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Abstract

Overcoming the independence of irrelevant alternatives (IIA) property of the basic multinomial
logit (MNL) model is a major research issue in the field of discrete choice modelling. In recent
years, several approaches have been developed to achieve this goal with different degrees of
appropriateness.

On the one hand there are very flexible models, which are able to account for complex corre-
lation structures and a wide variety of interdependencies between alternatives by opening the
variance-covariance structure. But they require a lot of effort in terms of specification and com-
putation. On the other hand there are less complex models, which introduce a similarity factor
into the systematic part of the utility function, which decreases the utility of an alternative with
respect to its similarity with other alternatives. They are easier to estimate and applicable to
large choice sets. However, these models were designed to solve specific, in particular route
choice, problems and not offhand transferable.

This paper summarises and evaluates different approaches to overcome the IIA property. Spe-
cial consideration is given to approaches that are easy to compute and applicable to a combined
route, mode and destination choice model.
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1 Introduction

Today, discrete choice models have manifold applications. They are used in a wide variety
of contexts to simulate consumer choice. They base on the idea that a decision-maker is con-
fronted with a set of discrete alternatives and has to choose one of them. The model itself
estimates for each alternative the probability of being chosen assuming that a decision-maker
seek to maximise his or her utility. The utility depends on the decision-maker’s individual pref-
erences, the choice situation, the characteristics of the alternative and its similarities with the
other available alternatives. The underlying utility function is split into two elements: a sys-
tematic part and a random part, for both of which the analyst has to make suitable distributional
assumptions. In principle, the analyst is free from a priori constraints in his or her choice of
approach to capture similarities among alternatives. Similarities can be included in the system-
atic part through a suitably measure of similarity or through an appropriate specification of the
variance-covariance matrix of the random part.

Either approach, with different degrees of appropriateness, overcomes the "Independence of
Irrelevant Alternatives" (IIA) property of the basic Multinomial Logit (MNL) model. This
property implies that the ratio of the choice probabilities of any two alternatives is not affected
by the availability or the attributes of other alternatives and is therefore independent of the size
and structure of the choice set. Not correcting for the IIA property leads in many cases to - very
- misleading model results and forecasts.

Recent research has developed several approaches to overcome this structural problem, but
none is completely satisfactory. On the one hand there are very flexible models, which are able
to describe complex correlation structures. They account for a wide variety of interdependen-
cies between alternatives by opening the variance-covariance structure of the model. But they
require a lot of effort in terms of specification and computation and are not obviously suitable
for large sets of overlapping alternatives. This is especially a problem in the field of transport
research. Realistic problems addressed here are often characterised by large sets of alternatives
as for example in route or destination choice. For models that simultaneously address two or
more choices this problem increases even further, think for example of a joint destination and
route choice model.

On the other hand there are less complex models, which are easier to estimate and applicable to
large choice sets. However, these were designed to solve specific problems and are not offhand
transferable. They introduce a similarity factor to the systematic part of the utility function,
which decreases the utility of an alternative with respect to its similarity with other alternatives.
The majority of these models has been developed for route choice, though some applications
for destination and location choice have been proposed. Nevertheless, there have hardly been
any approaches for dealing with multi-modal situations or other combined choice problems.
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This paper summarises and evaluates different approaches to overcome the IIA property. First,
an introduction to the MNL model and its IIA property and to the idea of the different ap-
proaches is given. Subsequently, the approaches that subdivide alternatives into nests are in-
troduced before those changing the variance-covariance structure and the ones that introduce
similarity factors in the deterministic part of the utility function are presented. The paper con-
cludes with a discussion of the different approaches and an outlook for future research. Special
consideration is given to question if they are applicable to a combined route, mode and desti-
nation choice model.
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2 The MNL model and its IIA property

Discrete choice models are a standard for modelling consumer behaviour. In transport research,
they are used for all aspects of travel behaviour, including, but not limited to household activ-
ity scheduling, destination choice, route choice and mode choice. Therefore, discrete choice
models are of special importance for the evaluation of transport policies, such as infrastructure
investment or setting of tolls.

In a discrete choice model, an individual - the decision-maker - is confronted with a set of
discrete alternatives, the choice set, from which he or she has choose one. As a decision rule,
it is assumed that the decision-maker seeks to maximise his or her personal utility. The utility
of each alternative is characterised by its measurable attributes captured by the deterministic
component Vin of the utility function. Beyond that, there are utility components that cannot
be measured directly due to several reasons. First, there is heterogeneity of preferences across
decision-makers. Second, the knowledge and the information processing abilities of decision-
makers are limited. Third, there are further uncertainties regarding the choice process, includ-
ing attributes which the analyst is not able or not resourced to measure. These elements are
usually represented by the random term εin of the utility function. Thus, the following utility
function is postulated:

Uin = Vin + εin (1)

with Vin being defined as Vin = f(β, xin) , where β is a vector of taste coefficients, and xin a
vector of the attributes of alternative i as faced by respondent n in the specific choice situation.
In addition, socio-demographic attributes of respondent n can be included in the systematic
part of the utility function.

The discrete choice model itself estimates for each alternative the probability of being chosen
from a given choice set:

P (i|Cn) = P [Uin ≥ Ujn,∀j ∈ Cn] (2)

The most commonly used discrete choice model is the Multinomial Logit Model (MNL) (Mc-
Fadden, 1974). It is based on the assumption that the random terms, often called error terms,
are identically and independently (i.i.d.) Gumbel distributed. The choice probability of each
alternative i can then be calculated as:

P (i|Cn) =
eµVin∑
j e

µVjn
(3)

Thereby, µ is related to the standard deviation of the Gumbel variable (µ2 = π
6σ2 ), where, in
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the absence of a heterogeneous population, µ is generally constrained to a value of 1.

The advantages of the MNL model are its flexibility in terms of its deterrence sensitivity, and
the ease of the parameter estimation (c.f. Ben-Akiva and Lerman (1985)). On the other hand,
the MNL model has several disadvantages, the most prominent being the property of the "In-
dependence from Irrelevant Alternatives" (IIA property). This property states: The relative
ratio of the choice probabilities of two alternatives does not depend on the existence or the
characteristics of other choice alternatives.

P (i|Cn)

P (k|Cn)
=

eµVin∑
j e
µVjn

eµVkn∑
j e
µVjn

= eµ(Vin−Vkn) (4)

An illustration for this problem is the well-known red bus/blue bus paradox (Debreu, 1960),
which describes two mode choice situations. First, the decision-maker is facing two alterna-
tives: taking the car or a red bus. It is assumed, that each alternative has a choice probability of
50%. In the second scenario, a blue bus with the same attributes relevant for the decision as the
red bus is added to the choice set. Because the new alternative is just another option for using
public transport, one would expect, that the share of the additional alternative comes completely
at the expense of the red bus and the resulting choice probabilities should be: PCar = 50%,
Predbus = 25% and Pbluebus = 25% – ignoring for now the potential mode shift because of
increased frequencies on the bus network. However, because of the IIA property, the MNL
returns the same choice probability for each alternative (PCar = 33%, Predbus = 33% and
Pbluebus = 33%) to guarantee that the ratio between the probabilities for the car and the red bus
stays equal to one.

