Bayesian Approach for
Indoor Pedestrian Localisation

lvan Spassov, EPFL ENAC TOPO
Michel Bierlaire, EPFL SB IMA ROSO
Bertrand Merminod, EPFL ENAC TOPO

Conference paper STRC 2006

ST Rc 6" Swiss Transport Research Conference
Monte Verita / Ascona, March15. — 17. 2006




Bayesian Approach for Indoor Pedestrian Localisation

lvan Spassov Michel Bierlaire Bertrand Merminod

EPFL ENAC TOPO EPFL SB IMA ROSO EPFL ENAC TOPO
Lausanne - Switzerland Lausanne - Switzerland Lausanne - Switzerland
Phone: 021.693.2751 Phone: 021.693.2537 Phone: 021.693.2754

Fax: 021.693.5740 Fax: 021.693.5570 Fax: 021.693.5740

email: ivan.spassov@epfl.ch email: michel.bierlaire@epfl.ch email: bertrand.merminod@epfl.ch
March 2006

Abstract

The principal concept of navigation is to starinira known (initial) position and to ensure a
continued and reliable localisation of the useirduhis/her movement. The initial position of
the trajectory is usually obtained via GPS or defiby the user.

Consider a pedestrian navigation system which amt@a GPS receiver and a set of inertial
sensors, connected with a map database. In tha erbaronment and indoors the localisation
depends entirely on the measurements from theahsensors. The trajectory is defined in a
local coordinate system and with an arbitrary deigon. The problem to solve is to determine
the user’s location using the map database antiah@easurements of the navigation system.
The idea behind our approach is to find the locatind orientation of the trajectory and thus
the user’s location. The proposed solution assexidie user’s trajectory with the map database
applying statistical methods in combination withpamaatching.

Similar geometric forms must be identified in bdtle trajectory and the link-node model. The
trajectory, defined by a set of consecutive poiigtdransformed to a set of lines thanks to a
dedicatednotion model

In this research we propose a solution based tist&ial methods where the history of the route
and actual measurements are treated at the saree Tine determination of the absolute
position is entirely represented by its probabilitgnsity function (PDF) in the frame of
Bayesian inference. Following this approach thaqyms estimation of the user’s location can
be calculated using prior information and actualasseements. Because of the non-linear
nature of the estimation problem, non-linear fittigrtechniques lik@article filters (Sequential
Monte Carlo methods) are applied.
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1. Introduction

The principal concept of navigation is to starinfra known (initial) position and to ensure a
continued and reliable localisation of the uselrdphis/her movement. The initial position of

the trajectory is usually obtained via GPS, anctdiesd by so-called absolute coordinates in
an Earth-fixed system. This positioning technigeguires optimal conditions and undisturbed
satellite signals, which is not the case in a oityndoors. Alternatively, the user may define
the start of the trajectory, but normally he/shesinot know the own absolute position.

Consider a pedestrian navigation system which awi@ GPS receiver and a set of inertial
sensors to capture different characteristics of uker's movement, thus representing the
trajectory by a set of points. Such a navigatiosteay could be connected with a map
database. By sayinmap databaseve consider mainly the well-known link-node model,
which represents the street network of some reggoplanar graph. For indoor navigation, a
similar link-node model is applied to represent tleéwork of all corridors and passageways
in the building. For instance, each link conneets hodes and each node is defined by its
coordinates in the national coordinate system. Tiheslink-node model is defined in an
absolute coordinate system.

In the urban environment and indoors the locabisatiepends entirely on the measurements
from the inertial sensors. The position of eaclp stedetermined as a function of the previous
position and relative measurements like speed @amihg rate. Thus the trajectory is defined
in a local coordinate system and with an arbitrargntation. The problem to solve is to
determine the user’'s location using the map datalza®l inertial measurements of the
navigation system.

The idea behind our approach is to find the locatind orientation of the trajectory and thus
the user’s location. Our proposed solution assesidhe user’s trajectory with the map
database applying statistical methods in combinatith map-matching.

First of all, we need to answer the question: wdratthe characteristics of a trajectory that
could be associated with some elements of the ratgbdse? Similar geometric forms must
be identified in both the trajectory and the linkdle model. We consider that the map
database cannot be modified, so a solution needse tibund in the modification of the
trajectory. Since the trajectory is defined by & seconsecutive points, this set must be
transformed to a set of lines before searchingsasoaation with the link-node model of the
map database. That is possible thanks to a dedicatgion model The motion model
consists in a number of functions capable to deddfd#rent characteristics of the pedestrian
trajectory like straight walk, turn, stop, etc. Wihe help of speed and direction constraints,
the essential movements of the user’s trajectonybmadetected. After the application of the
motion model the trajectory is represented as sgool where each edge is a straight walk
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pass and each vertex is a turn. The link-node maofdsle map database cannot be modified,
instead it can be preanalysed so only the criticales like turns and crossings need to be
considered.

