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Abstract

In this exploratory paper we consider a robust approach ¢sid@al problems subject to un-
certain data in which we have an additional knowledge onftifag¢eg)y (algorithm) used to react
to an unforeseen event or recover from a disruption. Thistypizal situation in scheduling

problems where the decision maker has no a priori knowledgé® probabilistic distribution

of such events but he only knows rough information on the g\va&rch as its impact on the
schedule. We discuss a general framework to address thisit and its links with other ex-

isting methods, we present an illustrative example on th@t8st Path Problem with Interval
Data (SPPID) and we discuss a more general applicationlioeascheduling with recovery.
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1 Introduction

Mathematical modeling is an effective way to solve a widgyeof decisional problems. Appli-
cations in production, transportation, engineering anahioe benefits from quantitative meth-
ods developed for mathematical optimization. As the woadlel suggests, we represent the
reality through a set of equations and we solve this set ohtops in order to take decisions
with some quantitative support. Sometimes, some strongngssons are taken to model de-
cisional problems, because otherwise, they are intraefatain a computational point of view.
For example objective functions and constraints are asgumbke linear and data is assumed
to be completely and deterministically known in advancedekd it is impressive to notice
how many real life problems can be modeled with accuracygusiear programs. However,
data uncertainty is one major issue that might completefglidate the solution to a decisional
problem.

There are many fields where operations research tools adedead used to help the deci-
sion makers, as for example airline scheduling, contana@sshipment, traffic control, vehicle
routing and many others. These tools are useful to solveudlifforoblems the decision taker is
faced with. The common point of all these problems is thataken decision is carried out in a
constantly varying world, and thus the initial plan is rgrllfilled as planned. There are many
works in the literature that try to deal with this uncertginthere are mainly two approaches:
react or modify decisions when data is revealed or antieipata realization explicitly in the

solution. We find in the literature several contributionghese two domains. We refer the
reader to Grotschel et al., 2001 and Albers, 2003 for the arsd Kall and Wallace, 1994 and
Kouvelis and Yu, 1997 and the references therein for thersetygpe of approach. We refer to
them asReactive Algorithms (RA) andProactive Algorithms (PA) respectively.

We study in this paper a general framework to deal with thta dacertainty and illustrate the
difference with the existing methods on the Shortest PatiblBm with Interval Data, which
is a simple but widely studied problem that arises in mangdpartation applications. We
then extend the principle to airline scheduling that is dlehging problem taking more and
more importance as the airline transport develops and &lfeecbigger and harder scheduling
problems than ever.

In section 2 we propose a classification of the different aapies we found in the literature.
We then consider in section 3 a general optimization proldachwe propose a framework to
consider RA and PA together. We state the differences betwaeframework and stochastic
optimization with recourse. We provide the motivation onirae problem, the Shortest Path
Problem with Interval Data (SPPID) in section 4 and we extiedoncepts to airline schedule
optimization in section 5.

2 Algorithm Classification

Given a general optimization problefhsubject to data uncertainty it is common to characterize
it as anuncertainty set U. A particularrealization, also called &cenario, within this uncertainty
set is denoted by, € U. We assume, without loss of generality, that we are facel aiit
uncertain problem for which we want to minimize some costcfiom. LetS be the set of
feasible solutions to the problem angs) be the cost of solutiom € S of problemP under
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scenariou € U.

Our first characterization criteria is the nature of this enminty set. We distinguish be-
tweenProbabilistic Uncertainty Sets (PUS) andNon Probabilistic Uncertainty Sets (NPUS).

In PUS, we are given a probability distribution, mapping: U into p(u) € (0, 1], and with

> wev P(u) = 1, holding some probabilistic information on the frequenogrsariou will occur.
Notice that we suppose here the suppo/db be discrete for notation simplicity. Recall that
for a continuous uncertainty set, on must replace the surmmby an integral. In general, in
uncertain problems with PUS, the optimal solution to thebpgm is the one performing best
in average over the whole uncertainty set, thus one needsiloate the expectation of the cost
over the whole uncertainty set.

On the other hand, in NPUS, no probabilistic informationiieeg, we assume to know only
the bounds of this uncertainty set, without any frequendycation. Thus, one does not need
to evaluate the solution over the whole uncertainty setpbiyt on the extreme scenarios. The
underlying difficulty is to identify these extreme scenario

We also distinguish betwedReactive Algorithms (RA) andProactive Algorithms (PA) as dis-
cussed in section 1.

