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Abstract

When using random utility models for a route choice problehgice set generation and cor-
relation among alternatives are two issues that make thesiivaglcomplex. In this paper we

propose a modelling approach where the path overlap isiEpiuth a subnetwork. A subnet-

work is a simplification of the road network only containiregsyg identifiable and behaviourally
relevant roads. In practise, the subnetwork can easily bretkbased on the route network
hierarchy. We propose a model where the subnetwork is usetkfming the correlation struc-

ture of the choice model. The motivation is to explicitly tae the most important correlation
without considerably increasing the model complexity.

We present estimation results of a factor analytic spetificeof a mixture of Multinomial
Logit model, where the correlation among paths is captumt by a Path Size attribute and
error components. The estimation is based on a GPS datdksstted in the Swedish city of
Borlange. The results show a significant increase in modfgdrfithe Error Component model
compared to a Path Size Logit and Multinomial Logit modelsor&bver, the correlation pa-
rameters are significant. We also analyse the performanteeddifferent models regarding
prediction of choice probabilities. The results show adygierformance of the Error Compo-
nent model compared to the Path Size Logit and Multinomigjibmodels.
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1 Introduction

The route choice problem concerns the choice of route betaaeorigin-destination pair on
a given transportation mode in a transportation networle pgitoblem is critical in many con-
texts, for example in intelligent transport systems, GR&gadion and transportation planning.
The efficiency of shortest path algorithms has been a strootyation of many researchers
to assume that travellers use the shortest (with regardyt@sditrary generalised cost) route
among all. Clearly, the poor behavioural realism of the ssfipath assumption motivates the
use of more sophisticated models such as discrete choicelsnod

Designed to forecast how individuals behave in a choicesstndiscrete choice models (more
specifically, random utility models) have motivated a trea@us amount of research in recent
years (Ben-Akiva and Lerman, 1985). In the specific contéxoote choice, the definition of
the choice set, and the significant correlation among altesms are the two main difficulties
(Ben-Akiva and Bierlaire, 2003).

This paper is a continuation of the work presented in Frejirapnd Bierlaire (2005) and Fre-
jinger and Bierlaire (2006) where we discuss correlatiooagralternatives in large choice sets.
Here, we especially focus on prediction capacities of ckffé route choice models. First, we
present a literature review in Section 2. A new modellingrapph based on the concept of
subnetworks is introduced in Section 3. Finally, we pregstimation and prediction results
for real data of Error Component models based on subnetvesrétsompare the results with
Path Size Logit and Multinomial Logit models.

2 Literature Review

Several different models have been proposed in the litexraflihe Multinomial Logit (MNL)
model, is simple but restricted by the Independence froatdvant Alternatives (I11A) property,
which does not hold in the context of route choice due to aygring paths. Efforts have been
made to overcome this restriction by making a determinwtitection of the utility for over-
lapping paths. Cascetta et al. (1996) were the first to pepash a deterministic correction.
They included an attribute, called Commonality Factor (GR)the deterministic part of the
utility obtaining a model called C-Logit. The utility/;,, associated with pathby individualn
is

Uin = Vin — BceCFin + €in.

The CF,, value of a path is directly proportional to the overlap with other pathshe thoice
setC,,. Cascetta et al. (1996) present three different formutataf the CF attribute. They do
however not provide any guidance for which CF formulationse.

Cascetta et al. (2002) present a route perception modek dttivo step model, where the
probability that a path belongs to a choice set is modelldd wiBinary Logit model, and the
choice of path is modelled with a C-Logit model.

The lack of theoretical guidance for the C-Logit model wass ittotivation for Ben-Akiva and
Bierlaire (1999) to propose the Path Size Logit (PSL) modkek idea is similar to the C-Logit
model. A correction of the utility for overlapping paths istained by adding an attribute to
the deterministic part of the utility. In this case, the P8ike (PS) attribute. The original
PS formulation is derived from discrete choice theory fogragate alternatives (see chapter
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9, Ben-Akiva and Lerman, 1985). The utility i, = Vi, + Opsln PS,, + ¢;, where the PS

attribute is defined as l .