Though the red bus and the blue bus obviously share a lot of characteristics and are therefore
similar, the MNL model ignores this completely. The same applies for any other choice con-
text, as demonstrated for example by Daganzo and Sheffi (1977) for private transport route
choice, where the similarity between routes is derived from their overlap. Thus, one possible
interpretation of the IIA property of the MNL model is its failure account for similarities be-
tween alternatives. Mathematically, similarities can be represented by correlations. Since the
error terms in the MNL model are independently distributed, no correlations are included in
the model as can be seen from the variance-covariance matrix for 5 alternatives depicted below,
where because of its immanent symmetry, only the upper triangle of the matrix is shown. The
matrix consists only of the variances of the alternatives’ utilities. The covariances are all equal
to zero.
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
σin11 0 0 0 0

σin22 0 0 0

σin33 0 0

σin44 0

σin55


This property can lead to biased parameter estimates. Furthermore, the model misses an impor-
tant aspect of the actual choice behaviour. Solving this issue is still an ongoing research topic
as is the question whether similarities between alternatives have positive or negative effects
on their choice probabilities. Theory postulates that similarities reduce the probability to be
chosen. However, recent studies such as Hoogendoorn-Lanser and Bovy (2007), Frejinger and
Bierlaire (2007) or van Eggermond et al. (2007) suggest that this assumption does not hold for
all choice contexts.
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3 Accounting for similarities between discrete choice alter-
natives

Before exploring the different approaches of how to handle similarities in discrete choice mod-
elling, one has to reflect, what kind of similarities can appear in real choice situations, as
they can differ enormously depending on the decision context. Considering for example mode
choice, similarities between private or public transport modes can lie in characteristics such as
accessibility, comfort or levels of privacy. Correlations between private transport routes appear,
if routes share links, whereas similarities among public transport connections are determined
through comparable time slots or journey times, equal interchange facilities or the same oper-
ator. An individual facing a destination choice problem has to deal with even more possible
similarities. Those can include the geographic region, the landscape, the journey direction
(route overlap), the weather, the products/services offered or shared parking sites - to name
only a few.

There are different ways of describing similarities between alternatives. Three general ap-
proaches can be distinguished that will be described in the following sections:

• subdividing alternatives into nests,

• opening the variance-covariance structure, and

• introducing similarity factors in the deterministic part of the utility function.

The first group basically contains the Generalised Extreme Value (GEV) models other than the
MNL model. The alternatives are subdivided into groups, the so-called nests. Correlations may
remain within the nests, but between the nests they are eliminated. In the classic Nested Logit
(NL) model the nests are completely disjoint whereas in the Cross Nested Logit (CNL) model
each alternative can belong to more than one nest. However, though particularly the CNL is
able to represent nearly all kinds of correlations, a realistic nesting structure is highly complex
and therefore cumbersome to estimate.

Most of recent research efforts have however focussed on the second group of models, more
specifically on the Mixed Multinomial Logit (MMNL) Models. Inspired by the Multinomial
Probit Model where multivariate normally distributed error terms replace the i.i.d. Gumbel
distributed ones of the MNL model, in an MMNL model the deterministic part of the utility
function is re-formulated while the i.i.d. Gumbel error terms remain. A multivariate randomly
distributed error term is introduced that captures similarities which cannot be modelled deter-
ministically. This leads to models that are able to account for any kind of correlation structure
and taste heterogeneity. However, these models require a lot of effort in terms of specification
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and computation and are thus still hardly applicable to choice situations with large numbers of
alternatives.

The models of the third group aim to capture correlation effects by correcting the systematic
component of the utility function. Based on the implicit availability/perception model (IAP)
presented by Cascetta et al. (1996) they rest upon the assumption that the utility of an alternative
is decreased by its degree of similarity with other alternatives. Thus, they add a deterministic
similarity measure to the utility function. Again, the deterministic part is reformulated and
the error terms remain i.i.d. Gumbel distributed. The crucial aspect of these approaches is the
appropriate choice of the similarity factor. Alternatives in transport choice problems are usually
characterised by attributes of different variable type. Hence, a suitable similarity measures
has to cope with different variable types, such as dichotomous, qualitative and quantitative
variables.

Gower (1985) provides the definition of a general measure of similarity as well as a description
of its properties and its applicability to different types of variables. In his measure the similarity
between two alternatives is determined by comparing each of their attributes, assigning a score
for the degree of similarity and combining those scores to a single coefficient. Below, a short
description of similarity scores for single-level variables of different variable types is followed
by the introduction of Gower’s general similarity measure that combines them.

Dichotomous and qualitative variables can be treated in a similar way. While dichotomous
variables represent the presence or absence of a characteristic, qualitative variables embody
qualities of equal standing. The similarity score for those variables can only be unity or zero
depending on the question if they are equal or not. Care must however be taken with regard to
the question if the absence of both attributes of a dichotomous variable is considered as equality
or not. The similarity or dissimilarity between quantitative variables can be measured through
the distance between their characteristics. This distance is then converted into a fraction be-
tween zero and unity to get the score for the similarity coefficient.

Gower (1985) then combines the similarity scores sk(xik, xjk) of the individual variables to the
"General Coefficient of Similarity" between the alternatives i and j, which has the following
functional form

Sij =

∑p
k=1 wk(xik, xjk) · sk(xik, xjk)∑p

k=1 wk(xik, xjk)
(5)

Thereby the function imposed for sk(xik, xjk) can differ for each variable. wk(xik, xjk) rep-
resents the weight put on the individual attribute to reflect the importance of a variable or its
reliability.

With the help of this approach even hierarchies of alternatives can be compared in the way that
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the similarity score S(k)
ij of the secondary alternatives associated to attribute k is imposed as

weight for the primary variable (c.f. Gower (1985), p. 400):

Sij =

p∑
k=1

Skij(xik, xjk) · sk(xik, xjk) (6)

Any depth of nesting can be represented by generalising this procedure.
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4 Generalised Extreme Value models

The family of Generalised Extreme Value (GEV) models was first introduced by McFadden
(1978) for the context of residential location choice with the aim to allow for dependencies
between the unobserved error-terms of the alternatives while maintaining the closed-form of
the MNL model. McFadden (1978) demonstrated that the MNL model is also a GEV model.
The most popular model, apart from the MNL, of this family is the Nested Logit model, first
presented by Ben-Akiva (1973, 1974). Since the Nested Logit model is not able to capture all
kinds of correlations, the Cross Nested Logit model was introduced by McFadden (1978) and
refined by Ben-Akiva and Bierlaire (1999). It was further generalised to the Generalised Nested
Logit model (Wen and Koppelman, 2001) and the Network GEV model (Bierlaire, 2002). All
these models are briefly presented in the following.