We get four distinct classes, as shown in Table 2.

Reactive  Algorithmg Proactive  Algorithms
(RA) (PA)

Probabilistic ~ Uncer4 Stochastic optimization Stochastic ~ proactive
tainty Set (PUS) with Recourse optimization

Non Probabilistic Un- : o Worst-Case Optimizat
certainty Set (NPUS) On-Line optimization tion

Table 1. Characterization of the different approaches fiao@atimization problem under uncer-
tainty.

On-line optimization This class of algorithms is reactive: a new decision is tak@ording

to the revealed data and the previous decisions. Thus, dneailgorithm usually encodes a
decisional strategy rather than a forecast solution. Tharstdge of these techniques is that this
type of situation often occurs in real world. Moreover, tladipw to react to any data change in
real time. However, it is difficult to measure their perfomma, as the nature of the scenario is
revealed iteratively. The usual way is to compute ¢bmpetitivity ratio, which corresponds to
compare the final cost of the obtained solution against therigénistic optimal solution when
the scenario that occurred is known. This is clearly an agpmst performance measure, as
one compare the costs once the solution has been computeduaiedl out. Thus, it is usual
to determine bounds on the worst competitivity ratio, wigehn be tight for some applications
(see Albers, 2003). In real world applications this apphoperforms at acceptable ranges in
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terms of optimality deviation, but we can usually find scé&&for which the on-line algorithm
performs poorly, making it difficult to get any estimatesoé tosts a priori.

Stochastic optimization with Recourse The main idea of the stochastic optimization with
recourse is to include the possibility of taking reactiveid®ns when a scenario makes the
solution unfeasible. The way this is taken into account iadd a constraint violation cost to
the overall solution cost. The sum of solution cost andekpected recourse costs over the
whole uncertainty set has to be minimized (see Kall and \&@Jl4994). The recourse costs
are evaluated through experience and sbmond-stage problem, that determines the optimal
reaction and its cost to a given one particular scenariajppased to be always feasible, i.e.
one can always take a recourse decision to make a solutisibfeavhatever the solution and
the scenario.

We mention here that the definition of stochastic optimaatvith recourse has slightly dif-
ferent definition according to the applications. In Polyotopoulos and Tsitsiklis, 1996 and
Provan, 2003 is given an application of stochastic optitiopawith recourse to the Shortest
Path Problem with Interval Data (SPPID), but in both paptrs,technique is presented as a
reactive algorithm that encodes a strategy to react to daéaling. We thus classify the method
in the reactive class, as it allows reaction and re-optitiunaafter new data is revealed.

Stochastic proactive optimization The aim of stochastic proactive optimization algorithms
is to exploit the a priori knowledge about the probabilinéshe different scenarios and to com-
pute a solution that has lowest expected cost or that mieisrittze probability of high costs over
the whole uncertainty séf when carried out without any reaction to any data revealirigs
approach implies the evaluation of the expected cost of @isal over the whole uncertainty
set, which might be computationally hard.

In both expected cost or high cost probability minimizatitre scenarios with low probability
have few impact on the optimal solution. If a solutienc S is unfeasible under a certain
scenariou € U, but with a positive probability, it has infinite cost; (s) = oo. Thus, in the
expected cost minimization case, if a solutiore S such thatc,(s) < oo, Vu € U exists,
then solutions is feasible for every scenario € U and the optimal solution also is. On the
other hand, high cost probability minimization might leadat solution with worse potential
(higher expected cost), but with the probability of this mvieeing the smallest. See Wallace
and Ziemba, 2005, Kall and Wallace, 1994 for details on siett algorithms and Laumanns
and Zenklusen, 2007 for a high cost probability minimizat@dgorithm.

