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Abstract

In a network with capacity constraints congestion effeatshsas bottlenecks, spillbacks and
gridlocks can be observed. These can be described with aeimpgenetwork model. The
main challenge of such an approach lies in adequately gagtthie between-queue correla-
tion, which explains these congestion effects as well as ¢iverall network impact.

We present an analytic queueing network model, with finigacéy queues, where structural
parameters are used to capture the between-queue camelte describe the methods valida-
tion versus both pre-existing methods and simulation riihe.method is then applied to study
patient flow within a set of hospital units of the Geneva Ursity Hospitals. In this context the
main source of congestion is known as bed blocking. The nmuakellowed us to identify three
main sources of bed blocking and to quantify their impactruie different hospital units.
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1 Introduction

Modelling complex systems using queueing network moddtsval us to better understand
their behaviour, to estimate and ultimately to improve tipgirformance. Consider a network
of operative and post-operative hospital units where eadhisimodelled as a specific queue
and where it is the patient flow that is of main interest. Fahsa network understanding the
correlation between the occupation of the different uretg.( surgical intensive care, surgical
intermediate care) can help avoid bed blocking and impropataent’s recovery procedure.
The most researched queueing network model is the Jackseorkemodel (Jackson, 1957,
Jackson, 1963) which assumes infinite capacity for all gslet®r real systems this infinite
capacity assumption does not hold, but is often maintaineda the difficulty of grasping the
between-queue correlation structure present in finiteagpaetworks; e.g. acknowledging the
links between the behaviour of adjacent queues where athawents can take place. This cor-
relation structure helps explaining bottleneck effectd spillbacks, the latter being of special
interest in networks containing loops because they arer@sad potential deadlocks (i.e. grid-
locks) (Daganzo, 1996). In order to capture this corretaiod to estimate these congestion
effects we resort to models with finite capacities. As welgtethil in the literature review exact
analytic results are only available for small networks vgiplecific topologies. When wanting to
model larger finite capacity networks with arbitrary topgks the main complexity lies in ap-
propriately acknowledging the between-queue correlatibite maintaining a tractable model.
Finite capacity queueing network (FCQN) models have beed imsea variety of applications
such as the study of software architectures performancegBul et al., 2003), hospital patient
flow (Koizumi et al., 2005, Cochran and Bhatrti, 2006), crimifh@alv through a network of pris-
ons (Korporaal et al., 2000), pedestrian flow through catiah systems (e.g. corridors) (Cheah
and Smith, 1994), as well as numerous applications in theufaaturing sector (Papadopoulos
and Heavey, 1996). This paper is structured as follows. \Berd®e the FCQN framework and
then review the existing analysis methods. The proposechaodl approximation method are
then described, followed by their validation and their &gailon on a real scale case study.

2 General Framework

A queueing network is composed of a set of linked queuesalterecalled stations. Of interest
is the study of the flow of “jobs” throughout the network. A jisithe generic name for the units
of interest, e.g. a pedestrian, a prisoner. We consider gpeneing networks where jobs are
allowed to leave the network and where the external arrasag® from an infinite population of
jobs. We first describe the general process that a job gogsghmupon arrival to a station. Jobs
arriving to a station are either served immediately or quent@ a server becomes available.
Once a job is served it is routed to its next station, whichhisgsen according to a probability
distribution. If this destination station has finite capad¢hen it may be full. If it is full then
the job will beblocked at its current station until a server becomes availableeat#stination
station. Various blocking mechanisms, which are at thetluéapillbacks, have been defined in
the literature (Balsamo et al., 2001). They differ eithehid moment the job is considered to be
blocked (e.g. before or after service) or in the routing naeitm of blocked jobs. The blocking
mechanism that we have just described is known as blocKieg-service (BAS). The jobs are
unblocked with a First In First Out (FIFO) mechanism. Therage arrival rate to stationis
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denoted\;. Station: hasc; parallel servers, each one serves with an average.fatehe total
number of jobs allowed in the station is called the capaditthe station,K;, the buffer size
is K; — ¢;. The possible routings among stations are given by theitiam@robability matrix
(pi;), wherep;; denotes the probability that a job at statiors routed to statiory. We now
describe the existing methods allowing the analysis of FCQets.

3 Litteraturereview

A first survey of FCQN models was made by Perros, 1984, who @atealso wrote a great
historical overview of the research motivations and adeanme networks with blocking (Perros,
2003). A detailed introductory book was written by Balsamalgt2001. Surveys focusing on
specific application fields are given for the production arahuofacturing sector (Papadopoulos
and Heavey, 1996), for software architecture performaBe¢ésétmo et al., 2003), and on retrial
gueues for the telecommunications sector (Artalejo, 1999)

Exact methods

The joint stationary distribution of the network, which taims the probability of each possible
state of the network, allows us to derive the main networkgoerance measures. Exact analysis
of FCQN models, that is exact evaluation of this joint digitibn, can be obtained either in
analytic closed form or numerically. For open Jackson ndte/the joint stationary distribution
has a product form, thus the stations are independent. FONRB&between-station correlation
suggests a non-product form stationary distribution, #mect analysis of FCQN models are
limited to very small networks. Closed form analytic express for the joint distribution are
difficult to obtain and are only available for specific topgiks such as single server two or three
station tandem topologies. (Grassman and Derkic, 2000h&omand Reiser, 1978, Konheim
and Reiser, 1976, Latouche and Neuts, 1980, Langaris andIgdf84), or two station closed
networks (Akyildiz and von Brand, 1994, Balsamo and Donatjelb89).

On the other hand exact numerical evaluation of the joinicstary distribution can be obtained
by solving the global balance equations. A detailed desonpf these numerical methods can
be found in Stewart, 1999. These equations require thermtisin of the transition rate matrix,
i.e. the description of the transition rates between alifda states of the network. This time
consuming task is therefore only conceivable for small oekw (i.e. small in the number of
stations and their capacity). If the networks of interesteha more general topology or an
arbitrary size then their analysis is done by approximatn@thods, the proposed method falls
into this category.