After the pre-analysis of the link-node model ahd modification of the trajectory, we have
two data sources and we must associate similailgli&tam both data sources. The trajectory
can be considered as the history of the route &nthst point as the actual position of the
user.

In this research we propose a solution based distgtal methods where the history of the
route and actual measurements are treated at e ts@e. The determination of the user’s
location is entirely represented by its probabilitgnsity function (PDF) in the frame of
Bayesian inference. Following this approach thetgyas estimation of the user’s location
can be calculated using prior information and datueasurements. Because of the non-linear
nature of the estimation problem, non-linear filtgr techniques likeparticle filters
(Sequential Monte Carlo methods) are applied.

Outline: In sections 2 and 3 the map database lamngeadestrian tajectory will be presented.
The problem formulation and the association of l#tasources will be discussed in section
4. Section 5 presents the numerical solution of ésgémation followed by tests of the
algorithms in section 6 and conclusions in section

2. Database model

Generally the geographical database contains irftom on the position, dimensions,

capacity, functionality, etc. of the geographichjeats. For the purposes of the navigation
process the connections between these objects famgtevest. In the urban areas these
connections are defined by the street network, kvhs represented by a planar graph
[Bernstein, Kornhauser 1996]. The streets are ddfiny links or arcs and the crossings — by
nodes (Fig.1a). That representation of the stre@tark is namedink-node model

In order to create the map database for the bgjlthe same link-node model is used [Blchel,
2003]. This model includes all connections likermors and passageways. The start and the
end of each link is defined by nodes. Links areuassd to coincide with the axis of the
corridor (Fig.1b). Each link connects two nodes aadh node is known with its coordinates
in the national coordinate system. Thus the lindenanodel of the building is absolutely
defined. Using the node coordinates different prijge of the links, like length and azimuth
could be computed. An important property of theldng datamodel is that the vertical
connections are considered. The elevators ancasais are represented as links connecting
two nodes from different floors. In the contextinfloor pedestrian navigation the database
could be constituted by the limits of the buildindpowever, it could be connected with the
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street network database or with the database ddrabliildings. Based on that graph

representation there exist algorithms for computimg shortest path between two points of
interest.

Figure 1: Street network and building representethb link-node model
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In the building normally one needs the path frore coom to another. For that reason, in the
link-node model, the doors of the rooms are comsile&s nodes. Thus the map database
becomes huge. Moreover for the process of locadisatiscussed here the doors are not of

interest. That imposes a pre-analysis of the liodenmodel of the map database so as to
consider only the critical nodes like turns andssings.



3. Pedestrian trajectory

We consider a personal navigation system that ot GPS receiver and a set of sensors
that capture different characteristics of the humaalk. Since the problem to tackle is
pedestrian localisation indoors, we’ll focus on tise of inertial sensors only. Sensors like
accelerometers and gyroscopes are capable to redhsuspeed and the turn rate of a moving
body. While the person walks measurements are ma@ach step [Ladetto, 2002]. Thus the
pedestrian trajectory is represented as a set afessive points (Fig.2a). Every point is
registered with the turn rate, speed and time. Kfaon the speed and time the distance
between each pair of consecutive points is computed

Figure 2: The set of successive points
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This set of points is in a local coordinate systesth arbitrary orientation. In order to
determine the location of the user we need to timel location and orientation of that
trajectory. The proposed solution associates tleg'usrajectory with the map database. So
we need to identify similar geometric forms in btile trajectory and the link-node model, a
process known amap-matching At this stage the set of points forming thedcépry can not
be associated to the link-node model. The natuegl t@ proceed is to transform the set of
points to a polygon (Fig.2b). Thus the trajectoryl Wwe generalized so as to distinguish
between straight walks and turns. To perform ttasdformation an algorithm is developed
that applies a dedicatedotion model

We assume that the trajectory is defined in a lgoakdinate system with origin in the first
position. The construction of the polygon is basedthe detection of the turns of the
trajectory. With every step new values of the distaand the turn rate become available. The



bearing of each step with respect to the previowsaan be computed. Depending on whether
the person makes a right or a left turn the changwientation (bearing) has a positive or a

negative value (Fig.3a). Thus the algorithm carewmheine when the person enters and leaves
the turn. The person can make a turn spread overaesteps (Fig.3b) or a sharp change of
direction in one step only (Fig.3c). In both caeschange of direction is computed.