Stochastic algorithms are useful for both feasibility almdtaeducing objectives. However,
their main disadvantages are that they need evaluatioreafdhution on the whole uncertainty
set to compute the solution’s expected cost, and that treelpalt on the fact that the expected
cost with respect to the random occurrences of the scertarids to its mean value according to
the probabilistic distribution on the uncertainty set. Bb@chastic approach is thus useful and
a good predictor if we apply the computed solution recutgit@many scenarios assuming the
probability measure ofy remains unchanged, as, in this case, the law of big numbstsen
average costs tends to its expected value. The assumptiloa stiochastic approach is valid for
the case that irreversible structural decisions are maelesolong planning horizon or when the
decision maker is assumed to be risk neutral (Kouvelis andl¥a7), but might predict very
badly when the solution is applied only a few scenarios.
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Worst-case optimization This approach tends to minimize the maximal possible cbss t
to get an upper cost bound. Similarly to the stochastic @&lgorminimizing the expected cost,
a worst-case algorithm will find, if it exists, a solutiere S that isrobust, i.e. that is feasible
and thus with finite cost, for all scenariase U. Although the bound on the cost might be
very pessimistic, it remains a valid bound, in oppositioth® estimated cost of the stochastic
solution, where the cost might become dramatically highfodanately, this gain in security
translates in a loss of focus on low costs: as we focus on nimmthe upper cost bound in
the worst case and we do not consider any probability, we npigitect against a scenario that
might occur only in extremely rare cases in reality. Morepas there is no consideration of
better realizations, the solution might have high cost (mregaclose to the cost bound) for every
scenario, which is in this case a bad property of the robustiea (Kouvelis and Yu, 1997). a
solution with a slightly higher worst case cost bound but &imlower best case bound would
be much more interesting. In their contribution Bertsimad &im, 2004 propose to bound data
uncertainty using a box-interval with the additional hypegis that it is unlikely that all the
data changes simultaneously. The approach is similar thigfecost probability minimization
but with the objective of worst cost minimization. The authdefine grotection level, which
corresponds to the probability of the solution to be unfaasi

3 A worst case pro-active method based on a reactive algo-
rithm

We want to focus on a worst-case strategy because we wanbloitios to be protected against
some very nasty scenarios and to bound the costs. The manresathat determining a valid
probabilistic structure of the uncertainty set that masdihe nature is extremely difficult and it
is a process that usually needs a wide set of observationsews, modeling the uncertainty
with stochastic distributions is useful in all situationkeve it can be done properly (see appli-
cations in Wallace and Ziemba, 2005). Moreover, using wease measure does not require
the evaluation of the solution on the whole uncertainty se€oinly for the extreme scenarios.

We also want to avoid the reaction process of reactive dlgoribecause we don’t want the
behavior of the solution to be dictated by the nature’s za#ibns: the reason we try to capture
some information about the uncertainty is to be able to ekjplas much as possible.

However, we want to keep the modelization of the uncertasetyas simple as possible: we
only assume that we know some information about the natutieeo$cenarios that experience
allows us to capture, but we do not try to measure their recges.

We are given additional tools: we are able to determine wdreithd when a solution becomes
unfeasible under a certain scenario and we also know thendieistic reactive algorithm, com-
monly addressed ascovery algorithm. It encodes the strategies to recover the unfeasible solu-
tion given the disruption point in the scenario. We explois knowledge in every scenario with
the final goal of finding a solution that has low cost on bothdtenarios where it is performed
as planned and in the scenarios where some reactive decisiost be taken.

We formalize this concept with the aid of some mathematios r&¢all the following notation:
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P the problem to be solved;

u € U one scenario or realization in the uncertainty set;

s €S onesolution in the set of all possible solutions;

cu(s)  the cost of solutios under scenaria;

cr the optimal solution to the deterministic problem givenrsse u;

¢u(s)  the partial cost of solution under scenaria up to the disruption point;
cFEC(s) the additional cost of the recovery algorithm for solutioin scenariou.

u

¢u(s) is the cost of the solution one has to pay to reach the disnupiint that, once a scenario
u and a solutiory are given, can be evaluated by hypothesis.