Approximation methods

The most popular approach to evaluate the performance ota ¢apacity queueing networks
is the use of disaggregate models based on simulation. &iimimodels and surveys include
(Jun et al., 1999, Fone et al., 2003, Ben-Akiva et al., 1998¢Fand Barceld, 1994, Messmer
and Papageorgiou, 1990). This approach although morestieaind detailed, can be cumber-
some to optimize, and its accuracy is strongly dependent@mjtality of the calibration data
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(Korporaal et al., 2000). Analytic models are simpler, ldata expensive, more flexible and
more suited for an optimization framework (Cochran and Bha@06). Since the intended use
of this model is within an optimization framework we chooseaaalytical approach.

The main motivation of analytic approximation methods ig¢duce the dimensionality of
the system under study. Decomposition methods achievebthidecomposing the network
into subnetworks and analyzing each subnetwork in isalatibhe structural (also called be-
havioural) parameters of each subnetwork (e.g. averayalaand service rates) depend on the
state of other subnetworks and thus acknowledge the cborelaith other subnetworks. The
main difficulty lies in obtaining good approximations foete parameters so that the stationary
distribution of the isolated subnetwork is a good estimatesanarginal stationary distribution.
Given a subnetwork estimates of the marginal distributeoms of the main performance mea-
sures can be obtained by either establishing a behavionaédgy with a network whose dis-
tribution has a closed (and often product) form, or by exacherical evaluation of the global
balance equations which now have a smaller dimension buifeee non-linear. Existing de-
composition methods have analysed simple subnetworksstimgsof single stations, pairs of
stations and triplets. If not stated otherwise the methodsern open finite capacity networks
with exponentially distributed service times. The most owonly used decomposition method
is single station decomposition, which dates back to the&wbHillier and Boling, 1967 who
considered tandem single server networks. One of the mest aygproaches concerns single
server feed-forward networks where each station is madieléean M/M/1 station (Takahashi
et al., 1980). An extension of this method to multiple sesugie. M/M/c stations) is given
by Koizumi et al., 2005. Here the buffers are considered itefifor each isolated station and
their average queue length updates the capacity of the ggssler stations. This approxima-
tion holds if the capacity of adjacent predecessor stattansaccommaodate this average queue
length. This constraint is checked only a posteriori. Edaha is an M/M/c queue for which
closed form expressions of the performance measures exist.

A method applicable to networks with an arbitrary topolog/given by Korporaal et al., 2000.
The individual stations are modelled as M/M/c/K stationsvitnich closed form performance
measures are used. As for the method of Koizumi et al., 208%apacity of the stations are
revised and the validity of these capacity adjustments aréed a posteriori.

The Expansion method, (Kerbache and Smith, 1987, Kerbaah8maith, 1988), was developed
for networks of M/M/1/K stations. Here a network reconfigioa expands all finite capacity
stations to artificial infinite capacity holding stationshieh register the blocked jobs. This
method was later extended to multiple servers and applipédestrian traffic flows by Cheah
and Smith, 1994. Gupta and Kavusturucu, 2000 applied thibadeo production feed-forward
systems, where service interruptions are allowed. Singtsamth, 1997 used it to estimate net-
work performance measures within a buffer allocation pobl A similar transformation where
all GE/GE/c/K stations are transformed into GE/GE/c stej@nd thus the joint distribution is
approximated by a product form joint distribution, was meed by Tahilramani et al., 1999.
Single server networks with phase-type service distrimgtihave been proposed for tandem
(Altiok, 1982) and feed-forward topologies (Altiok and Res, 1987), with phase-type service
distributions. Jun and Perros, 1988 have extended this tecsk arbitrary topology and have
also considered general service times for an open tandemorketn Jun and Perros, 1990.
The use of a phase-type service distribution accounts Fpioakible blockings but, as stated in
Altiok and Perros, 1987, it requires the construction ofyvdetailed phase-type service mech-
anisms, which is a “cumbersome” and CPU time consuming taskafge networks. In these
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methods queue capacity is also augmented in order to allostdoage of all predecessor sta-
tion capacities. Estimates of the marginal distributiores @lculated by numerically solving
the global balance equations.

Few authors have considered subnetworks larger than staglens. Two-station decomposi-
tion methods have been proposed for open tandem networfa #Ad Liu, 2004, Brandwajn
and Jow, 1988, Brandwajn and Jow, 1985) and for an arbitrgrglogy (Lee et al., 1998).
van Vuuren et al., 2005 used pairwise decomposition to studglyi-server tandem queues with
generally distributed service times. As an extension ofibek by Brandwajn and Jow, 1988,
Schmidt and Jackman, 2000 proposed a three-station desttiopanethod for a single server
arbitrary topology network. Subnetworks consisting of entbran one station can theoretically
provide more accurate results than single station decotigrgsut are computationally more
intensive (Perros, 1994).

Recent methods, such as Koizumi et al., 2005 and Korporadl, &080, have extended the
use of decomposition algorithms mainly to multiple servetworks with an arbitrary topol-
ogy. Nevertheless in order to acknowledge the finite capgciperty of these networks the
existing methods either revise station capacities or a@ynetwork topologies. The revision
of the station capacities renders them dynamic paramedeiditionally approximations need
to be used to ensure their integrality and their positivitynly checked a posteriori. We be-
lieve that a flexible and optimization-friendly model is ahat preserves the network topology
and its configuration (number of stations and their capegiths static parameters. We are also
interested in explicitly modelling the blocking phase witlour analytical approach, yielding
performance measures such as the probability distributidhe number of blocked jobs in a
station. Since we have not found methods with these chaistate we have developed the
method that we shall now describe.