; Liy 0
JEC
l, s the length of linka, I'; the set of all links in path, L; the length ofi andJ,; equals one if
pathi use linka, and zero otherwise. Other PS formulations are presentdxdiliterature but
Frejinger and Bierlaire (2006) show that only the origir@iniulation should be used. This is
the formulation that both has a theoretical support and shotwuitive results for the correction
of the independence assumption on the random terms.

PSn

1)

Given the shortcomings of the MNL model, more complex modelge been proposed in the
literature to explicitly capture path overlap within thearstructure. However, rather few of
these models have been applied to real size networks areldhaice sets.

Vovsha and Bekhor (1998) propose the Link-Nested Logit hodhich is a Cross-Nested
Logit (CNL) formulation (see Bierlaire, to appear, for aradysis of the CNL model) where
each link of the network corresponds to a nest, and each padin @lternative. Ramming
(2001) estimated the Link-Nested Logit model on route chalata collected on the Boston
network (34 thousand links). The large number of links maké&spossible to estimate the
nest-specific coefficients. He concludes that the PSL modbltive generalised formulation
(Ramming, 2001) outperforms the Link-Nested Logit model.

The Multinomial Probit model (Daganzo, 1977) has a flexibledel structure that permits an
arbitrary covariance structure specification. But nunaiirctegration techniques must be used
which limits the application of the model to large-scaleteochoice. Yai et al. (1997) propose
a Multinomial Probit model with structured covariance main the context of route choice in
the Tokyo rail network. The maximum number of alternativeswowever limited to four.

An Error Component (EC) model is a Normal mixture of MNL (MMINmodel and was de-
scribed namely by Bolduc and Ben-Akiva (1991). The utilitjmétion for individualn and
alternativel is

whereV,, are the deterministic utilities;;,, are normally distributed and capture correlation
between alternatives, amg, are independent and identically distributed Extreme Value

The EC model can be combined with a factor analytic spedificaivhere some structure is
explicitly specified in the model to decrease its complex@gkhor et al. (2002) estimate an EC
model based on large-scale route choice data collectedstoBoThe utility vectoiU,, (Jx1,
where/J is the number of paths) is defined by

whereV,, (Jx1) is the vector of deterministic utilitied’,, (JxM) is the link-path incidence
matrix (M is the number of links)T (MxM) is the link factors variance matrix, aqd (M/x1)

is the vector of i.i.d. normal variables with zero mean and veriance. Bekhor et al. (2002)
assume that link-specific factors are i.i.d. normal andwihaance is proportional to link length
so thatT = o diag(v/11, Vs, . .., /Iu) Whereo is the only parameter to be estimated. The
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covariance matrix can then be defined as follows:

L1 LLQ e LLJ
F,TT'F! = ba fooo da
LLJ LQ’J e LJ

whereL; ; is length by which patli overlaps with path.

MMNL models have been used in several studies on real sizeonles with Stated Preferences
data. The size of the choice set is then limited. Han (200d¢ @so Han et al., 2001) use
a MMNL model to investigate taste heterogeneity acrossedsiand the possible correlation
between repeated choices. Paag et al. (2002) and Nielski(28GR2) use a MMNL model with
both a random coefficient and error component structuretimate route choice models for the
harbour tunnel project in Copenhagen.

The Paired Combinatorial Logit model, developed by Chu )98as been adapted to the route
choice problem by Prashker and Bekhor (1998). RecentlyLthk-Based Path-Multilevel
Logit model has specifically been developed for the routdoehproblem by Marzano and
Papola (2004). These models have been used for small-sustie choice analysis on test
networks.