We formulate our worst-case optimization problem as fodow

(P)  min {max 6u(s)+cffEC(s)}

seS uelU

(P) is indeed worst-case based as it seeks the minimal cost ddiosoin the worst possible
case. As discussed in section 1, this is a pessimistic aligecthus, we also want to include
some information about more optimistic cases. In fact, aeoto try to compensate the para-
noiac behavior of worst-case approaches, we add the meafstive best-case approach to the
objective function. The point there is that both worst ansltloases are extreme scenarios and
considering the two extrema simultaneously eventuallyhalates the extremum-case effects.
We thus focus on the following problem:

Pl : ~ REC 3 ~/ R,EC
(P") min {gleagc Cu(s) + e (s)  + min - & (s) 4+ cor ()

The optimal solution of ') is the one that minimizes the arithmetical mean betweentwors
and best case over the whole uncertainty set including seaion costs. Notice that this
solution considers the reaction parts in all the scenaftwshe ones that are feasible we have
cFEC(s) = 0. The originality of the above formulation is that we considee recovery in
advance instead of only reacting a posteriori or only tryim@ind a solution that never needs
reaction. In some sense we are planning the solutions wihish fow recovery cost in the worst
realization; we call it arecoverable solution. We refer to this methodology ascoverable
optimization in the reminder of the paper. In fact, we allow to have addaiocosts in the
worst case, that is no longer simply an unfeasible solutisirabsolution that is hard (maybe
even impossible) to recover, if in the best scenario, thasideto sufficiently savings, which
we refer to this as theotential of a solution. We thus have a formulation to our uncertain
optimization problemP that includes reactive decisions and best-case consmienaithin a
pro-active worst-case framework.

Remark that different objective functions can be considleleis clear that one should not use
cu(s) instead of¢, (s), as for unfeasible scenarias,(s) = oo and thus, the recovery costs are
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pointless and the formulation reduces to find, if it existspltion that has finite cost, i.e. that
is robust against all scenarios and thus has alwg$s) = 0.

We also rejected the idea of minimizing the difference betwie worst case and the best case:

. ~REC . ~ REC
min {Iilea[;( cu(s)+é(s)  — min Cu(s) + cpr (s)}
If at least a solution with finite cost exists, then the optisalution to this problem will be
a recoverable solution for all scenarios, which is the @elsproperty of the solution. On the
other hand, the objective leads to the solution with leagadity instead of a solution with
bounded cost. Suppose there is a unique deterministid@olutc S that is recoverable, i.e.
maX,cy CeC(s) =  mingey G (s) + FE(s) < oo. Then clearly, it is the optimal solution,
but the optimality is independent of the cost itself, whiemde arbitrarily big. There might
be a solutions’” € S with much better potential, i.e. having lower costs tkan both best and
worst cases, but with non-zero variability, which is agastheduler’s intuition. Moreover, this
approach is contradictory to the fact we want to exploit utagety, as it is avoiding, potentially
by the mean of big costs, the variability.

Another possibility is to seek for a solution that is clogesthe optimal solution in the deter-
ministic case, i.e. minimizing the maximal deviation defity max,c;{c,(s) + cFE(s) — c: }.

In this case, the goal of robustness is still predominarth vaéspect to cost minimization. Al-
though the objective of lowest optimality deviation in thenst case is interesting, especially as
it compares the worst case of a solution against anotheti@o]ihe approach suffers from the
same property than the variance minimization, namely th@aepproach does no longer focus
on a proper cost minimization. In their paper Montemanni@adhbardella, 2004 use the same
objective function applied to the shortest path problenmhwiterval data which we use in the
next section as an illustrative example. They call the smhuio this problem aobust shortest
path. In the literature, it is also referred torasimax regret, see Averbakh and Lebedev, 2004.

4 Application to Shortest Path Problem with Interval Data

Let us illustrate the different concepts on to the Shortash Problem with Interval Data (SP-
PID) (Karasan et al., to appear and Montemanni and Gamlar@€04), which is defined as
follows:

LetG = (V, A) be an oriented graph, wheveis the set of nodes andlis the set of arcs. There
is a unique source nodec V' and a unique sink nodec V. The cost;; of arc (i, j) is not
deterministically known, but lies within an uncertaintyerval [;;, u;;|, wherel;; € [0, c0) and
u;; € [0, ool (infinite arc cost means that the arc cannot be traverse®)PliS, we do not have
any further information, in PUS, we are additionally giveprabability distribution function
for every arc. A scenario € U is then ase{c}, | ¢i; € [lij, u;;], V(i,j) € A}, containing one
cost realization for every arc within their respective utaiaty sets. Moreover, we suppose
that when a probability measure is given, thefr;; = u;;} > 0.