4 Method

In this section we describe the decomposition method thaivalthe analysis of a network

with finite capacity queues. The model accounts for multggdeser queues with an arbitrary
topology and blocking-after-service. The method is baged decomposition of the network
into single stations whose structural parameters are appated so that they can account for
the between-station correlation. The general processtfai goes through upon arrival to a
station has been described in Section 2. In this paper wetmested in explicitly modeling the

blocking phase that a job may go through in a finite capacitwoek. Thus we now describe

in more detail how a job is processed. A job:

=

arrives to a station,
waits if all the servers are occupied,
is served (this is called the active phase),

is blocked if its destination station is full (this is eadlthe blocked phase),

a > W DN

leaves the station.
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Let 7 (i) denote the stationary distribution of the isolated statiofhe main aim of our method
is to appropriately approximate(i) so that it is a good estimate of the marginal stationary
distribution of station.. 7(i) can be obtained via the global balance equations along héth t
use of a normalizing constraint:

m(i)Q(i) = 0,

{ S ow(i)s =1, (1)

s€S(3)
wherer (i), denotes element numbewf 7(i). The global balance equations involve the state
space of station, S(i), as well as the transition rate matrig(:). We now define these two
elements.

4.1 Statespace, S(7).

The state of stationis described by the number of active jods blocked jobsB; and waiting
jobs ;.
S(i) = {(Ai, B, W;) e N°, A;+ B; <¢;, A+ B; +W; < K;}

Of interest in the validation runs that will be presented act®n 5 are bufferless stations,
(K; = ¢;), where the state space reduces$() = {(A;, B;) € N?, A;+ B; < ¢;}. We denote
by card(S(i)) the cardinal or dimension of the state space.

4.2 Transition rate matrix, Q(7)

Q(7) contains the transition rates between all pairs of stateS(iin Hereafter all rates are
average rates. The non diagonal elements).,. s # k, represent the average rate at which the
transition between stateandk takes place. The diagonal elements are defined)és;; =

— > ks Qi) sk Thus—Q(i),s represents the rate of departure from stat&ach equation of
the system of global balance equations can be written as:

> w(@Q()ks = —7(1)sQ(1)ss

kES(i)

it therefore balances the inflow and the outflow for a givetesta

We define)(¢) as a function of the following structural parameters:

o the average arrival rate to statign\;,
e the average service rate of a server at statiomn,
¢ the average probability of being blocked at staﬁpﬁif )

e the average unblocking rate given that theretdstocked jobs at station fi(i, b),

These four parameters will allow us to describe the traotsitates between the different states
of stationi. We can writeQ(i) = f(\i, s, P/, ji(i,b)), wherey; is an endogenous parameter
whereas\;, fi(i,b), andP/ are exogenous.



Swiss Transport Research Conference September 12 - 14, 2007

initial state new state rate condition
5 k Q(i)sk
(a,b,w) (a+1,b,w) i a+b+1<g¢
(a,b,w) (a,b,w+ 1) i a+b==c&w+1<K,—¢
(a,b,w) (a—1,b,w) ap;(1— PN w==0
(a,b,w) (a,b,w — 1) ap;(1—PH w>1
(a,b,w) (a—1,b+1,w) ap; P! always possible
(a,b,w) (a,b—1,w) (i, b) w ==
(a,b,w) (a+1,b—1,w—1) [f(i,b) w>1

Table 1: Transition rates of station

To definef let us consider a statesuch that A;, B;, W;) = (a, b, w). The possible transitions
with their corresponding rates are displayed in Table 1. Jdteof possible states to where a
transition can take place are tabulated in the second cqlthrcorresponding transition rate
is in the third column and the conditions under which suctaadition can take place are in the
last column. We now describe the contents of this table. Thetfvo lines of the table distin-
guish between an arrival that can be served immediately arairaval that must queue before
being served. The next two lines concern the completion eface (the active phase) that is
not followed by a blocking phase, in the first case the freedeseemains available whereas in
the second case the freed server immediately starts sexyifigthat was in the queue. The fifth
line concerns jobs that have completed their service andrbedlocked. The last two lines
relate to the completion of the blocking phase and differ inether the server that was blocked
stays available or immediately starts serving a queued job.

As emphasized by Korporaal et al., 2000, the main challeriggecomposition methods is
to appropriately approximate these structural parametetkatr () is a good estimate of the
marginal stationary distribution of statian The main complexity lies in appropriately captur-
ing the correlation between the stations via these stracparameters. We now describe how
our method revises the structural parameters in order tieaghis correlation.

421 Arrival rate, \;.

We model each station as a two-dimensional M/M/c/K statibe @istributional assumptions
will be detailed further on). For these models, known as foedels, all the arrivals that arise
while the station is full are considered to be lost. In our glagle assume that only external
arrivals may be lost, whereas arrivals that arise from withe network are blocked if the desti-
nation station is full. We therefore approximate the atngtes by combining flow conservation
with loss model information. We denote by:

e )\;: the total arrival rate to station(includes potentially lost arrivals),

o )\ the effective arrival rate to statian(accounts only for the arrivals that are actually
processed, i.e. excludes all lost arrivals),

e ~;: the external arrival rate to station
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Accounting for the lost arrivals we have:

AT = X(1 - P(N; = K))), (2)

whereN; denotes the total number of jobs at statiqdV, = A; + B; + W;). P(N; = K;) is
known as the blocking probability.

In most existing decomposition methods the arrival ratebisined via the flow conservation
equations. In the loss model context, the flow conservatirs Ihold for the effective arrival
rates and are approximated as follows:

AT = i1 — P(N; = K)) + ) piide™. 3)
j
Inter-arrival times to station are assumed to be independent and identically distribuged-e
nential variables with parametay.

4.2.2 Average probability of being blocked, Pif.

The average probability of being blocked at statioliPif, helps us describe the rate at which
a job gets blocked after servicé’,f is approximated by the weighted average of the blocking
probabilities of all downstream stations:

Pl =2 pP(N; = K)). (@)

J

4.2.3 Serviceand unblocking rates, x; and fi(i, b).

The average service rate of a server at statiy;. It accounts for the active phase. Itis an
exogenous parameter.

We now describe how we approximaté, b). Suppose that statians in the staté A;, B;, W;) =
(a,b,w). Then the service rate of the statiorujs;, i.e. the active jobs are being processed by
a parallel servers. In the state, b, w) there aré blocked servers, but they do not all work in
parallel, as we now describe. We define:

e ;i?: the average unblocking rate of a destination station dfosta. (We describe its
derivation below.)

e D(i,b): the number of distinct destination stations that are blagkhed jobs at station
1.