4.1 The Nested Logit model

The basic idea of the Nested Logit model is to divide all alternatives of a choice set into disjoint
groups, the so-called nests. Correlations may remain within the nests, but between the nests
they are eliminated. Thus, the entire utility function for alternative i belonging to nest Cnm
has to be reformulated. The systematic component is split into two parts and incorporates the
alternative specific effects V ′in as well as the impacts associated with the nest VCmn:

Uin = V ′in + εin + VCmn + εCmn (7)

εin and εCmn are independent. The distribution of the error-term εin remains IID Gumbel with
a scale parameter σk, while the error-terms εCmn jointly follow a generalised extreme-value
distribution in a way that the random variable maxj∈CmnUjn is Gumbel distributed with scale
parameter µ. Each nest Cmn has a composite utility V ′Cmn , also called expected maximum utility

or LOGSUM:

V ′Cmn = VCmn +
1

µm
ln
∑
j∈Cmn

eµmVjn (8)

where VCmn is the utility common to all alternatives in nest Cmn. Thus, the probability of
choosing alternative i that is part of nest Cmn from the individual choice set Cn can be calcu-
lated as the product of the probability, that nest Cmn is chosen from the set of all nests and the
probability that alternative i is chosen from the alternatives belonging to nest m:

P (i|Cn) = P (Cmn|Cn) · P (i|Cmn) (9)
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with

P (Cmn|Cn) =
eµV

′
Cmn∑M

l=1 e
µV ′Cln

(10)

and

P (i|Cmn) =
eµmVin∑

j∈Cmn e
µmVjn

(11)

For µ
µm

= 1 ∀k the NL collapses to the MNL model.

As such, correlation between the error-terms of alternatives nested together is introduced. How-
ever, the model does not capture potential correlations between nests. This can be illustrated
by the variance-covariance matrix. The example here shows the covariances for 5 alternatives,
of which alternative 1 and 2 belong to the same nest, alternative 3 to a second one and the
alternatives 4 and 5 to the third one:
σin11 σin12 0 0 0

σin22 0 0 0

σin33 0 0

σin44 σin45

σin55



4.2 The Cross Nested Logit model

A solution to the problem of missed correlations between alternatives that do not belong to the
same nest is the Cross-Nested Logit (CNL) model. Recently, it became very popular. Among
those who applied it in a transport context are Small (1987), who’s Ordered Generalised Ex-
treme Value model is mathematical identical to the CNL, Ramming (2002) for departure time
choice, Vovsha and Bekhor (1998) and for route choice and Bierlaire et al. (2001) for mode
choice. In the CNL model, each alternative can belong to more than one nest. To represent the
degree of membership to a nest, an allocation parameter 0 ≤ αim ≤ 1 is introduced. Thus, the
utility function of the CNL (Ben-Akiva and Bierlaire, 1999) can be formulated as:

Uin = V ′in + εin + VCnm + εCnm + ln αim (12)

with εin and εCnm being defined the same way as for equation 7. The choice probability for an
alternative i has then to be calculated over all nests m it partially belongs to:

P (i|Cn) =
M∑
m=1

P (Cmn|Cn) · P (i|Cmn) (13)
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It is important to note, that any functional relationship can be defined for the allocation param-
eter αim depending on the choice context, though often, simple point-estimates are used. Abbe
et al. (2007) derived a normalisation for αim which is:∑
m

α
µ
µm
im = c,∀j ∈ Cn (14)

where c is a constant that does not depend on i.

Thus, the CNL is theoretically able to depict all kinds of correlation structure by allowing the
error-terms of alternatives that are somehow nested together to be correlated. The following
example shows the matrix for a five alternative, three nests example, with the following mem-
bership structure: alternative 1 belongs to nest a, alternative 2 to nests a and b, alternative 3 to
nest b, alternative 4 to nests b and c and alternative 5 to nest c.
σin11 σin12 0 0 0

σin22 σin23 σin24 0

σin33 σin34 0

σin44 σin45

σin55


However, in practice the CNL model soon leads to highly complex structures, which make it
difficult to specify and computationally hard to estimate.

Since Ben-Akiva and Bierlaire (1999), the CNL model has been extensively scrutinised. Papola
(2004) for example conjectured that the covariance of the utilities of two different alternatives
depends not only on the inclusion into one nest, but on the degree of membership of both
alternatives to the same nest and implied a linear relation between the NL correlations and the
CNL correlations. He validated this assumption starting with the observation that the CNL
model is a generalisation of a two-level NL model. However, Abbe et al. (2007) demonstrated
that this supposition is only a fairly good approximation for the limited case, when the CNL
model has only bipolar shared alternatives.

4.3 The Generalised Nested Logit model

To derive a more general formulation of the CNL, Wen and Koppelman (2001) proposed the
Generalised Nested Logit (GNL) model. It summarises the NL, CNL and other NL derivates
such as the Paired Combinatorial Logit model by Koppelman and Wen (2000) through normal-
isation of the CNL model structure. The GNL model fractionally assigns each alternative to
an nest and different LOGSUMs can be calculated for each nest. The normalisation of Wen
and Koppelman (2001) was formally proved by Abbe et al. (2007). Furthermore, the latter give
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guidance to derive a CNL model from any arbitrary variance-covariance structure.

4.4 The Network GEV model

Another approach of generalisation was proposed by Bierlaire (2002) with the Network GEV
(NGEV) model. The author showed that any correlation structure represented by a network
with certain properties can be modelled with a NGEV model and furthermore, that every such
model is indeed a GEV model. Thereby, the properties for the network are straightforward: The
network is not allowed to include circuits, it has to have one root node without predecessors, the
alternatives have to be represented by leafs without successors, and each node in the network
has to be part of a continuous path between the root and one alternative. This model formula-
tion is especially appealing because of its intuitive way of capturing even complex correlation
structures. It eases the formulation of a complex model by its recursive definition.
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5 Probit and Mixed Multinomial Logit models

Recently, it has been popular to develop discrete choice models that overcome the IIA property
by opening the variance-covariance structure. The most extensive of these models is the Multi-
nomial Probit model. Mixed Multinomial Logit models aim to combine Probit-like error terms
with the closed-form of the MNL model. Both model forms are briefly described in the fol-
lowing. Subsequently several studies that successfully employed MMNL models to transport
choice problems are presented.

5.1 The Probit model

In the Probit model, discussed for example by (Daganzo, 1979), multivariate Normal distributed
error terms replace the i.i.d. Gumbel distributed ones of the MNL resulting in the most general
variance-covariance structure:
σin11 σin12 σin13 σin14 σin15

σin22 σin23 σin24 σin25

σin33 σin34 σin35

σin44 σin45

σin55


Thus, any variance-covariance structure can be specified and all kinds of correlation structures
between the alternatives of the choice set can be depicted. Probit model have for example been
applied by Yai et al. (1997) or Daganzo and Sheffi (1977) to private transport route choice prob-
lems. The respective authors specified models, in which the covariances of the route utilities
are proportional to the length of link overlaps. However, the formulation of the probit model is
complex and its utility function does not have a closed form. It can not be solved analytically
and requires simulation for estimation as well as application. Thus, it is only applicable if the
number of parameters and alternatives is small.