We define here some dynamic properties in order to charaettére behavior of both the on-
line algorithm and the recovery one. The cost realizatioanodirc is revealed when it's origin is
reached. In order to ensure at least one feasible solutravéryy scenaria € U, we suppose
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that there exists at least one path such that for each of tiseohthe path:;; < oco. In these
conditions, we always find a feasible solution. By conseqaewe have at least one robust
path, leading to a finite solution in both the robust and tloetsdstic problems. Moreover, if
stuck in a dead-end, we can always, in the worst case, usehtble veversed partial path to get
back to the origin and thus always find a feasible solutioh Wit reactive algorithms.

Recovery algorithm If a partial path ends up in a dead end (no more outgoing aresgre
allowed to use the arc used to reach the dead end in reverse, strits highest cost;; and
remove the arc from the network.

As this is an recovery decision taken when traversing thie ettt we want to avoid, we do not
consider the possibility of a reverse arc in the proactidjams.

On-line algorithm  Take the arc with least cost leaving from the actual node.

The worst scenario for the on-line algorithm now dependsheradditional cost of taking and
arc backwards.

Stochastic algorithm with recourse  Compute the shortest expected path (including recourse,
i.e. turn-back at dead-ends) as soon information is reddaten the actual node to the sink
node.

The objective is to find the cheapest possible path, whicktisrchined by the type of algorithm
that is used.

We consider the example presented in Figure 1, where thetaimtg intervals of every arc are
given. We suppose, without any further details, that théalodity distributions on the arc cost
intervals for the PUS are symmetric and independent. Thidi@mthat the mean of an arc cost

equalsy;; = latti

We show in Table 3 the resulting costs and the average casteddlifferent approaches ap-

plied to a representative sample of realizations given@gdst vectors in Table 2. Recall that
for the on-line algorithm and the stochastic algorithm wehourse, the outgoing arc costs are
revealed every time a node is reached and a new decisioreis &gdcordingly.

Note that the shortest path in the best scenario (I1y,8, b, t} with cost 11, but it is also the
path having highest cost in the worst scenario (12), witht d@s

The optimal path for the stochastic method ise, f, ¢}, with an expected cost of 27. The ro-
bust path, minimizing the worst case realization, is pgthg, ¢}, with upper cost bound being
33.

With the on-line strategy, whemis reached, i.e. whea, < cy; andc,, < ¢, arc(a,b) is
always chosen next, as for every possible scenafio< c... Moreover, wher,, > c,., the
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{1\infty}

[10,14]

[13,16] [15,17]

[1.15] [13,17]

[3.9]

Figure 1: Example of a shortest path with interval data. @x¢) has finite support, taking
either value 1 orc.

11 {8,2,1,4,10,13,15,1, 3,13} every arc is at its lower bound

12 {12,4,00,8,14,17,19,8,5,17}  every arc is at its upper bound

13 {10,3,1,6,12,15,16,8,4,15} every arc takes mean valu@, ¢) at lower bound
14 {10,3,00,6,12,15,16,8,4,15}  every arc takes mean valu@, t) at upper bound
15 {11,3,1,7,13,14,15,10,3,13}

16 {11,3,00,7,13,14,15,10,3,13}

17 {8,2,1,4,10,13,16,3,5,17}

18 {8,2,00,4,10,13,16,3,5,17}

Table  2: A sample of scenarios given by the cost vector
{CsmCabaCbtacacaCctaCedacdtacse>cef7cft}-

on-line strategy leads to the same solution than the stachpsactive one.

With the stochastic algorithm with recourse, wheis reached, the next taken arc is then either

(¢, t) with expected cost of,. + 12 or (b, t) with expected COM, wherec™€ is the
cost of the recourse pafla, b, a, ¢, t} in the casey,; = 0o, i.€. o + Uap + Coe + 12.

Thus, patha, b, t} is chosen if,. + 9 > 2¢,,, which is always the case. Therefore, the optimal
path of the stochastic algorithm with recourse is either, b, ¢t} or {s, e, f,t}, depending on
the realization of,, andc,.: if ¢;, < ¢, + 4.5 then the chosen path {s, a, b, ¢}, otherwise it

is path{s, e, f,t}.