3 Subnetworks

We are proposing a modelling approach which is designed tooltie behaviourally realistic

and convenient for the analyst. We definsudbnetwork componeas a sequence of links cor-
responding to a part of the network which can be easily ladefind is behavioural meaningful
in actual route descriptions (Champs-Elysées in Pari#) Rifenue in New York, Mass Pike in

Boston, etc.) The analyst defines subnetwork componeimsrday arbitrarily selecting motor-

ways and main roads in the network hierarchy, or by condgaimple interviews to identify

the most frequently used names when people describe itiegraNote that the actual rele-
vance of a given subnetwork component can be tested afteelnreastimation, so that various
hypotheses can be tried.

We hypothesise that paths sharing a subnetwork comporenbaelated, even if they are not
physically overlapping. We propose to explicitly capturisicorrelation within a factor analytic
specification of a EC model. The model specification is comthiwith a PS attribute that
accounts for the topological correlation on the completevagk. The LK model specification

builds on the model presented by Bekhor et al. (2002). We e ¢fia utility as

whereF,, (;.¢) is the factor loadings matrix/(is the number of paths and is the number
of subnetwork components) g.q) = diag(oi,09,...,0¢) (0, is the covariance parameter
associated with subnetwork componento be estimated);, .1 is a vector of i.i.d. N(0,1)
variates, and;,1 is a vector of i.i.d. Extreme Value distributed variates. édlement(f,);,

of F, equals\/m wherel,;, is the length by which path in choice setC,, overlaps with
subnetwork component
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We illustrate the model specification with a small exampkespnted in Figure 1. We consider
one origin-destination pair, three paths and a subnetwarkposed of two subnetwork compo-
nents G, andsS;). Path 1 uses both subnetwork components whereas path 2sedy, and
path 3 onlysS,. Path 1 is assumed to be correlated with both path 2 and pagleough path
1 and path 2 do not physically overlap. The path utilitiesthas example are consequently

U, = ﬁTxl + V01a0aCa + V 0pop Gy + 11
Uy = 3T X, + V12004Cq + 12
Us = 87 X3 + /13,00Cp + 13,

where(, and(, are distributed N(0,1),, is the length patli uses subnetwork components,
ando, are the covariance parameters to be estimated.

The variance-covariance matrix ¢for this example is

Lao? + 107 V0iaV12a02 V01307
FTT'F” = | l1uV/15a0? lyq02 0

ViTuot 0 I5y07

.o
-«

Path 3
....... Path 2
-—--Path1

Figure 1: Example of a Subnetwork

4 Empirical Results

The estimation results presented in this section are based@®PS data set collected during
a traffic safety study in the Swedish city of Borlange. Ne&®00 vehicles were equipped
with a GPS device and the vehicles were monitored within ausadf about 25 km around
the city centre. Since the data set was not originally ct#gdor route choice analysis, an
extensive amount of data processing has been performedén twr clean the data and obtain
coherent routes. The data processing for obtaining dateotde choice analysis was mainly
performed by the company GeoStats in Atlanta. Data of 24clkehiand a total of6 035
observations are available for route choice analysis. fSéausen et al., 2003, Schonfelder
and Samaga, 2003 and Schonfelder et al., 2002 for more sletaithe Borlange GPS data
set.) For the model estimations we consider a total 603 observations corresponding to
1 408 observed simple routes aft vehicles andl 353 origin-destination pairs. Note that we

6
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R50S| R50N| R.70S| R.70N | R.C.
Component length [m] 5255 | 4966 | 11362 | 7028 | 1733
Nb. of Observations 145 157 248 317 226
Weighted Nb. of 32 91 68 70 132
Observations (I

Table 1: Statistics on Observations of Subnetwork Compisnen

make a distinction between observations and observedssirtee a same route can have been
observed several times.