For each destination station that is blocking a job at statizve approximate the rate at which
it unblocks jobs at stationby /. Thus if allb jobs are blocked by the same destination station,
then they can be seen as forming a virtual queue in front dbliheking station with a FIFO un-
blocking mechanism. The average unblocking rate at stat®thens?. If the jobs are blocked
by D(i, b) distinct destination stations then they can be seen asrigrmii, b) virtual parallel
queues, each with a FIFO unblocking mechanism. The avenalgieaking rate at stationis
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thenD(i, b) 1. More specifically we have:

1 min(b,card(ZT)) 1

—— = Y P(D(i,b) = d)=—, (5)
whereZ" represents the set of destination stations of stati@ndcard(Z™) is its cardinal.
Equation 5 holds because we assume that each destinatiom stablocks at rat@?. We now
describe how we approximate bgihand P(D(i,b) = d).

The average unblocking rate of a destination station, 9.
We denote by:

¢ /i;: the effective service rate of a server at statigmincludes service and blocking). We
will describe its approximation further on.

¢ p;;: the transition probabilities conditional on a job beingdked at station, i.e.
bii = pi P(N; = K;)
1) Pf

)

e 7;;: the proportion of arrivals to stationthat arise from blocked jobs at statian.e.

~ eff
Tij = \eff
J

Suppose statiorn is blocking jobs at predecessor stations. It is therefolleafud is serving
at rateji;c;. It unblocks jobs at station at the rater;;fi;c;. Thus the average time between
successive unblockings is:

~ 1
=0 — Dij ~ )
M TijHiCj
eff
1 Z A (6)
~o )\eff N
He o N OHIG

Equation 6 is used to approximgig.

Probability that d distinct stations are blocking the b blocked jobs, P(D(i,b) = d).
We denote by:

e 0(i,b,d): the random vector containing thelestination stations of the blocked joldf
which are distinct, i.ed (i, b, d), denotes the destination station of #fé blocked job.

e A(i,b,d): the sample space 6fi, b, d).

e d: arealization of (i, b, d).

10
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In order to approximaté’(D(i,b) = d) we sum over all possible realizations&, b, d).

P(DG,b)=d) = ¥ P(8(i,b,d) =d)
deA(i,b,d)
= Z P((S(Z,bjd)l :dl, (S(Z,b,d)g :dg,...,é(i,b,d)b:db)
deA(i,b,d)

= Z jjd1ﬁ7,d2 pidb
deA(i,b,d)

We define/(i, b, d); as the number of jobs blocked by statipat statior: (given that there are
a total ofb blocked jobs that are blocked lydistinct destination stations). We thus have:

P(D(i,b) =d) = SOOI ﬁfj('i,b,d)j.

deA(i,b,d) jeT+

This last equation shows that for a given realizatibof §(i, b, d), what is of interest in deter-
mining P(D(7,b) = d) is the occurrence of each destination station (i.e. theovéct, b, d)),

the ordering of the destination stations is not importahudlinstead of summing ovex(i, b, d),

we will sum over the set of(i, b, d) vectors. This reduces the size of the space over which we
sum. The set of such vectors is noted, b, d) and is defined by:

> Ui, b,d); = b,
jeT+

0(i,b,d) € L(i,b,d) < > 1 eipd);>0 ) = d, (7)
jeT+

G,b,d); >0 Vje T+

wherel(z) is the indicator function. The first equation of the systeragations (7) means that
there are a total dfjobs blocked at statioi) and the second means that these jobs are blocked by
d different destination stations. For a given vedtar b, d) that satisfies the system of equations
(7) there areh! /(I [;7+ (i, b,d);! ) different realizations 06(¢, b, d) that are associated with

it. This corresponds to the number of permutations of a vesfté destination stations, where
destination station is repeated(:, b, d); times. Therefore we obtain:

P(D(,b) =d) = > P(3(i,b,d) =d)
deAb,d)
~€ zbd)
- > I Z(zbd s I P :
£(i,b,d)EL(i,b,d) ;ez+ JETT

Coming back to Equation 5 and replaci®jD(i, b) = d) by the approximation that we have
just derived we obtain:

1 ™ 1 (i)
[(i,b) o - d 2 T é(z b,d);! H ®)

Uibd)EL(ibd) 27,

The size of the spack(i, b, d) is still considerably large therefore when approximatinig b)
we use an exogenous approximatiorpgf

. piP(N; = Kj) _ pyP(N; =K;)  pi
? P! YopiP(Ny = Ki) > pir
k k

(2

11
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This approximation makes both summations of Equation 8 exogs. These two summations
are therefore evaluated only once when solving the entsgery of equations. This approx-

imation is appropriate if the blocking probabilities of tHestination stations have the same
magnitude, whereas it is inadequate if their magnitudderdit he only endogenous parameter
remaining in Equation 8 ig?. Thus we have writtefi(z, b) in the form:

i, b) = 7 (i, b), 9)

whereg(i, b) is estimated exogenously and can be seen as the averagerrofrdiséinct desti-
nation stations that are blocking thgobs at station.

When describing the approximatigry we came across the effective service rate of a server,
it;- We now describe how we approximate this parameter.

The effective servicerate, ;.