5.2 The Mixed Multinomial Logit models

The family of Mixed Multinomial Logit (MMNL) or Logit Kernel (LK) models was proposed
by Walker (2001) with the aim to combine the advantages of a Probit model with those of
a Logit model. Two conceptually different but mathematically identical approaches of the
MMNL model exist: the Error-Components Logit (ECL) and the Random-Coefficients Logit
(RCL). In the ECL model the systematic part Vin of the utility function is split into a deter-
ministic component V ′in and a random error component ηin. ηin is generally assumed to be
multivariate Normal distributed. Correlation is introduced by allowing some alternatives to
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share the same error component. The RCL model accommodates unobserved variation across
individuals in their sensitivity to observed exogenous variables by specifying some entries of
the vector β in the equation Vin = f(β, xin) to be random variables. This can also be repre-
sented by adding a multivariate Normal distributed variable ηin to the utility function. Thus,
for the ECL as well as the RCL model the utility function can be denoted as follows:

Uin = V ′in + ηin + εin (15)

V ′in is re-formulated using only the attributes of the alternatives, the decision maker and the
choice situation while ηin is a multivariate randomly distributed error term that captures simi-
larities which cannot be modelled deterministically.

In the present context, the ECL approach is of special interest. By specifying the structure of
the error-components such that a given set of alternative shares an error-component, correlation
between these alternatives is allowed for. In theory, the resulting model can approximate any
correlation structure, including heteroscedastic ones, arbitrarily closely. As such, the model
can also replicate the variance-covariance matrix of the general Probit model. Like the Probit
model, the ECL model has the disadvantage that simulation is required in estimation and appli-
cation. In addition, imposing the right identification restrictions so that a unique solution can
be obtained from the infinite set of optimal solutions of the unconstrained model is a difficult
and time-consuming business and an often overlooked one as argued in Walker (2002). If the
MMNL model additionally allows for random taste variation (e.g. in an RCL framework), these
problems go much further because before identification issues can be solved, the appropriate
distribution function for the random parameters has to be determined. This altogether makes
the model difficult to be applied in large-scale forecasting systems. For further discussion see
Walker (2002), Walker et al. (forthcoming) and Ben-Akiva and Bolduc (1996).

Yet, several studies have successfully applied MMNL models to transport related choice prob-
lems. Private transport route choice problems have for example been examined by Bekhor et al.

(2001), Ramming (2002) and Frejinger and Bierlaire (2007). Guo and Bhat (2005) presented
an MMNL model for residential location choice while Hess et al. (2005) modelled mode choice
employing an MMNL model.

Bekhor et al. (2001) and Ramming (2002) used the 1997 Transportation Survey of Faculty and
Staff conducted by the MIT Planning Office to estimate MMNL models for 188 observations
with a maximum of 51 and a median of 30 route alternatives. They assume that the covariances
are proportional to free flow travel time of path overlaps.

Frejinger and Bierlaire (2007) on the other hand developed a different approach. Correlation
is not established using link overlaps but so-called subnetwork components. A subnetwork
component is a subsection of the route network consisting of a continuous sequence of links
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that are easily identifiable and behaviourially relevant. Subnetwork components can either be
derived from the network hierarchy or from route descriptions in personal interviews. Paths
sharing a network component are assumed to be correlated even if they are not physically
overlapping. Thus, correlation is rather defined from a behavioural point of view. The authors
tested different model specifications with subnetworks based on a data set containing 2978
observations from for cars in the city of Borlaenge, Sweden. The choice set size ranges from 2
to 43 alternative path with a majority of choice sets containing less that 15 paths.

In addition, it is interesting to note that Ramming (2002) as well as Frejinger and Bierlaire
(2007) include a Path Size factor (c.f. section 6.2) to explicitly account for further correlations
between alternatives. In both cases the MMNL models with Path Size factor outperform those
without. Yet, all MMNL models result in better model fits than the basic MNL model with Path
Size factor.

The Mixed Spatially Correlated Logit (MSCL) model suggested by Guo and Bhat (2005) com-
bines an MMNL model with a Paired Generalised Nested Logit model. It has been developed
for residential location choice. The PGNL structure accounts for correlations between adjacent
spatial units whereas the mixing Normal distribution captures unobserved taste heterogeneity.
The approach was applied to model the residential location choice of 236 households within
parts of Dallas County for zones of different sizes and characteristics. The authors found that
the Mixed GEV combining a closed-form correlation structure with an open-form account for
taste variations resulted in a good model-fit and at the same time computational efficiency com-
pared to a pure MMNL model.

A Mixed GEV model was also applied by ? to model data from a Stated Preference long-
distance mode choice survey in Switzerland. The aim of the survey was to estimate the hypo-
thetical demand for a new transport system in Switzerland, the so-called Swiss Metro (c.f. Abay
(1999) (in German) and Bierlaire et al. (2001)). Nested Logit and Cross Nested Logit models
(c.f. section 4.1 and 4.2) are combined with Normal distributed random terms to capture taste
heterogeneity. The results emphasised, that there is a significant risk of confounding effects
of taste heterogeneity and correlation since these two phenomena are not necessarily clearly
distinguishable. This is especially pointed out by the difficulties the authors experienced with
the estimation of the Mixed CNL model that were only partly due to the model complexity.
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6 Including similarity factors in the utility function

The inclusion of a similarity factor in the systematic part of the utility function can be derived
from the implicit availability/perception model (IAP) presented in Cascetta et al. (1996). They
state that an individual is not able to consider all alternatives of the universal choice set because
of the individual’s imperfect knowledge and his or her limited information processing abilities.
Whether an alternative is evaluated depends directly on its availability and the decision-maker’s
perception. The alternatives considered are a subset of the universal choice set: the individual
choice set Cn of decision-maker n. For decision-maker n the degree of membership of an
alternative i to the choice set Cn is represented by the variable ϑin. The probability of choosing
an alternative from the universal choice set hence depends on the probability that this alternative
is included in the individual choice set, and the choice probability of the alternative within this
restricted choice set. With the re-formulated utility function

Uin = V ′in + ϑin + εin (16)

the new choice probability for alternative i is

P (i|Cn) =
eµ(V ′in+lnϑin)∑
j e

µ(V ′jn+lnϑjn)
(17)

Again, V ′in is reformulated and εin remains i.i.d. Gumbel distributed. The crucial aspect of these
approaches is the appropriate choice of ϑin. Since there are still no correlations between the
error terms, the variance-covariance matrix is the same as for the MNL model. All similarities
are captured as systematic attributes of the alternatives.

All the approaches below are based on this general idea but differ in the specification of ϑin. In
the majority of cases, ϑin represents the independence of alternative i from all other alternatives
of the universal choice set. Thereby, the dependency of two alternatives is usually equivalent to
their degree of equality. Except for the Competing Destinations model by Fotheringham (1988),
the underlying assumption is that the independence of an alternative increases its probability
to be perceived as a separate alternative. However, recent empirical evidence shows that this
assumption can not be hold in every case. There are situations where similarities between
alternatives are perceived positive and this effect outweighs the statistical effect.

6.1 C-Logit

When establishing the IAP model, Cascetta et al. (1996) proposed also a way to account for
similarities in private transport route choice, the so-called C-Logit model. The Commonality
Factor CFin indicates the percentage of route length that route i shares with other routes by
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comparing the total length of route i with the length of the overlapping links. Cascetta et al.