Borlange is situated in the middle of Sweden and has about00 inhabitants. The road
network containg 077 nodes and” 459 unidirectional links. We have defined a subnetwork
based on the main roads for traversing the city centre. Twth@fSwedish national roads
(“riksvag”) traverse Borlange. The subnetwork is composkthese national roads (referred
to as R.50 and R.70) and we have defined two subnetwork comisofte each national road
(north and south directions). In addition, we have definegl subnetwork component for the
road segment in the city centre where R.50 and R.70 overddle@cR.C.). The Borlange route
network and the subnetwork are shown in Figure 2. In Table tepert for each subnetwork
component its length and the number of observations thatheseomponent. Table 1 also
reports the weighted number of observations defined byN, = >~ _, lL—z wherel,, is the
common length between the route corresponding to obsemnvatnd subnetwork component
q, L, is the length of;, andO is the set of all observations.

For the choice set generation we have used a link eliminaipgmoach (Azevedo et al., 1993)
minimising free flow travel time. This algorithm computeg tshortest path and adds it to the
choice set. One link at a time is then removed from the origihartest path, and a new shortest
path in the modified network is computed and added to the elsat if it is not already present.

The observed routes that were not found by the choice setraene algorithm were added
afterwards. The algorithm found all the observed route8®6 of the origin-destinations pairs.
However, for 20% of the origin-destination pairs, none & tbserved routes were identified,
which corresponds to 23% of the observed routes. Typidally,is the case when the observed
routes make long detours compared to the shortest pathxdon@e, in order to avoid the city
centre. These results are consistent with the findings ofrRam (2001) who at best found
84% of the observed routes by combining all the choice se¢rg¢ion algorithms that he had
tested. The number of paths in the choice sets varies bet?vard 43 where a majority of the
choice sets (90%) include less than 15 paths.

4.1 Model Specification

We compare MNL and PSL models with two different specificagiof an EC model based
on the subnetwork defined previously. One EC model,}E€ specified with a simplified
correlation structure where the covariance parameterasaumed to be equal. The second EC
model (EG) is specified with one covariance parameter per subnetwmriponent.

All models are specified with the same linear in parametemsditation of the deterministic
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Figure 2: Overview of Borlange Road Network and Subnetwoekiiition
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part of the utility function. The deterministic pari for alternative is

Vi = BpsIn(PS) + Bestimatedrim&stimatedTimeGr10mjn-
ﬁCrossingprOSSingDummgy‘i‘ BNbLeftTurnJ\| bLeﬁTurnS-

and is described in detail below.

A PS attribute, defined by the original formulation (1) (B&kiva and Bierlaire, 1999) based
on length, is included in all models in order to capture th@otogical correlation among al-
ternatives. The use of this formulation is motivated by tbsuits presented by Frejinger and
Bierlaire (2006). PS based on length and estimated trawel show similar results, length was
therefore preferred since it is known with certainty. Fey@rshows density estimates for the
PS values of observed (solid line) and of non observed (ddgie) routes. A large proportion
of the routes have a high overlap (low PS values). This is @eggesince a link elimination
algorithm has been used for the choice set generation. Matete curve for the observed
routes is on the right side of the curve for non observed sutdeaning that the observed
routes have less overlap with other routes than non obseouges. This can be explained by
the poor performance of the choice set generation algorttiscussed in the previous section.
Namely, for 20% of the origin-destination pairs, none ofdlhserved routes were found by the
algorithm. These observed routes are therefore expecteavima low overlap with the other
routes in the choice set.

It is important to note that the PS attribute can be highlyalated with link additive attributes
such as length and free-flow time. Indeed, the logarithm efttiginal PS formulation (1) can
be written as follows

1nPsn:—1nLi+1n271

Here, special attention has been given to the specificafitirecestimated travel time attribute
in the deterministic utilities. It is reasonable to assuha for short trips, other attributes than
travel time play an important role in the route choice detigirocess. We tested a piecewise
linear specification of the estimated travel time that comdid this hypothesis since the coeffi-
cients associated with low travel times were estimatedigotfecantly different from zero. We
therefore include the estimated travel time attribute endbterministic utilities if it is greater or
equal to ten minutes. The estimated travel time is computeddch link in the network based
on its length and an average speed. We have used one aveemgkfgpeach speed limit that
corresponds to the observed average speed. It is difficalbtain an accurate estimation of
the travel time. In order to capture a preference for maissirgs that could explain possible
detours compared to shorter alternatives, a main crossingrty is included in the determin-
istic utilities. (Actually, there are four main crossingsthe centre of Borlange, but only one
crossing dummy was estimated significantly different fraroz)

The number of left turns is also included in the deterministilities. Since left turns can

be considered more dangerous, and in general take morehaneight turns, we expect this
attribute to have a negative impact on the utility. Statstn the attributes included in the
model specifications are given in Table 2.