The total time spent by a job in front of a server, called tHeative service timel /g, , is
composed of the service time (active phase) and for somegbtie blocked time (blocked
phase). We denote l#y” the random variable representing the blocked time of a jolditional
on it being blocked. For a given statiopall servers serve on average at ratéactive phase).
Thus the average time that a job spends in the active phase:is A given job is blocked
on average with probabilitgpf and once he is blocked the average time he spends blocked
is E[TP]. Accounting for both the service and the possible blockiregabtain the average
effective service time //i;, which is approximated by:
1.1 P/E[TP]. (10)
22 22
In this equationu; is an exogenous parameter, the approximatioﬁfbﬁvas given in Equation
4. \We approximaté?[T7;7] by conditioning on the length of the blocked queue:

E[TiB] = E[E[T‘B|Bi“:l;)P(Bi:b’Bi>O)E[TiB|Bi:b]
= Y PEN TP | B =1
b>

PB>O
1

Let (i, b); denote the blocked time of the job that was unblockediposition given that there
wereb blocked jobs. We have:

b
E[TP | B, =b] = Z
We know that the average time between successive depagiveesthat there arkeblocked jobs
at station: is represented by//i(i,b), thus we can approximate the average blocked time of

the first job to be unblocked by//i(i, b), that of the second job to be unblockedgyi(i, b) +
1/ia(i,b — 1) and that of the/™" by:

@I»—t

k=b— ]—1—1

12
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Putting the last two equations together and then interahgrige summations we obtain:

b b
E[TzB | B; = b} = % Z Z g(g,k)
j=1k=b—j+1

b b

- 1 Z _1 Z 1

b ek

= Jj=b—k+1
b

_ 1 k

b kgl a(ik)

Therefore our approximation df[T}7] is given by:

5 = PBi=b) <~k 1
EITP) =2 (B, =0) 2 b A6 (11)

b>1

Distributional assumptions.

Service time and the time between successive unblockirgsarh assumed to follow an ex-
ponential distribution with parameters and ¢ respectively. For a given station all service
times are assumed to be independent and identically distdb as are all blocked times. By
explicitly modeling both of these exponential phases, tmalper of jobs in front of the servers
becomes a two dimensional systér, B;) composed of the active and the blocked jobs. We
are thus in the presence of an M/M/c/K model with a two-din@mel state space. By work-
ing in this two-dimensional space we avoid constructing@RJ intensive phase-type service
mechanisms defined in some of the pre-existing methods.

4.3 System of equations

The main aim is to obtain the stationary distributions ofrestation,r(i). The main equations
consist of the global balance equations which require tffiaitlen of the transition rate matrix,
for a given station these equations are:

m()Q(i) =0,
Z W(i)s = 17

s€S(1)
Qi) = f(Ni, i B, (3, 1)),
The third equation which defingg(:) is described in Table 1. We have directly implemented
these three sets of equations as a single set:

m(i)g(\i, i, fi(i, b), P) = 0. (12)

The system of nonlinear equations (2-4,6,9-12) is solvedikaneously for all stations. The
exogenous parameters dig, K;, p;;, ti, Vi, ¢(i, b) }, all other parameters are endogenous. For
each station there are seven endogenous paramaters?, i, i, Pl.f, P(N; = K;), P(B; >
0).
For a given station the dimension of its distribution is dqoaard(S;) = (¢;+1)(K; +1— ).
Thus the total size of the system of equations is:
&)
Z(Ci+1)(Ki+1—§)+7,

%
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et o
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/\FC )\FC U

parameter i i
initialization p p

Table 2: Parameter initialization

where 7 denotes the seven endogenous parameters for a @itien.s

Pre-existing methods that require a posteriori valida{exy. to ensure the integrality of en-
dogenous station capacities) resort to iterative methéds. a given iteration the system of
equations for each station is solved sequentially. Sinceraihod requires no a posteriori val-
idation we are able to solve the set of equations associai@tigtations simultaneously.

The system is solved by using the Matlab routiselve which implements a trust-region dog-
leg algorithm. The jacobian of the system has been calalatalytically and implemented. In
order to ensure the positivity of distributions the systdraquations has been implemented in
terms of an auxiliary variablg(i) such thaty(i)*> = =(:). The initialization of the endogenous
parameters are given in Table 2. In this takf& corresponds to the arrival rates that satisfy the
classical flow conservation laws.is initialized using a uniform distribution, thus no a prior
formation concerning the stationary behavior of the stetis required. The other endogenous
parameters are deduced from these initializations.

5 Validation

We now present validation results by comparing our methdabtb pre-existing methods and
to simulation results on a set of small networks.

5.1 Validation versus pre-existing methods
Triangular topology.

We first compare our method to that of Altiok and Perros, 198¥that of Takahashi, Miyahara
and Hasegawa, 1980. The latter considered a single servgonkewith triangular topology
(depicted in Figure 1) and two cases according to the buiter af the stations: a null buffer
and a buffer of size two. For each case they considered a sateofarios with increasing
service rates for stations two and three. These scenaeadisplayed in Table 3. The chosen
performance measure was the blocking probability of statioe, P(N; = K;). They then
compared their estimates to either simulation results @axtrct results derived by using the
global balance equations of the entire network. The redadivor of the estimates of the different
methods are displayed in Figure 2. For both cases all methielisgood estimates, the relative
error remaining under 7% for the first case and 4% for the stcase. For both cases we yield
similar estimates to those of Takahashi, Miyahara and Hasegl980. For the first case Altiok
and Perros, 1987 yields the most accurate estimates.
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scenario 1 2 3 4 5 6 7 8 9 10

1 11 1 1 1 1 1 1 1 1
[2 11 12 13 14 15 16 1.7 18 19 2
I3 12 14 16 18 2 22 24 26 28 3

Table 3: Increasing service rate scenarios.

=D ()—
A/
12

Figure 1: Triangular topology. The configurationjg; = %, =1 Yie = 1.

relative error of P(N =K ) relative error of P(N,=K )
0.1 T T T T 0.1
our approx. our approx.
------- Altiok i i — — — Takahashi |[]
— — — Takahashi

0.05 0.05|

0 0 -
2 4 6 8 10
increasing service rate scenarios increasing service rate scenarios
v /ICE |

i Ki-l Oi Ki—3

Figure 2: Comparison with the methods of Altiok and Perro8,71@nd of Takahashi et al., 1980
under two capacity configurations.
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scenario 1 2 3 4 5 6 7 8 9
Ki—¢, 1 1 2 2 2 3 4 5 10 ylﬁm@_)m@_)
Ky—c, 1 2 1 2 3 3 4 5 10

Figure 3: Tandem two station topology. The

Table 4: Increasing buffer size sce- configuration isiu; = 3,42 = 1, ¢ = ¢ =
narios. 1,y =1.
Network throughput
3.5 : . .
C- our approx.
7 T~ — < — Takahashi
3 — = N D [ — Kerbache
N \»\ ------- Singh
~ : + e+ Hillier
257 \\ \'\._. ----- Boxma
SRR o o, 7 = {7 | = Bell's bound
, - —
2 °. .., ~ '~
o . ~ - N
o, - .
o T~ N
15} o
g
1 e
O 1 1 1 1 1 1 1
1 2 3 4 5 6 7 8 9

increasing buffer size scenarios

Figure 4. Comparison of the mean throughput estimate of var@composition methods with
the theoretical upper bound derived by Bell, 1982.