Figure 3: Detection of the turns
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The movement is considered as a turn|#| > 18°, which is an empirically derived
threshold. In the polygonal representation of tagettory the turns are defined as nodes. In
Figure 3c the node coincides with the position whbe direction has been changed. For the
case of Figure 3b we could not make the same decibecause the turn and the trajectory
would not be represented correctly. Instead we detarmine the position of a pivot point
(marked withA on the figure) and the node in that case will cimia with it.

Based on that method the algorithm can detectrdiffemovements of the person like a turn
or half-turn, a straight walk and a stop. The miodifon of the user’s trajectory with respect
to the motion model transforms the upcoming setineftial measurements to a set of
polygonal parameters (distances and angles).

Since the user walks through the corridors in thiédmg, the trajectory (the polygon) that he
performs is considered as a part of the link-noddehof the building.

Now we have two sources of data, the map databab¢ha polygonal representation of the
user’s trajectory. The problem to solve is to aggecthe data from both sources, i.e. map-
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matching. That is to find the placement of the goly in the contents of the link-node model
of the building. Then the last edge of the polygepresents the user’'s location in the
building. So we need to select from the map daglfas link associated to the last polygon
edge. While the database has a finite number oheziés, the polygon is updated with a
distance and an angle periodically. Every time gb/gon is updated an estimation of the
user’s location will be performed. The estimatietias on prior information (the trajectory,

actual measurements and database) that could detaus®mpute a posterior estimation via
the Bayesian inference.

4. Problem formulation

The walking person is considered as a dynamic systenose trajectory is modified with
respect to the motion model. The evolution of tdghamic system is defined by the
following state space model:

X = f(%0Uy) (1a)
Yo =h(%, %)+ 7 (1b)
with the following elements
Xt state vector
Uy motion input
Vi measurement vector
z measurement error
h(X;, %-1) dimensions ok; andx;.; according to the database

The state vectox; represents the location (the link) in moménThe dynamic process is
discretized regarding the motion model, so an edion is made every time the new
measurements are available. The measurement weetdrl;, a;)" includes the distance and
angle of movement detected by the motion model. Measurement noise is assumed
Gaussian. The history of all states up to momeig defined byX={xX , % ,..., X,
respectivelyY={ v1, 2 ,..., \} defines the history of the measurements up to et The
problem to solve is to estimateusing the set of all available measureméfhts

From a Bayesian viewpoint this sequential estinmpooblem demands the computation of
the posterior density(X|Y;). We assume that the state follows a first ordarkdv process:

P(XXe-1, %2, .-+, %) = P(XeXe-1), @and p(XofX1) = p(Xo) (2

So if we compute thenarginal of the posterior densitp(x]|Y;), also known adiltering
density there is no need to keep the complete histothi@ttates [Doucet et al., 2001]. Often



in sequential estimation algorithms, the measurésnare assumed to be independent given
the states:

P(yixe A) = p(yix) 3

In our case such an assumption will not be readertdrause we consider that the trajectory
made up to mometl holds additional information, which is criticalrfthe estimation.

Considering the state space model and assumptiads,ithe filtering density is estimated:
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Here p(x|Yw1) is calledprior of the state at moment It is obtained by using the state space
model (1) and the Chapman-Kolmogorov equation:

(x| Y =] HO %) 0 x| Y dx, (5)

considering the assumption that the state followissaorder Markov process. The transition
densityp(xx.1) is defined by the evolution of the dynamic sys{éa).

In (4) thelikelihood functionp(yi|Y:.1,%), is defined by the measurement model and the know
statistics of the measurement noge The evidencep(yi|Y:1) has function of a normalizing
constant. Thup(x|Y;) can be computed recursively in two stageedictionandupdate

e Prediction
POX|Y) =] O %) 1 x| YD) dx (6)

* Update
POV Yoo %) YY)

P(%| Y2 (7)

p(x| ) =



where POWY.) = HY 0 B4 YD) &
p(X|Y:1) is the prior from (4)
P(ye|Yt-1,%) is the likelihood function

Bayes' theorem says that the posterior probabdifyroportional tothe product of the prior
probability and the likelihood function. To des@&ithis relationship(y:|Y:.1) is defined as a
normalizing constant by which that product is dedd

That conceptual formulation of the problem, basedtlwe Bayesian inference cannot be
determined analytically [Arulampalam, 2001]. Thdusion can be achieved by applying
Sequential Monte Carlo (SMC) methods also knowpaaticle filters.

5. Particle filtering

Patrticle filtering is defined as a sequential process for estimatidhe states (parameters or
hidden variables) of a system when new sets ofrgaBens become available. The principle
of the SMC methods is to discretize a given dens#iyng a great number of samples also
known as patrticles [Antonini et al.] (Fig. 4).