We deal with heteroscedasticity by specifying differergleparameters for different individu-
als. After systematic testing of various specificationsy fadividuals have one scale parameter

9
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Figure 3: Density Estimate of PS values

Attribute Min | Average| Max
Estimated Travel Time [min] 0.4 6.5 37.5
Number of Left Turns 0 5.0 27
Main Crossing Dummy 0 0.2 1
In(PS -3.7] -1.2 0.0

Table 2: Statistics on Attributes

each which are estimated significantly different from oner the remaining individuals the
scale parameter is fixed to one.

4.2 Model Estimation

The parameter estimates are given in Table 3. We provideledsparameter estimate in order
to facilitate the comparison of different models. The suglis based on the estimated travel
time parameter in the MNL model. The scaled estimate forghremeter is consequently the
same for all the models.

The parameter estimates related to estimated travel tefteulns and crossing dummy are all
significantly different from zero. Moreover, the parametelues as well as the robust t-test
statistics are very stable across models, which is very geod.

The PS parametepifs) estimate is positive and significantly different from zéoo the PSL
model. This is consistent with theory sinGgs corresponds to a scale parameter (see Frejinger
and Bierlaire, 2006). For the two EC models, theg estimate is not significantly different from
zero. Hence, when the correlation structure on the submktiwexplicitly captured by the error
terms, the topological correlation captured by the PShaitei is not significant.

These results are different from those presented in Frejiagd Bierlaire (2006) where the

10
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PS parameter was estimated negative and significant. Amsgtitedata cleaning has been
performed excluding observations corresponding to shistaices (trip duration less than 2
minutes). Indeed, they do not reflect the result of an actualce process.

From the log-likelihood values reported in Table 4, we obser large increase in model fit for
the EC models compared to the PSL and MNL models. MoreoverP®BL model is signifi-
cantly better than the MNL model (likelihood ratio test sttt of 6.24 compared to a threshold
at 95% of 3.84) and the EGs significantly better than E((likelihood ratio test statistic of
12.72 compared to a threshold at 95% of 9.49). The hypotbésigual covariance parameters
for all subnetwork components can therefore be rejected.H® model can however be sim-
plified since the estimate oksosis not significantly different from zero. This can be exptain
by the limited number of observations using this subnetworkponent. As shown in Table 1,
there ard 45 observations that use R.50 S but since the number of weighitszetvations is only
32, the length by which they overlap with the subnetwork congutrns relatively short. The
EC, can be further simplified since the hypotheses #hadn=0rc, orson=0R70n ANAOR70N=0RC
cannot be rejected. For the estimation on this data theri@tiel could therefore be specified
with two different covariance parameters.

Considering the important improvement in model fit for the EBGdels compared to the PSL
and MNL models, as well as the significant covariance paranestimates, we conclude that
the specification based on subnetwork captures an impartarglation structure. In the next
section we continue the comparison of these four modelsglatrding their forecasting capac-
ities.

4.3 Forecasting Results

Route choice models are often used to predict individuahbielur. 1t is therefore important to
compare models, not only in terms of model fit, but also reggrthe performance of predicting
choice probabilities. For this purpose, the correct maaglbf correlation among alternatives
is crucial.