With the recoverable algorithm we compute a path prior to @st revealing but considering
the recovery in case a dead-end is encountered. In thistbaseptimal path i s, a, b, t}, with
potential cost (sum of the best and worst case scenaridd)-6f42 = 53. Path{s, a, c,t} has
cost 56, patHs, d,t} a cost of 61 and paths, e, f,t} a cost of 54. Remark that for the paths

10
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Method 1|12 13|14 |I5]|16 |17 | 18 | Average

On-Line | 17|42 |27|27|26|26|25|25| 26.875

Recourse | 17|42 14|35|15|38| 25| 25| 26.375

Stochastic | 17 | 37 | 27 | 27| 26 | 26 | 25| 25| 26.250

Robust | 28|33|31|31|29|29|29|29| 29.875

Recoverablg 11| 42| 14| 35| 15| 38| 11| 28| 24.250

Table 3: Cost of the different methods for different scem@end average cost over the consid-
ered scenarios.

were no dead-end is met in the worst case, the cost of the patmply twice it's mean cost.
This is due to the fact the distributions are assumed to berstnic. Thus, when no recourse
is needed in any of the scenarios and the distributions amenggric, then the recoverable path
will be the same than the proactive stochastic shortest path

This simple example illustrates the differences of the appines. We see how the realization
of the first arc determines how good (or bad) behave the xeaaljorithms.

Note that in most of the cases, drc d) has lowest cost, which explains why the on-line algo-
rithm mainly follows the patHs, e, f, ¢} and thus leads to the same results than the proactive
stochastic solution.

Moreover, the stochastic solution and the robust path heiviy fow variance on this sample.
The stochastic path is often the shortest path whgn= oo, although in its worst scenario
the proactive stochastic path has cost 37, as even wheh, ajds untraversable, we can get a
cost of 28 for the recovered pafh, a, b, a, ¢, t}. This shows that the possibility of afg, ¢) to
become untraversable affects highly the proactive stachsdution.

The robust path, on the other hand, is by definition the skbpth in the worst scenario (12),
but it has always a high cost, which translates in a signifibayher average cost over the sam-
ple of instances we used: from 11% up to 23% higher than ther otlethods.

The path leading to the highest cost is paétha, b,t}, with cost 42. This is because when
ey = oo one must pay the recourse fee of 4 and then follow the nomaaptpath{a, c, ¢},

11
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as there is no alternative. However, in more optimistic ades, it is the path leading to the

cheapest solutions. The recoverable path has thus highabwsy than the stochastic or the

robust ones, but according to our potential measure (sunocgtwnd best case), it is the most
interesting.

The difference of the stochastic approach with recoursetlamdecoverable one is relevant in
instances I7 and I18: due to the known arc casis= 8 andc,. = 3, with the stochastic algo-
rithm with recourse, pathis, e, f,t} has better potential in average, with a total expected cost
of 22 against 22.5 for paths, a,b,t}. We see that the cost of pafh, a, b, t} highly depends

on the cost of arey. If ¢,y = oo (18), then indeed pathis, e, f,t} has always lower cost, but

in this case the saving is only of 3. In the scenario whegre= 1 (17), we see however that
the cost difference is significantly higher, pdth a, b, ¢t} leading to a save of 14, which is more
than 50% less than pafls, e, f,t}. This better potential is precisely the reason the rectera
path is paths, a, b, t}.

Note that if we consider the stochastic method with recourseproactive way, i.e. minimiz-
ing the sum of expected path length plus expected recovests @ver all scenarios without
recomputing a solution at every node, then we get the samé®othan the recoverable path:
knowing the recourse function (or recovery algorithm), éx@ected cots including recourse
expectation of patHs, a,b,t} is 24.5, which is clearly lower than the expected cost of path
{s, e, f,t}, which has least expected cost of 27.

The differences of the presented approaches a clearly sttoagh this example. In a more
general case, we see that both proactive stochastic anstmolethods will find the shortest path
in a modified graph where all the potentially untraversabts are removed (for the stochastic
cas this holds as long d3{c;; = u;;} > 0 holds). The reactive algorithms, on the other hand,
have unpredictable behavior. The solution is guided byehézation of the arc costs, which is
a property we want to avoid. The recoverable solution shovietboth the best and the worst
path according to the situation, but outperforms the othethods on the presented instances as
it does over the whole uncertainty set.