(1996) proposed four different formulations for CFin:

CFin = −βCF · ln
∑
j∈Cn

(
Lij√
Li · Lj

)γ

(18)

CFin = −βCF · ln
∑
a∈Γi

la
Li
Nan (19)

CFin = −βCF ·
∑
a∈Γi

la
Li
lnNan (20)

CFin = −βCF · ln

[
1 +

∑
j∈Cn,i 6=j

(
Lij√
Li · Lj

)(
Li − Lij
Lj − Lij

)]
(21)

where β and γ are coefficients, that have to be estimated, Lij is the length of links shared by i
and j, Γi the set of links of route i, la the length of link a, and Nan number of links using link
a. Thus, the choice probability of route i is

P (i|Cn) =
eµ(V ′in+CFin)∑
j e

µ(V ′jn+CFin)
(22)

Unfortunately, there is no theoretical guidance to which of these formulations should be used.
Cascetta et al. (1996) themselves applied Equation 19 whereas Equation 18 is used by Ram-
ming (2002) and Cascetta et al. (2002), and Equation 21 is evaluated by Prato and Bekhor
(2007) and Ramming (2002).

Vrtic (2003) used the formulation in Equation 18 and combined it with a Nested Logit model to
the Nested C-Logit (NCL) model. The NCL model was developed for a simultaneous route and
model choice model. The nesting structure accounts for similarities between private transport
and public transport alternatives respectively. Deterministic correlations within the nests on the
other hand are captured by the Commonality Factor that depicts a route’s similarity with other
routes in terms of the route length.

6.2 Path Size Logit

The Path Size (PS) Logit model of Ben-Akiva and Bierlaire (1999) was also developed for
private transport route choice problems. The length of each route is corrected by the so-called
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path size PSin. Only a distinct route, i.e. a route with no overlaps with other routes, can get
the maximum path size of one. Path sizes different from one are calculated based on the length
of the links within the route i and the length of the routes that share a link with it relative to the
length of the shortest route using the link. Accordingly, the choice probability for route i is

P (i|Cn) =
eµ(V ′in+lnPSin)∑
j e

µ(V ′jn+lnPSin)
(23)

Ben-Akiva and Bierlaire (1999) propose two different formulation for PSin, the first one being

PSin =
∑
a∈Γi

(
la
Li

)
1∑

j∈Cn δaj
(24)

where Γi is the set of all links of path i, la is the length of link a, and Li the length of path i.
δaj equals one if link a is on path i and zero otherwise. The second formulation additionally
accounts for the relative ratio between the length of the shortest path L∗Cn in Cn and the length
of all paths using link a.

PSin =
∑
a∈Γi

(
la
Li

)
1∑

j∈Cn δaj
L∗Cn
Lj

(25)

Ramming (2002) states that this model formulation has a major shortcoming: Its second term
is not affected by the length of other then the shortest route if a link is used by more than one
route. Thus, he derived a General Path Size (GPS) factor. He reformulates the second part
of Ben-Akiva and Bierlaire’s Path Size factor to account for the contribution of the individual
links. The basic idea is to give each link the size one and to allocate this size among the routes
using that link. The size of a route is then calculated as the sum of its link sizes weighted
according to the length of the route compared with other routes sharing that link. The influence
of this weighting is given by the size allocation parameter γ.

GPSin =
∑
a∈Γi

(
la
Li

)
1∑

j∈Cn(Li
Lj

)γδaj
(26)

Especially for large γ, Ramming (2002) achieved the best model results for γ = ∞, this
formulation assigns the size of a shared ling primarily to the shortest path using that link.

However, Hoogendoorn-Lanser et al. (2005), who applied the PS factor and the GPS factor
to multi-modal route choice, as well as Frejinger and Bierlaire (2007) found the interpretation
of this approach difficult. In contrast to the original PS factor that can be interpreted as an
approximation of the variance-covariance matrix, the GPS factor introduces asymmetry into
the model by explicitly favouring the shortest route. In addition, the empirical analysis of the
GPS factor showed that it captures part of the explanatory power of the variables related to the
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units the GPS factor is measured in. Furthermore, Hoogendoorn-Lanser et al. (2005) expressed
the need to have a close look at the value of γ before applying it and to explicitly estimate βPS ,
which had been fixed to one by Ramming (2002) and Ben-Akiva and Bierlaire (1999).

6.3 Competing Destinations

Another derivation of the IAP model is provided by Fotheringham (1988) with the Competing
Destinations (CP) model. He states that the probability for an alternative to be chosen by
the decision-maker depends on its probability to be included in his or her choice set. This
probability depends on its similarity with other alternatives and can be specified in different
ways according to the decision-context. Mathematically, the CP approach is identical with the
IAP model with the choice probability for alternative i being

P (i|Cn) =
eµ(V ′in+lnCPin)∑
j e

µ(V ′jn+lnCPjn)
(27)

However, the CP model bases on the assumption that close geographic proximity to other stores
increases the probability of a store to be included in the decision-maker’s choice set instead of
decreasing it. Fotheringham (1988) suggests two specifications for the context of consumer
store choice. The first formulation, taken from Fotheringham (1983), sums up the distances dij
of a store i to all other stores j in the universal choice set C containing I stores, weighted by
the utility of the other stores j.

CPin =

(
1

I − 1

∑
j,j 6=i

V ′in
dij

)θ

(28)

The second formulation, originally been proposed by Borgers and Timmermans (1987), simply
accounts for the average distance of store i to all other stores.

CPin =

(
1

I − 1

∑
j,j 6=i

dij

)θ

(29)

Both measures result in lower values for spatially isolated stores, thus, the probability of an
alternative to be chosen is decreased.

6.4 Prospective utilities

Kitamura (1984) also prosecuted the aim to refine destination choice modelling. He stated that
dependencies between destinations not only exist in spatial but also in temporal and causal
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dimensions. His argumentation is in line with the recent activity based research that empha-
sises the importance of trip chains for destination choice. Thus, Kitamura (1984) developed
a destination choice model that accounts for trip chaining effects by introducing a factor of
Prospective Utility (PU) Ujn into the systematic part of the utility function:

Uin = V ′in + PUin + εin = V ′in +
∑
j

qjn(Ujn θ dij) + εin (30)

with qjn being the subjective probability that decision-maker n carries out an activity in zone j
after his activity in zone i, djn the spatial distance between i, and j and θ the disutility parameter
for dij . PUin can be interpreted as a measure of perceived accessibility of zone i. It can be
modified to account for different trip purposes and due to it recursiveness also for longer trip
chains.

6.5 The Independence of a Connection

Most similarity factors developed so far have been either designed for private transport route
choice or for spatial choices. Only little attention has been paid to public transport connection
or multi-modal route choice. Exceptions are Hoogendoorn-Lanser and Bovy (2007), Cascetta
and Papola (2003) and Friedrich et al. (2001). Whereas most similarity factors focus on a
spatial dimension of similarity, the influence of the spatial dimension is less decisive for public
transport connection choice and mainly restricted to shared transfer points. Instead, temporal
aspects are highly relevant, especially for inter-urban public transport. While Hoogendoorn-
Lanser and Bovy (2007) found the use of the same public transport leg to be the significant
description for overlaps in multi-modal route choice, Cascetta and Papola (2003) demonstrated
that correlations between departure times are much stronger than those between the same public
transport modes. Another important aspect for public transport similarity measure is the fare.