In order to test the different models prediction power, we asly a part of the observations
to estimate the models, and apply them to the other part obltservations. The models are
estimated on observations corresponding to 80 % of therodiggtination pairs, and they are ap-
plied on observations of the remaining origin destinatiaimg The origin destination pairs are
randomly chosen. We have selected five different subsetataf @his test is particularly chal-
lenging since the models predict choice probabilities fagio destination pairs whose choice
sets have not been used for estimating the models. Infavmabout the five different data sets
are given in Table 5. Since, in general, there is only onervhsien per origin destination pair,
all the data sets have more or less the same size.

The MNL, PSL and E¢C models are estimated with the same utility specifications ake

previous section. The E@nodel is specified with four parameters whergrsosis not included

because it has not been estimated significantly differemt fzero for any of the data sets. The
estimation results are reported in the Appendix (Table Gatdd10). With few exceptions, the
same interpretation of the estimation results as in theiguevsection can be made. Namely,
the parameter values are stable across models as well atefftestatistics. Moreover, the PS
attribute is significant in the PSL models but not in the EC etedExcept for the covariance
parameters, a systematic loss in significance can be olostawall parameters compared to

11
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Parameters MNL PSL EC, EC,
Path Size 0.16 0.01 -0.01
Scaled Estimate 0.14 0.01 -0.02
Rob. Std. 0.07 0.07 0.07
Rob. t-test 2.27 0.12 -0.20
Crossing Dummy 0.55 0.53 0.60 0.62
Scaled Estimate 0.55 0.48 0.67 0.68
Rob. Std. 0.22 0.22 0.24 0.23
Rob. t-test 2.44 2.41 2.50 2.67
Estimated Time > 10 min -0.07 -0.08 -0.06 -0.06
Scaled Estimate -0.07 -0.07 -0.07 -0.07
Rob. Std. 0.03 0.03 0.03 0.03
Rob. t-test -2.50 -2.80 -2.42 -2.50
Left turns -0.40 -0.40 -0.41 -0.42
Scaled Estimate -0.40 -0.36 -0.47 -0.45
Rob. Std. 0.02 0.02 0.02 0.02
Rob. t-test -25.91 -25.97 -25.30 -25.32
o 0.04

Scaled Estimate 0.04

Rob. Std. 0.01

Rob. t-test 7.39

OR50N 0.05
Scaled Estimate 0.05
Rob. Std. 0.01
Rob. t-test 3.57
OR50S 0.00
Scaled Estimate 0.00
Rob. Std. 0.00
Rob. t-test -0.20
OR70N 0.05
Scaled Estimate 0.05
Rob. Std. 0.01
Rob. t-test 4.10
OR70S -0.04
Scaled Estimate -0.04
Rob. Std. 0.01
Rob. t-test -5.95
ORC 0.05
Scaled Estimate 0.05
Rob. Std. 0.01
Rob. t-test 4.64

Table 3: Estimation Results
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Model | Nb. o Nb. Estimated Final Adjusted
Estimates Parameters L-L Rho-Square
MNL - 7 -2455.40 0.318
PSL - 8 -2452.28 0.318
EC 1 9 -2437.12 0.322
EC 5 13 -2430.76 0.323

1000 pseudo-random draws for Maximum Simulated Likelihestimation
1693 observations

Null Log-Likelihood: -3609.92

BIOGEME (roso.epfl.ch/biogeme) has been used for all mostehations
(Bierlaire, 2003).

Table 4: Model Fit Measures

Estimation Forecast
Sample Size Null L-L || Sample Size Null L-L
Data 1 1355 -2885.61 338 -724.31
Data 2 1363 -2906.65 300 -703.26
Data 3 1360 -2907.44 333 -702.47
Data 4 1356 -2877.30 337 -732.62
Data 5 1347 -2872.01 346 -737.90

Table 5: Information on Data Sets used for Forecasting Tests

the estimation results on the complete data set, as a rddhk decreased sample size. Most
parameters remain however significant, at least at 90%. Xtepé@ons are the PS parameter
in the PSL model for data set 1, and the estimated travel temanpeter in ECand in EG for
data set 5.