5 Applying Recoverable Optimization to Airline Scheduling

The example of the previous section shows how to apply reeble optimization on a simple
problem where the recovery costs can be computed easily.

In more general problems though, the recovery algorithmaliishecomes a hard problem itself.
Indeed, when we formulate the recoverable problem agif, the evaluation of the terms
cFEC(s) implies the evaluation of a recovery problem given a sofuticand the scenaria.
Moreover, we have to determine at which point the soluticcobges unfeasible: as a proactive
scheduler we are able to evaluate whether a given soluti@assble for a given scenario and,
in the latter, when the feasibility is lost and what the c@stsup to this disruption point.

This leads to the study of scenario characterization, wheeetries to identify in a determin-
istic way depending on the uncertainty set and the recovgorithm, which scenarios lead to
the best and to the worst cases respectively. As to recawar finfeasible solution is costly, it
usually makes sense that, in the best realizatii¥(s) = 0. We thus are left with the problem

12
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of characterizing the scenario leading to the worst posséitoverable solution.

This holds for airline scheduling as well as form many otheresluling problems. The rea-
son we develop the concept on airline scheduling is becaeseeently addressed a recovery
algorithm for the Airplane Recovery Problem (ARP) (Biertaet al., 2007).

Airline scheduling is a complex and challenging optimiaatproblem. The usual approach in
practice is to divide the problem into several smaller sabjgms which are solved iteratively
according to their due dates. The first problem to solve isdab&e choice problem, when airline
managers determine the legs to be flown, which is usually dotee12 month in advance.
Then, routes must be affected to the planes and this is dotwoirstages: first a fleet (i.e.
a type of plane) is associated to a set of flights, and thendhtes for every single plane
are computed, which is done 2-3 months in advance. Finadlyctew pairing and the crew
roistering problems are solved to affect crews to flightslide schedules are usually computed
with the aim of minimizing operational costs but often urgicted events, calledisruptions,
make the schedule unfeasible and some recovery decisiostsb@tiaken in order to get back
to the initial schedule. We recently addressed the recoveaiglem for the ARP in Bierlaire
et al., 2007 and introduced a column generation based #igotthat solves the ARP. The
underlying pricing problem is a dynamic programming alton that computes elementary
resource constrained shortest paths in a so cedtswery network generated for every plane.

These networks encode all feasible routes for one singheepl/e then use a dynamic program-
ming algorithm based on Decremental State Space RelaX&B®8R) algorithm in Righini and
Salani, 2005 to compute the solution to each pricing problem

We want to extend the concept of recoverable solution ptedein section 3 to the airline
scheduling problem having the knowledge on the recovergrdlgn for the ARP. We thus
want to find a schedule for planes, i.e. a successions of glightl maintenances for every
plane, such that whatever the scenario of a given unceytaett the solution either remains
feasible or is recoverable (using the mentioned recovepyridhm) at limited costs.

There are three underlying difficulties. The first one is teedmine when a schedule becomes
unfeasible given a scenario and compute associated pavstd, the second being, of course,
to solve the underlying recovery problem. The last diffigudtto characterize which scenario

is the worst for a given schedute

To answer the feasibility question is not trivial. One sugjgm is to perform a feasibility test
where only delays are allowed. If some rule on these delagstisiolated, then we consider
the solution as feasible, but we add the corresponding aelstg as the recovery costs.

The worst scenario characterization is much more difficsilitas highly dependent on both
the structure of the uncertainty set and the recovery dlguritself, which makes a general
characterization impossible. Unfortunately, due to theglex formulation of the recovery
algorithm in the airline scheduling case, the probleax,.;; ¢, (s)+cE(s) given a schedule
s € S'is highly non-linear as, of course, the recovery decisicggetid on the scenario, and
thus the variables of the underlying problem are both thewexry decisions and the scenario
coefficients.

One solution to solve this problem is to evaluate the regoeest for every scenario € U,
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which implies firstly that the uncertainty set has finite soppand that we neefi[ | U || S |
computations of aV P-hard problem. This is of course not affordable. We thus waubok
at alternative ways to cope with this problem.

Oneideais to sample the scenarios according to some piexpitrat we know being hard for the
recovery algorithm, and solve the recovery problem onlyafeelection of scenarios. However,
one has to be careful the way the sample is chosen as wherprgtagainst only the worst
case, we might get a solution that performs worse in a saetteat was not considered than the
one we are protected against.