Figure 4: Discretization op(x|Y;) usingN samples
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This operation transforms the intractable integrdishe Bayesian solution (6) and (7) into
tractable discrete sums of weighted samples [DoQO€X1]:

p()§|Y—1)= Z F(XI X.) 10 ?§1| X))

%4 0L

POY YD =Z HY ¥ 0% Y)
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where
1 ,if x is a neighbour of_
P(XeX-1) = . % J ot
0 ,if not

p(%-1|Yt-1) IS the estimation at instatl
L isthe set of all the links in the map database

If we note the samples ag"”, and their weights asy"’, wherei={1,2,...,N, N ? 0 the

posterior densityp(x|Y;) could be approximated by (8) whexg — x") is the Dirac delta

measure [Gustafsson et al., 2002]

B(x|Y) = — ®)

In our casep(x|Y;) is already discretized itself in accordance wité link-node model of the
map database where each link is considered astial@avith associated weight. The weight

w") reflects the probability that tHE particle represents the user’s location at morneFte
aim is to recursively computey’ applying prediction and update steps of the filigr

process.

On each iteration of the process prior data is tisezl/aluate the posterior density. Initially at
t=0there is no prior data because no measurementsamle on the user’'s walk and there is no
information about the trajectory. At that momentaeasider that the person could be anywhere

in the building. Thup(x|Y;) is defined by a uniform distribution whevd’ = wi”, i #j which
is described by:

X p(x), wW==, i=1,..N (9)

At momentt+1 a new set of information on the trajectory is &lde. The posterior density
p(%+1|Yi+1) is now calculated using (8). That is, the weight$ are updated according to:

Y, %) W (10)

WL = (Y

and normalized by:

W, = Hl_ (11)



To calculate the likelihood functiop(y,,,

= (I, &t )" is confronted to the data of the map database.

The location is estimated by the sample with makineght, noted as¢ . Note that at moment

t several samples could have maximal weight thusesemting the location in different places
on the map. In the next iterations the additionfdrmation on the trajectory will help to solve
this ambiguity. Finally, with the convergence oé tlilter only one sample will have a maximal

weight of 1.

The prediction step chooses a new set of samplegivilyg a weight 1 to the neighbour
samples ofx, and a weight O to the rest of the samples. Themldporithm turns to the update

step. A flow chart of the particle filtering algthvm is given as Figure 5.

Y, %) in (10) the data of the measurement vegtor

Figure 5: The particle filter implementation
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6. Tests and Discussions

A large map database for the entire campus of RELEhas been created to support the
management of the buildings. Recently, the datacitre was improved to implement new
functionalities such as shortest path computatimh guidanc& This database is used in our
tests. As a navigation system we have used theoRardNavigation Module (PNM),
developed by Vectronix A& The module is attached on the back side on teesulselt. The
measurements are saved on a pocket PC. Both &lgstithe modification of the trajectory
and the particle filter, are writen in MS Visuald@and run in post-treatment mode.

Figure 6: Localisation on the link-node model. Usércation is marked b
o | o ~
T oT
o o
| |
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Figure 6 presents an extract of the corridor nektwof the second floor of the civil
engineering building. Because of its almost symimegeometry, this part of the network
allows to test the resolution of ambiguity. In Figwa the ambiguity is not solved yet, that is
the polygon, walked so far, could be found on salvptaces on the link-node model. In
Figure 6b, after the new information has come therfconverges. That is, the unique place
of the polygon has been found on the link-node hdbas determining the user’s location.

The common constraint is that the trajectory habdgerformed on places covered by the
map database. That is, the person must not leavarda represented by the link-node model.
With a normal walk, the user’s location is deteretrafter several iterations of the algorithm.
Since the localisation is refered to a link frome thatabase its precision depends on the length

! http://plan.epfl.ch
2 http://www.camptocamp.com
? http://www.vectronix.ch
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of that link. The key idea in the Monte Carlo siadidn is to discretize the posterior density
by a set of weighted samples. Generally the nurobéhe samples has to be very large in
order to approximate the real density. In our dhgediscretized posterior denspgx|Y;) is
represented using all links of the database. Theisvark with the entire density involving all
the samples into the computation at every momems i not an issue in post-processing, but
a real-time implementation will impose restrictions

7. Conclusions and perspectives

A solution for indoor pedestrian localisation i®posed in this research. The method is based
on the Bayesian inference solved by patrticle fitigrand applying map-matching techniques.
A dedicated motion model is used to transform tber's trajectory into a polygon in order to
associate it with the link-node model of the magadase. Using inertial measurements only,
the process of localisation is entirely autonomand gives promising results. That method of
localisation can be applied to many pedestriangaian tasks. In particular, it suits the needs
of fire-brigades and security services.

The future efforts in this research will point td6 e modeling of more sophisticated
movements of the person. Special attention wilphged to vertical movements (e.g. taking
the stairs). The real-time implementation of thecess is another challenge that will be
addressed.
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