Tandem two station topology.

Bell, 1982 derived a theoretical upper bound on the mean ¢maut rate of M/M/c/K networks.
By considering a tandem two station topology network undest@afscenarios he showed that
several decomposition methods “lead to impossible meagjput rates”. We compare the
mean throughput estimates of our method with the methodsmgh&nd Smith, 1997, Kerbache
and Smith, 1988, Boxma and Konheim, 1981, Takahashi, Miyahad Hasegawa, 1980 and
Hillier and Boling, 1967. The different scenarios are giveidable 4, the topology is displayed
in Figure 3 and the mean throughput estimates of the variaibads are depicted in Figure
4. Our mean throughput is estimated by using the effectigadere rate at station twog".
Figure 4 shows that our mean throughput estimate remaimghmeapper bound, and is similar
to that of the Expansion method of Singh and Smith, 1997 antdthe and Smith, 1988. It
slightly violates the bound for the last three scenarios dtative violations are: 0.3%, 2.2%
and 3.8%. Our method therefore yields consistent throughmlike the methods of Takahashi,
Miyahara and Hasegawa, 1980, Hillier and Boling, 1967 and Boand Konheim, 1981.
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station index: 1 2 3 4 5 6 7 8 9

Vi - 0.2 02 00 0.0 0.0 00 0.0 0.
Network A L4 0.3 03 03 0.1 001 0.014 01 04 05

scenario 1 2 3 4

Y 0.1 0.2 03 04

station index: 1 2 3 4 5 6 7 8 9

Vi - 0 0 0 0 0 - 0 0
Network B L 0.3 03 03 0.6 0.6 0.6 03 03 03

scenario 1 2 3 4 5

" 0.1 0.3 05 0.7 0.9

o 0.1 0.3 05 0.7 0.9

station index: 1 2 3 4 5 6 7 8 9

Vi - 0 0 0 0 0 0 0 0
Network C Lbi 0.3 01 01 01 0.3 0.1 01 01 0.3

scenario 1 2 3 4 5

Y 0.1 0.3 05 0.7 0.9

Table 5: Configuration and scenario definitions for networkBAnd C. For all three networks
we setVi ¢; = K; = 3.

1—@ @ @—
@ @ @—’ 1—’@/@\@/@\@—’

DO S N

Figure 5: Topologies of networks B and C (left and right haide sespectively).

5.2 Validation versus simulation results

Of main interest in our method are the distributional estesawhich allow us to derive the
main performance measures. These could not be compareetexisting methods because we
know of no method that defines the state space in such a wayesté to simulation results in
order to validate our method on a larger set of scenarios@raldgies.

We consider three different topologies. Each network ctssif nine stations, all of which are
bufferless with three servers. For each network we considat of scenarios with increasing
external arrival rates. The network configurations and agerdefinitions of networks A, B
and C are displayed in Table 5. Network A is a simplified versib the case study network
presented in Section 6. Its topology and transition prdhisi are the same as that of the
case study. The transition probability matrix is in Table®he simplifications with regards
to the case study concern the number of servers per statibtharexternal arrival rates. The
topologies of networks B and C are displayed in Figure 5. Fgivan station the transition
probabilities are uniformly distributed among the possithéstinations.

In order to validate our results we developed the correspgreimulation models using a dis-
crete event simulator, ProModel version 4.1. tgtlenote the temporal unit of the transition
rates (e.g. minutes, hours). The simulation runs consist&f replications with a warm-up
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Figure 6: Histogram of the errors of the distributional esties for all scenarios of networks A,
B and C.

time of 10000¢, and further run time of 40000,

Figure 6 displays a histogram of the errors of the distrdnai estimates for all three networks.
For all scenarios, stations and states we consid@hq» — 7 (i) 4,5, Wheren (i), ;) denotes
our estimate of the probability that statiofs in state(a, b) and7* is the simulation estimate.
There are a total of 1200 estimates. 70% of the absolutesearersmaller than 0.0065, 80%
smaller than 0.0125 and 90% smaller than 0.0241. Our metieydfore yields good distribu-
tional estimates.

In order to illustrate the blocking information derived hyranethod we consider the scenarios
of network C (Table 5). Figure 7 displays the estimates ofdik&ibution of station five given
by our method and those obtained via simulation. Each plosiders a given state= (a, b)
and plotsr(5), for all scenarios. The scenarios are in a lighter color asxternal arrival rate of
station one increases. The simulated distribution is degias empty squares, whereas our esti-
mates are represented by filled circles. The figure showa#the external arrival rates increase
the states with blocked jobs become more likely, e.g. statés in {(1,1),(1,2),(2,1)}. For

all states our estimates follow the trend of the simulatedb@bilities. Overall the estimates are
very accurate.