Thus, Friedrich et al. (2001) designed a similarity measure specifically for public transport
connection choice, the Independence of a Connection (IND) factor. It enters the systematic
part of the utility function and thus the choice probability of alternative i.

P (i|Cn) =
eµ(V ′in+ln INDin)∑
j e

µ(V ′jn+ln INDjn)
(31)

IND is defined as the reciprocal of the sum of similarities of alternative i with all other alter-
natives j in the choice set.

INDin =
1∑

j fi(j)
(32)

21



Recent developments regarding similarities in transport modelling August 2007

The similarity itself is measured considering the time gap between corresponding departure
(DEP) and arrival (ARR) times and the differences in perceived journey time (PJT) and price.

fi(j) =

(
1− xi(j)

sx

)
·
(

1− γ ·min
{

1,
sz · |yi(j)|+ sy · |zi(j)|

sy · sz

})
(33)

where xi(j) = |DEP (i)−DEP (j)|+|ARR(i)−ARR(j)|
2

,

yi(j) = PJT (j)− PJT (i), and

zi(j) = price(j)− price(i).

sx, sy and sz set the range of influence of xi(j) , yi(j) and zi(j) respectively. sy and sz depend
on the sign of yi(j) and zi(j) in order to model the asymmetry between connections. If there
is a difference in terms of perceived journey time, the superior connection will exert a stronger
influence on the inferior one, the same applies for the price.

Weis (2006) and van Eggermond et al. (2007) applied this measure. Weis (2006) examined
ground-based public transport and had no price data available. He found, that similarities be-
tween alternatives have a negative influence on their choice probabilities, which complies with
the assumptions of the IAP model. Contrarily, van Eggermond et al. (2007), who analysed air
transport choice and had price data available, determined a positive influence of similarities.
This is in accordance with earlier findings by Hoogendoorn-Lanser and Bovy (2007) or Fre-
jinger and Bierlaire (2007), who showed that similarities can have a positive influence on the
utility of ground-based transport alternatives. Possible interpretations are that a positive influ-
ence can be derived from the possibility to switch routes or connections while the passenger is
traveling or to a strong preference for certain alternative attributes that are also present in the
chosen alternative such as a specific departure time, travel time or fare.

6.6 The concept of dominance

The concept of dominance has been lately introduced by Cascetta et al. (2007) for the context
of residential location choice. The basic assumption is that an alternative is less likely to be
taken into account if it is dominated by other alternatives. Thus, a dominance factor DFin is
calculated for each alternative i, indicating the number of alternatives dominating i. Analogous
to the IAP model DFin can than be included in the utility function. On the other hand it can be
used for choice set generation.

According to Cascetta et al. (2007) an alternative j dominates alternative i, if the utility of all
characteristics of j is higher than (or equal to) that of the equivalent characteristic of i. In addi-
tion, even stronger dominance rules can be defined by the modeller with the help of thresholds
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or specific similarity factors. Cascetta et al. (2007) cite two specifications of dominance mea-
sures for their problem of residential location choice that use distance as impedance measure.

Cascetta and Papola (2005) assume in their measure for destination choice that alternative j
dominates alternative i if the attractiveness of j is greater than that of i while at the same time
the generalised costs coj of getting from origin o to destination j are smaller than those of
getting from o to i.

The second dominance measure originates from Stouffer (1960) and refers to the concept of
intervening opportunities. In order to dominate i, destination j has to fulfil the conditions
formulated by Cascetta and Papola (2005) and in addition being situated on the path from
origin o to destination i. In this case j is an intervening opportunity on the path to i.

6.7 The Sequence Alignment method

Joh et al. (2001) used the Sequence Alignment Method (SAM) to examine the similarity be-
tween alternatives, that compromise multiple characteristics, which themselves have a mul-
tivariate description. A transport example are activity patterns. Activity patterns consist of
multiple activities, that each have several properties such as type, mode, location, duration.
The SAM employs the concept of biological distance rather than geometrical distance. Biolog-
ical distance is defined as the smallest number of attribute changes (mutations) that is necessary
to equalise two alternatives. With the help of this measure not only the types of attributes are
considered but also their sequential order. This facts makes the SAM extremely valuable for ac-
tivity pattern analysis. It is very flexible and allows to determine a simple measure of similarity
even for alternatives with different types of attributes and complex interdependencies.

Joh et al. (2001) did not apply their similarity measure to discrete choice modelling but used
it for the classification of activity patterns and for goodness-of-fit measures in activity based
modelling. However, it is an promising approach to capture similarities of multi-dimensional
alternatives and can be used in discrete choice modelling through the IAP model.

6.8 Dependencies between decision-makers

The focus of the work presented by Mohammadian et al. (2005) was set on the introduction of
spatial dependencies between decision-makers instead of alternatives. They developed a Mixed
Logit model for new housing projects that accounts for taste heterogeneity and correlations
between alternatives. In addition, a spatial dependency parameter ρ is introduced into the
systematic part of the utility function to account for spatial correlation between the decision-
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makers.

Uin = V ′in +
S∑
s=1

ρnsiysi + εin (34)

where s = 1, ..., S are the decision-makers who’s choice influences the choice of decision-
maker n while evaluating alternative i and yin is equal to one if decision-maker s has chosen
alternative i and zero otherwise. The spatial parameter ρ is a matrix of coefficients representing
the influence that the choice of one decision-maker has on another decision-maker while he
chooses alternative i. According to Mohammadian et al. (2005) it is defined as

ρnsi = λe−
Dns
γ (35)

with Dns being the spatial distance separating decision-maker n and s, and λ and γ being
parameters to be estimated.

Dugundji and Walker (2005) also focussed on the explicit account for dependencies between
decision-makers instead of alternatives. They employed a so-called Field Effect Variable in the
deterministic part of the utility function. This variable represents the dependency of a decision-
maker’s choice on the overall share of connected decision-makers that choose the alternative
in question. However, instead of capturing only spatial dependencies, they suggest a network
structure to represent any kind of dependencies between decision-makers, especially social
ones. In the dependency network, each decision-makers is symbolised by a node and his or
her dependencies by links. Correlations between alternatives and taste heterogeneities in this
model have been captured by a CNL model.
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7 Evaluation of the different approaches and conclusions

Today the significance of an appropriate representation of similarities between discrete choice
alternatives is undoubted and a lot of research effort has been dedicated to this problem. How-
ever, no completely satisfactory solution has yet been developed for the context of transporta-
tion modelling. Transportation choice problems such as route choice or destination choice are
characterised by large sets of alternatives with often overlapping characteristics. Hence, models
are needed that are able to handle large choice sets and do not require too much effort for com-
putation, specification and identification and are thus applicable to practical problems. On the
other hand similarities between alternatives can be very complex. They can be related to differ-
ent attributes and have different levels of influence on the utility a decision-maker receives from
a specific alternative. Thus, suitable approaches have to be flexible and able to accommodate
various and complex similarity structures.

