have only used the time

stamps and the noisy length information for thebgloalignment procedure. As scoring

system we used the following setting: match rewar20, mismatch penalty= —6, insertion

and deletion penalty = -4, gap penalty for overliaggnds = —2. In the following graphs we

see the actual travel time together with the edgdhd@ravel time plotted against the time at
destination for 4 different destination detectotsch are 4.8 km, 9.3 km, 12.8 km, and 19.6
km from the first detector apart. It is strikingatithe estimated travel time describes quite
accurate the actual travel time distributions desfiie extreme traffic situation and several
unobserved ramps. Not until a distance of almokt2the procedures starts to get difficulties
at some time ranges.

Figure 10 Estimation results for four OD-combinatica) O® D2 actual and estimated
travel time; b) O® D4 actual and estimated travel time; c) &6 actual and
estimated travel time; d) @1D8 actual and estimated travel time.

(@) (b)

() (d)
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5. Summary and outlook

In this paper we presented two novel travel tim@region methods, which both use only
vehicle lengths (e.g., from double inductance |pap®d the appropriate time stamps at the
detector stations as input. We performed tests siitiulated single vehicle data, for origin-
destination distances between 5 and 20 kilometresthermore, depending on the OD-
combination, up to four unobserved on- and off-rampere part of network under
investigation.

With both methods we could show, that for the itngeged origin-destinations combinations
all relevant characteristics of the travel timerids were capturednd that the accuracies are
thus within a well acceptable ranges.

Besides the fact that both methods work well eveshen hindered conditions (long distances,
unobserved on- and off-ramps), some additional tmacbenefits of the methods are: (i)

Provided that single car data are available atlfiectors stations with sufficient accuracy, no
additional infrastructure investments; (ii) Bothtimads work fully anonymous, i.e. no privacy

issues arise; (iii) extensions to use more somlaitdd detection technologies that provide
additional vehicle features, are straightforwaid) (ith the presented quality of the travel

time estimations, this forms a good basis for aaydl time prediction method.

Future research on this topic will include thedaling major points:

Application of the methods on real data sets tagethith an optimisation of the model
parameters,

A quantitative assessment of the accuracy of theetrtimes estimates for both
methods,

Performing tests for small distances with largeasugement errors assumed,
Combing the two approaches,

Improving the methods regarding robustness, arallyin

integrate the methods to field applications.

18
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