5.3 Convergence of validation runs

A description of the convergence of the algorithm under tfier@nt validation runs is tabulated
in Table 6. Columns 2-4 summarize the number of iterationd,caumn 5 gives the average
time until convergence across the scenarios. The thre$btiotde stopping criteria was chosen
as10~'. Convergence was attained when either the first-order ofityncandition was smaller
than this threshold or when both the relative value and time stisquares of the system of
equations were smaller than the threshold. If after 15@iti@ns there was no convergence the
run was stopped and initialized again. Across all 44 rungguired a second initialization to
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P(0,0) P(0,1) P(0,2) P(0,3) P(1,0)
0.8 0.8 0.8 0.8 0.8

5

0 0
1 5 1 5 1 5 1 5 1 5

P(,1) P(1,2) P(2,0) P(2,1) P(3,0)
0.8 0.8 0.8 0.8 0.8

0.4 0.4 0.4 0.4 0.4

olem® ] olgalele” ] oﬂiﬁ; olee og@—'@—

1 5 1 5 1 5 1 5 1 5

Figure 7: Distribution of station 5 for network C across aksarios.

number of of iterations  average total number

Runs . . .
min mean max time (sec) of scenarios
TriangularbUﬁerless. 7 10.7 20 0.08 10
buffer of size2 7 9 13 0.07 10
Tandem two station 6 6.9 9 0.06 10
Networks A, B and C 11 236 39 0.7 14

Table 6: Convergence of validation runs

reach convergence.

6 Casestudy

We now apply our method to a real case study. We consider tienp#ow in a network of
hospital operative and post-operative units. Clinicallgd tiblocking may occur for example
when a recovered intensive care patient cannot proceecetmtbrmediate care facility due
to unavailable beds, he is said to be blocked until his plargns possible. Studies have ac-
knowledged that bed unavailability renders the emergendysargical admissions procedure
less flexible and less responsive (Mackay, 2001). Modelmg locking and estimating its
effects would bring both patient care and budgetary imprea@s (Cochran and Bharti, 2006,
Koizumi et al., 2005 ). Thus the importance of modeling thd béocking phase within a
patients recovery procedure. Although few analytic modetsrporating blocking have been
developed, there is a recently recognized need for thens.i§ hirecent aim defined by Cochran
and Bhatrti, 2006: “The next generation of the methodology ldiinclude an approximation
of the blocking of patients in the queueing model". The emgstinalytic models that account
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BOU BOOPERA BOORL IFCHIR IFMED IMMED IMNEURO REVOPERA REVORL

ci 4 8 5 18 18 4 4 10 6

Vi 0.392 0.502 0.246 0.059 0.176 0.025 0.013 0.155 0
i 0.317 0.255 0.335 0.013 0.015 0.014 0.015 0.22 0.518
card(S;) 15 45 21 190 190 15 15 66 28

Table 7: Configuration of the Geneva University Hospital reetwof operative and post-
operative units.

0 0 0O 016 002 O 0O 071 O
0 0 0O 007 O 0 0O 084 O

0 0 0O 003 001 O 0 0 0.95

0.18 001 003 O 003 0.01 011 003 O
(p;j)=1 005 001 001 001 O 007 O 0 0
002 O 0 001 o021 0 0 0 0
005 0 005 004 O 0 0O 001 O
0 0 0 0 0 0O 001 O 0
0 0O 005 O 0O 005 002 O

Table 8: Topology of the Geneva University Hospital netwofloperative and post-operative
units.

for blocking in the healthcare sector have limited theidgtto feed-forward networks with
at most three finite capacity queues (Koizumi et al., 2005s8V@nd McClain, 1987, Hershey
etal., 1981).

The hospital of interest is the Geneva University Hospdahpted HUG). The considered units
are the emergency operating suite (BO U), elective operatiitg (BO OPERA), otorhinolaryn-
gology operating suite (BO ORL), surgical intensive care (IHR}Imedical intensive care (IF
MED), medical intermediate care (IM MED), neuro-surgiaatermediate care (IM NEURO),
elective recovery (REV OPERA) and otorhinolaryngology resgyREV ORL). Here the pa-
tients are modeled as jobs. Since there is no waiting spateusdt is modeled as a bufferless
station ¢; = K;). The servers of interest are the beds. The blocking-a#erice (BAS) mech-
anism of our model accurately mimics in-patient bed blogkifihe capacities of the different
units were estimated according to the evaluations of HUG begs HUG members also ex-
tracted patient flow data which we used to estimate the exageparameters, ;. and p;;.
Maximum likelihood estimates were used fpiand i, whereas as the transition probabilities
were estimated by the transition frequencies. The datastedsof 25336 patient records rang-
ing over a year. The configuration of the network is presemelbhble 7 and its topology is
given in Table 8. Note that the sum of the transition prohigéd for a given unit (i.e. a given
line) may not sum to 1, in this case— Zj pi; represents the probability of exiting the net-
work given that the job is at statian The network consists of 9 operative and post-operative
units, with 49 possible transitions, containing numeroudes. This makes the network prone
to blocking. We have also carried out this case study usiagsittmulator. This allows us to
compare our distributional estimates to those obtainediwalation. The simulation setup is
the same as that of Section 5.2.

Figure 8 displays the histogram of the errors of the distidmal estimates. Thgo!", 95* and
99 percentiles of the absolute errors are 0.008, 0.02 and B.6%pectively. We have four
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Figure 8: Histogram of errors for the distribution estinsadé the HUG network.

estimates that have an absolute error larger than 0.1. d-@gulisplays a more detailed
error distribution by omitting the four estimates with alge errors beyond 0.1. These figures
show that overall the distributional estimates are verydgokhe cumulative distribution func-
tion for the total number of jobs at each station are depittddgure 10. The estimates of our
method are represented by filled circles, whereas the siibnlestimates are denoted by empty
squares. All stations except stations seven and nine haelext estimates.

Three of the four previously mentioned estimates with laggers concern station seven, the
fourth error concerns station nine. Explaining the caugbese large errors is not a straightfor-
ward task given the correlation between the endogenousgdeas of our system of equations.
The detailed distributions of stations seven and nine aglaled in Figure 11. The estimates
of our method are represented by filled circles, whereasithelation estimates are denoted
by empty squares. The statesb) are ordered by increasing number of active jobs and then
increasing number of blocked jobs. This figure shows thastiation seven the state (4,0) is un-
derestimated and for station nine it is the blocked statdg9 éhd (0,2) that are underestimated.
These misestimations may be correlated siiyge= 0.82 (displayed in Table 9 and discussed
later on), i.e. given that a job is blocked at station ninegrabability that is has been blocked
by station seven is 0.82. Thus the underestimation of thepaton of station seven may lead
to an underestimation of the blocking at station nine.