This is especially true for a combined route mode and destination choice model. As the studies
cited above show, similarities exist for each individual step of the traditional four step approach.
In addition, the model steps themselves are interrelated. Destinations can for example be sit-
uated on the same route or can be reached with the same transport mode. Consequently, only
a simultaneous consideration of route, mode and destination choice would allow a realistic
representation of transport decisions. However, such a model is highly complex, even with-
out accounting for similarities. Thus, computational efficiency is even more important than
for models comprising only one model step. On the other hand, also the similarities between
alternatives in such a model tend to comprehend multiple levels and dimensions and need to
be thoroughly defined. Hence, none of the similarity measures presented in this paper is off-
hand suitable for a combined route, mode and destination choice model. Yet, some of them are
promising starting points.

The family of GEV models can provide the framework for the combined route, mode and des-
tination choice model. Due to the closed form formulation of these models, especially the
Nested Logit model will be useful to capture parts of the similarities for example of mode
choice alternatives. In addition these models can be combined with other similarity measures
in a straight-forward way. An application of the Cross-Nested Logit model, however, is prob-
ably not reasonable. Though it is able to depict nearly all kind of correlation structures, its
formulation, identification and estimation are already very costly for one level choice situation.
This makes it not useful for a combined model with a large set of alternatives and multi-level
correlations.

The same applies for the Probit model and most of the Mixed Logit formulations presented
in section 5. They represent similarities and correlations between alternatives of the choice
set very well and are applicable to any choice situation as demonstrated by various examples.
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Furthermore they improve the overall model fit significantly and much more than any of the
similarity factor models. However, the effort needed for the specification, identification and
estimation of the model, also including simulation methods for estimation as well as applica-
tion, makes it most likely that these models can not be used for the problem at hand. This goes
notwithstanding that some of the approaches presented here, especially the subnetwork model
by Frejinger and Bierlaire (2007), constitute interesting approaches and should be further in-
vestigated in this context.

The general idea of the models described in section 6 to apply similarities factors in the de-
terministic part of the utility function is very appealing because of its simplicity and elegance.
Instead of structuring the choice set a priori and taking the chance of misleading assumptions
about correlations, only the type of similarities is specified. This type accounts for the indi-
vidual characteristics of the alternatives in the choice set and imposes a value to the impact of
specific interdependencies. Practical applications of the models described here demonstrated,
that the IIA property has been well accounted for and the models could be estimated with
relatively low computational costs even for large sets of alternatives.

However, these models also suffer from some shortcomings. For example they do not take into
account taste heterogeneity. But more important they are designed with respect to a specific
choice context and usually miss some aspects of the correlation between alternatives. While
similarity factors for some choice situations have been extensively investigated and appropriate
factors, such as the Path Size factor for private transport route choice, have been established
similarities in other choice situations have hardly been tackled. Particularly public transport
connection choice and destination choice need further investigation to derive a combined route,
mode and destination choice model.

Another research issue concerns the question wether similarities have positive or negative influ-
ence on the utility. Theory suggests a negative influence since the probability of being perceived
as a distinct alternative is decreased. However, recent studies demonstrated that this can be su-
perimposed by positive evaluations of similarities derived for example from the possibility of
switching between alternatives. This question requires further investigation.

26



Recent developments regarding similarities in transport modelling August 2007

References

Abay, G. (1999) Nachfrageabschätzung Swissmetro: Eine Stated-Preference Analyse, F1 edn.,
Berichte des Nationalen Forschungsprogrammes 41: Verkehr und Umwelt, Eidgenössische
Drucksachen- und Materialzentrale, Bern.

Abbe, E., M. Bierlaire and T. Toledo (2007) Normalization and correlation of cross-nested logit
models, Transportation Research Part B: Methodological, 41 (7) 795–808.

Bekhor, S., M. E. Ben-Akiva and M. S. Ramming (2001) Adaptation of logit kernel to route
choice situation, in TRB (ed.) the 80th Annual Meeting of the Transportation Research

Board, Washington, D.C., Jan. 2001.

Ben-Akiva, M. E. (1973) Structure of passenger travel demand models, Ph.D. Thesis, Mas-
sachusetts Institute of Technology, Cambridge.

Ben-Akiva, M. E. (1974) Structure of passenger travel demand models, Transportation Re-

search Record, 526.

Ben-Akiva, M. E. and M. Bierlaire (1999) Discrete choice methods and their applications
to short-term travel decisions, in R. Hall (ed.) Handbook of Transportation Science, 5–34,
Kluwer, Dordrecht.

Ben-Akiva, M. E. and D. Bolduc (1996) Multinomial probit with a logit kernel and a general
parametric specification of the covariance structure, in ICS (ed.) the 3rd Invitational Choice

Symposium.

Ben-Akiva, M. E. and S. R. Lerman (1985) Discrete Choice Analysis: Theory and Application

to Travel Demand, MIT Press, Cambridge.

Bierlaire, M. (2002) The Network GEV model, in STRC (ed.) the 2nd Swiss Transport Re-

search Conference (STRC), Ascona, Mar. 2002, http://www.strc.ch/2002.html.

Bierlaire, M., K. W. Axhausen and G. Abay (2001) The acceptance of modal innovation : The
case of swissmetro, in STRC (ed.) the 1st Swiss Transport Research Conference (STRC),
Ascona, Mar. 2001, http://www.strc.ch/2001.html.

Borgers, A. W. J. and H. J. P. Timmermans (1987) Choice model specification, substitution and
spatial structure effects: A simulation experiment, Regional Science and Urban Econimics,
17, 29–47.

Cascetta, E., A. Nuzzola, F. Russo and A. Vitetta (1996) A modified logit route choice model
overcoming path overlapping problems: Specification and some calibration results for in-
terurban networks, in J. B. Lesort (ed.) Proceedings of the 13th International Symposium on

Transportation and Traffic Theory, 697–711, Pergamon, Oxford.

27

http://www.strc.ch/2002.html
http://www.strc.ch/2001.html


Recent developments regarding similarities in transport modelling August 2007

Cascetta, E., F. Paliara and K. W. Axhausen (2007) The use of dominance variables in choice
set generation, in WCTRS (ed.) the 11th World Conference on Transportation Research,
Berkeley, Jun. 2007.

Cascetta, E. and A. Papola (2003) A joint mode-transit service choice model incorporating the
effect of regional transport service timetables, Transportation Research Part B: Methodolog-

ical, 37 (7) 595–614.

Cascetta, E. and A. Papola (2005) Dominance among alternatives in random utility models: A
general framework and an application to destination choice, in ETC (ed.) European Trans-

port Conference, Strasbourg, Oct. 2005.

Cascetta, E., F. Russo, F. A. Viola and A. Vitetta (2002) A model of route perception in urban
road networks, Transportation Research Part B: Methodological, 36 (7) 577–592.

Daganzo, C. F. (1979) Multinomial Probit: The theory and its application to demand forecast-

ing, Academic Press, New York.