The extension on the above principle is to apply it earlidie determining the uncertainty
set. Instead of sampling a given set, one might try to strediiue uncertainty set in order to
make the computation easier. This can be done through bogiedi total amount of scenarios
for example or by bounding the worst case as did Bertsimasand2004. However, the same
care on the characterization has to be taken than for thelseympentioned previously.

However, as the information needed to determine the optsolaédules is only its partial
operation cost8g, (s) and its recovery cosf<(s), and not the nature of the recovery decisions
themselves, we try to estimate these costs with a simpleridigh. Although we must be
careful not to consider too elementary estimations. Indeethis framework we are trying
to exploit the nature of the recovery algorithm in order tada less costly solution in case
recovery is needed. Approximating this information is &glént to approximate the final cost
under a given scenario and as this is what we want to mininfitee approximation is bad, the
final solution might be much more costly than expected intyeal

For example, we discard greedy measures that might be delatschedule feasibility, as
cFEC(s) = C (with C' a constant) when is unfeasible for scenario and ¢E¢(s) = 0 oth-
erwise. The reason is that for this kind of measure, the @tgulution to the initial problem
tends to find the solution remaining feasible to the mostiptesscenarios without any infor-
mation about the true recovery costs, which turns out to bedhust solution. We thus loose
the information about the recoverability that justifies approach.

Another approach is to define more schedule-based measatelselp to predict the perfor-
mance of the recovery algorithm. For example, we measursttheture of the network asso-
ciated to one schedule in terms of number of plane crossaigs $ame airport and the same
time) and the average grounding time for the planes. Theifidstator helps measuring the
number of possible airplane swappings that are possible.ndre there are, the better for the
recovery algorithm, as it considers plane swappings. Tbergkindicator captures the density
of the schedule and thus estimates the un-activity gapiadhedule that are useful to absorb
delays.

By doing so, we are in fact approximating the recovery cdstsugh auxiliary measures that
are easy to compute. With this approach we are limiting theptexity of the scenario-based
evaluation of¢,(s) and cfES(s) in order to keep the problem tractable. We thus replace the
minimization of the partial and recovery costs in (P’) by theximization of the mentioned
auxiliary objectives. Thus, we get rid of tiéP-hard recovery problem to evaluat&<(s) by
introducing some secondary objectives. The advantageeomthiti-objective approach is its
computational tractability compared to the recoverable. doreover, this approach leads to
the generation of a set of Pareto optimal solutions rathen thunique one. The disadvantage
is that we do not capture the information of the recovery @lgm and the uncertainty set
explicitly. Thus it is hard to exploit well the given informan in an implicit way.
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Finally, we can use the network-based measures directlyerecovery networks used to solve
the ARP in Bierlaire et al., 2007 which might lead to more &ipmeasures of recoverability,
and still has the advantages of the multi-objective apgroac

We see that the main challenge of the recoverable approgtie@po more complicated prob-
lems such as the airline scheduling problem is its compnaticomplexity. The proposed
approaches here are only preliminary hints of possiblearebadirections we want to explore.

6 Conclusions

In this exploratory paper we first give a classification of ¢éxesting methods to address deci-
sional problems subject to uncertainty. This motivatesigfenition of the recoverable approach
we address to attack these kind of problems with a non prosiadproactive methodology that
is based on the knowledge of the reaction strategy in casgraption occurs. This allows to
compute a solution that is robust for a subset of scenaribghbtiwe know to be recoverable at
low costs for the remaining scenarios, which is the origipalf the methodology.

We give a comparative illustration of our methodology conegieto the existing methods with
an application to the shortest path problem with intervéhdand then give a preliminary set of
directions to explore for the application of the methodglog more complicated problems, in
particular to the recoverable airline scheduling problem.

We plan to explore more deeply the field both from theoreteal practical point of view. We
intend to review more carefully the aspects of stochasbg@mming and robust optimization
and compare our findings with what has been done so far. Wedrtevalidate the approach
with a practical application to airline optimization: weveathe access to real world data, we
have a recovery algorithm and we have a set of auxiliary nreador recoverability. Thus,
we can optimize the schedule considering the exact recamasts and the auxiliary measures
given a set of disruption scenarios.
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