The outputs of our model can help us quantify the blockingl also investigate its sources.
The transition probabilities conditional on a patient lgeblocked,p;;, displayed in Table 9,
can help us determine the source of blocking. The probasilhave been rounded 102,
those smaller than 0.01 are denoted by a dashed line. Foea gt (i.e. a given line in the
table) we can identify the destination units that are mdeelyi to block patients. This table
helps us detect three main sources of blocking. IF MED and IEDOMmutually block each
others patients. The same holds for IF CHIR and IM NEURO. Ths$ fype of blocking (mu-
tual blocking) may be irrelevant in practice given that thhapgping of patients can be identified
and carried out easily. The second source of blocking whial be more difficult to solve is
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Figure 9: Boxplot of the errors for the distribution estingtemitting the four errors that are
larger in magnitude than 0.1.
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Figure 10: Comparison of the cumulative distribution fuantiP(N; < n) for all stations.
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Figure 11: Distributions of stations seven and nine.

unit id 1 2 3 4 5 6 7 8 9
unit BOU BOOPERA BOORL IFCHIR IFMED IMMED IMNEURO REVOPERA REVORL
BOU - - - 0.76 0.04 - - 0.19 -
BO OPERA - - - 0.59 - 0.41 -
BO ORL - - - 0.87 0.13 - - - 0.01
IF CHIR 0.12 - - - 0.02 0.04 0.82 - -
IF MED 0.11 - - 0.05 - 0.83 - - -
IM MED 0.13 - - 0.16 0.71 - - - -
IM NEURO 0.34 - 0.01 0.65 - - - 0.01 -
REV OPERA - - - - - - 1.00 - -
REV ORL - - - 0.18 - - 0.82 - -

Table 9: Transition probabilities conditional on a patieeing blockedp;;.
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unit id 1 2 3 4 5 6 7 8 9

unit BOU BOOPERA BOORL IFCHIR IFMED IMMED IMNEURO REVOPERA REVORL
K; 4 8 5 18 18 4 4 10 6

Pif 0.02 0.01 0.00 0.06 0.02 0.01 0.01 0.00 0.03
E[B;] 0.04 0.01 0.01 0.22 0.04 0.01 0.01 0.00 0.06
E[N;] 137 2.00 0.77 14.03 12.56 2.46 3.19 4.04 0.53
L 3.15 3.92 2.99 76.92 66.67 71.43 66.67 4.55 1.93

1

Table 10: Performance measures for the HUG network. Welreaunits capacitieds’;, and
average service time/;, which are exogenous parameters.

the blocking at operating units (BO U, BO OPERA or BO ORL) due to IF RHVloreover,
the performance of BO U is strongly linked to its responsigsnevhich will be deteriorated by
blocking. The third source of blocking occurs at the recguarits (REV OPERA and REV
ORL) and is due to IM NEURO.

Other performance measures of the different units are tkgpio Table 10. It is important to
notice that aIthoungPif guantifies the occurrence of blocking at a given unit, it do&scapture
the impact that a given blocking event may have on the uniheratient which is blocked.
Take for example the ORL recovery unit th?zé = 0.03, that is on average the probability of
a patient getting blocked at that unit(€3. In this unit the average service time is 1.9 hours
(1/ue) and blocking is mainly due to IM NEURG); = 0.82) where the average service time
is 66.67 hours1(/u7). Thus the average blocked time at the ORL recovery due to INR@
will have a strong impact on the ORL recovery unit. This cam d&ls seen when comparing
E[Bj]/E[N;] and P/. The fact thatE[B;]/E[N;] is much larger tharP/ also indicates that
although blocking may be rare the impact that it may have erutht or on the job is not to be
ignored. In the case of the ORL recovery unit these perforemamneasures are 0.11 and 0.03
respectively.

The threshold for the stopping criteria of the algorithm whesen agd0~°. Over a set of 20
runs the average convergence time was 20.5 min, and thegaveuanber of iterations required
was 2200.4. The jacobian at the solution is ill-condition&tie 2-norm condition number is
1.319. The application of preconditioning methods is a sourceighr improvement.

7 Conclusions and future work

We have presented a method allowing the analysis of netwovksfliia the use of analytic
gueueing networks that acknowledge the finite capacitygngmf the real system. The model
is adapted for multiple server finite capacity queueing oekts with an arbitrary topology and
blocking-after-service. The analysis method is based oecamposition of the network into
single queues whose structural parameters are approxireatéhat they can account for the
between-queue correlation. Unlike pre-existing methbdsietwork topology and its configu-
ration are preserved throughout the analysis thus no @ntgmeed to be checked a posteriori.
This renders the method suitable for use within an optinomatramework. The originality
of this method also lies in its capacity to explicitly modkeetblocking phase that jobs may
go through under congested traffic conditions. Performameasures have been validated by
comparison with both pre-existing methods and with a thezkeupper bound on the average
throughput, on networks with varying buffer size or serviates. The distributional approxi-
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mations have been compared to those obtained via simulati@nset of networks under a set
of scenarios with varying arrival rates, namely under higgensity traffic. This has allowed
us to validate distributional information concerning tled jobs, which will be used in the de-
scription of congestion effects. In both types of validatidhe results are very encouraging.
Pre-exiting methods that allow for feedback topologiesehassumed that no deadlock occurs
or that it is solved instantaneously (e.g. by swapping). [Hbter approach, although more
realistic, violates the FIFO service mechanism assumpgaoich as other methods our method
does not detect nor solve deadlock occurrence. Nevertheledelieve that it is of interest to
investigate analytic deadlock detection methods.

Further improvements of the method will focus on two mainidep Firstly we will consider
aggregating the state space for stations with large cagscihis will considerably reduce the
size of the system of equations. Secondly we wish to impriogeapproximation of the transi-
tion probabilities conditional on the job being blocked.

This model will be combined with a simulation model withingptimization framework, while
ensuring consistency between the two models. The aim offtéuisework is to allow us to
benefit from an optimization friendly analytic model, whdecounting for fine details that can
be reproduced by the simulation tool.
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