Daganzo, C. F. and Y. Sheffi (1977) On stochastic models of traffic assignment, Transportation

Science, 11 (3) 253–274.

Debreu, G. (1960) Review of R.D. Luce individual choice behavior, American Economic Re-

view, 50, 186–188.

Dugundji, E. R. and J. L. Walker (2005) Discrete choice with social and spatial network in-
terdepencies: An empirical example using mixed gev models with field and "panel" effects,
in TRB (ed.) the 84th Annual Meeting of the Transportation Research Board, Washington,
D.C., Jan. 2005.

Fotheringham, A. S. (1983) A new set of spatial interaction models: The theory of competing
destinations, Environment and Planning A, 15, 15–36.

Fotheringham, A. S. (1988) Consumer store choice and choice set definition, Marketing Sci-

ence, 7 (3) 299–310.

Frejinger, E. and M. Bierlaire (2007) Capturing correlation with subnetworks in route choice
models, Transportation Research Part B: Methodological, 41 (3) 363–378.

Friedrich, M., I. Hofsäss and S. Wekeck (2001) Timetable-based transit assignment using
branch and bound techniques, Transportation Research Record, 1752, 100–107.

Gower, J. C. (1985) Measures of similarity, dissimilarity, and distance, in S. Kotz, N. L. Johnson
and C. B. Read (eds.) Encyclopedia of Statistical Sciences, vol. 5, 397–405, John Wiley &
Sons, New York.

28



Recent developments regarding similarities in transport modelling August 2007

Guo, J. Y. and C. R. Bhat (2005) Operationalizing the concept of neighborhood: Application
to residential location choice analysis, in TRB (ed.) the 84th Annual Meeting of the Trans-

portation Research Board, Washington, D.C., Jan. 2005.

Hess, S., M. Bierlaire and J. W. Polak (2005) Capturing taste heterogeneity and correlation
structures with Mixed GEV models, in TRB (ed.) the 84th Annual Meeting of the Trans-

portation Research Board, Washington, D.C., Jan. 2005.

Hoogendoorn-Lanser, S. and P. H. L. Bovy (2007) Modeling overlap in multi-modal route
choice by inclusion of trip part specific path size factors, in TRB (ed.) the 86th Annual

Meeting of the Transportation Research Board, Washington, D.C., Jan. 2007.

Hoogendoorn-Lanser, S., R. van Nes and P. H. L. Bovy (2005) Path size and overlap in mul-
timodal transport networks, in H. S. Mahmassani (ed.) Flow, Dynamics and Human Inter-

action - Proceedings of the 16th International Symposium on Transportation and Traffic

Theory, 63–83, Elsevier, Oxford.

Joh, C.-H., T. A. Arentze and H. J. P. Timmermans (2001) A position-sensitive sequence align-
ment method illustrated for space-time activity-diary data, Environment and Planning A,
33 (2) 313–338.

Kitamura, R. (1984) Incorporating trip chaining into analysis of destination choice, Transporta-

tion Research Part B: Methodological, 18 (1) 67–81.

Koppelman, F. S. and C.-H. Wen (2000) The paired combinatorial logit model: Properties,
estimation and application, Transportation Research Part B: Methodological, 34 (2) 75–89.

McFadden, D. (1974) Conditional logit analysis of qualitative choice-behaviour, in P. Zarembka
(ed.) Frontiers in Econometrics, Academic Press, New York.

McFadden, D. (1978) Modeling the choice of residential location, in A. Karlqvist (ed.) Spatial

Interaction Theory and Residential Location, 75–96, North-Holland, Amsterdam.

Mohammadian, A. K., M. Haider and P. S. Kanaroglou (2005) Incorporating spatial dependen-
cies in random parameter discrete choice models, in TRB (ed.) the 84th Annual Meeting of

the Transportation Research Board, Washington, D.C., Jan. 2005.

Papola, A. (2004) Some development on the cross-nested logit model, Transportation Research

Part B: Methodological, 38 (9) 833–851.

Prato, C. G. and S. Bekhor (2007) Modeling route choice behavior: How relevant is the choice
set composition?, in TRB (ed.) the 86th Annual Meeting of the Transportation Research

Board, Washington, D.C., Jan. 2007.

29



Recent developments regarding similarities in transport modelling August 2007

Ramming, M. S. (2002) Network knowledge and route choice, Ph.D. Thesis, Massachusetts
Institute of Technology, Cambridge.

Small, K. A. (1987) A discrete choice model for ordered alternatives, Econometrica, 55 (2)
409–424.

Stouffer, S. A. (1960) Intervening opportunities and competing migrants, Journal of Regional

Science, 2, 1–26.

van Eggermond, M., N. Schüssler and K. W. Axhausen (2007) Accounting for similarities in air
transport route choice, Working Paper, XXX, IVT, ETH Zurich, Zurich, https://www.
ivt.ethz.ch/vpl/publications/reports/index/edit/abxxx.pdf.

Vovsha, P. and S. Bekhor (1998) The link-nested logit model of route choice: Overcoming the
route overlapping problem, Transportation Research Record, 1645, 133–142.

Vrtic, M. (2003) Simultanes Routen- und Verkehrsmittelwahlmodell, Ph.D. Thesis, Technical
University Dresden, Dresden.

Walker, J. L. (2001) Extended discrete choice models: Integrated framework, flexible error
structures, and latent variables, Ph.D. Thesis, Massachusetts Institute of Technology, Cam-
bridge.

Walker, J. L. (2002) The mixed logit (or logit kernel) model: Dispelling misconceptions of
identification, Transportation Research Record, 1805, 86–98.

Walker, J. L., M. E. Ben-Akiva and D. Bolduc (forthcoming) Identification of parameters in
normal error component logit-mixture (NECLM) models, Journal of Applied Econometrics.

Weis, C. (2006) Routenwahl im ÖV, Master Thesis, IVT, ETH Zurich, Zurich.

Wen, C.-H. and F. S. Koppelman (2001) The generalized nested logit model, Transportation

Research Part B: Methodological, 35 (7) 627–641.

Yai, T., S. Iwakura and S. Morichi (1997) Multinomial probit with structured covariance for
route choice behaviour, Transportation Research Part B: Methodological, 31 (3) 195–208.

30

https://www.ivt.ethz.ch/vpl/publications/reports/index/edit/abxxx.pdf
https://www.ivt.ethz.ch/vpl/publications/reports/index/edit/abxxx.pdf

	Introduction
	The MNL model and its IIA property
	Accounting for similarities between discrete choice alternatives
	Generalised Extreme Value models
	The Nested Logit model
	The Cross Nested Logit model
	The Generalised Nested Logit model
	The Network GEV model

	Probit and Mixed Multinomial Logit models
	The Probit model
	The Mixed Multinomial Logit models

	Including similarity factors in the utility function
	C-Logit
	Path Size Logit
	Competing Destinations
	Prospective utilities
	The Independence of a Connection
	The concept of dominance
	The Sequence Alignment method
	Dependencies between decision-makers

	Evaluation of the different approaches and conclusions
	Bibliography