Regarding the model fit, the general conclusions are the $amedl data sets. There is an
important increase in model fit when comparing the two EC rteodéth the PSL and MNL

models. The PSL is significantly better than the MNL (sediliied ratio tests in the Appendix,
Table 11) except for data set 1 where the PS parameter estimaot significantly different

from zero. Moreover, the EAnodel is always significantly better than the E&Xcept for data

set 3.

We compare the log-likelihood of the data not used for egtomao compare the performance
of the different models. The log-likelihood values for albdels and data sets are reported in
Figure 4, where the superiority of the EC models comparetiedMNL and PCL clearly ap-
pears. Of course, the differences between the performdrtbe onodels regarding prediction
results are less prominent than for the estimation resuiterestingly, the prediction perfor-
mance of the PSL and MNL are very similar, while the fit of estied data is better for the PSL.
These results are very satisfactory given the simplicitythef models. Indeed, there are only
three explanatory variables included in the determingsaict of the utility, and no characteristic
of the decision-maker is involved.

13
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Data 1 Data 2 Data 3 Data 4 Data 5

3,
gr,
$,
gr,
g,
§,
8- ]

MNL PSL ECT1 EC2 MNL PSL ECT EC2 MNL PSL ECT EC2 MNL PSL ECT EC2 MNL PSL ECT1 EC2

Log-Likelihood Value

Figure 4: Forecast Test: Final L-L Values for All Models andt® Sets

5 Conclusion

In this paper we propose a novel modelling approach basedlresvorks designed to enhance
the performance of simple models, such as the Path Size tmmglel. Estimation results show
that this approach is significantly better than a simple Batle Logit model. A subnetwork
is a set of subnetwork components. Alternatives are asstionee correlated if they use the
same subnetwork component even if they do not physicallgl@aweThis correlation is captured
within a factor analytic specification of an Error Componeraidel combined with a Path Size
attribute. The Path Size parameter estimate is howeverigiifisantly different from zero.
The estimation results are promising and the estimateseo€dhariance parameters suggest
that the specification captures an important correlatiorcgire.

Preliminary tests of the prediction power of the Error Comgat, Multinomial Logit and Path
Size Logit models are presented. The Error Component madébnmns better than the Path
Size Logit and the Multinomial Logit models. The differermetween the Path Size Logit and
the Multinomial Logit models are however less clear.

The Path Size Logit model should be used with caution. Firatlpthe Path Size attribute can
be highly correlated with link additive attributes such@etflow travel time or length. Second,
the Path Size values are highly dependent on the definititineothoice set. On the contrary,
the subnetwork is defined independently of the choice setoh¥erve very robust covariance
parameter estimates even when the sample of observatied$arghe estimation varies.

We believe that the subnetwork approach will open new petsfes for large-scale route choice

14
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modelling. It is a flexible approach where the trade-off kEsw complexity and behavioural
realism can be controlled by the analyst with the definitibthe subnetwork. Clearly, more
analysis is required to assess the sensitivity of the iesuith regard to the definition of the
subnetwork. Moreover, additional validity tests on othatadets would be desirable.
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7 Appendix

MNL PSL EC, EC,
Nb. Parameters 7 8 9 12
Null L-L -2885.61 | -2885.61 || -2885.61 | -2885.61
Final L-L -1977.76 | -1976.53 -1964.7 | -1956.28
Adj Rho-Square 0.312 0.312 0.316 0.318
Path Size 0.11 -0.04 -0.07
Scaled Estimate 0.10 -0.05 -0.08
Rob. Std. 0.08 0.08 0.08
Rob. t-test 1.41 -0.54 -0.88
Crossing Dummy 0.42 0.40 0.48 0.48
Scaled Estimate 0.42 0.38 0.57 0.55
Rob. Std. 0.25 0.24 0.27 0.26
Rob. t-test 1.69 1.66 1.77 1.83
Estimated Time > 10 min -0.06 -0.07 -0.05 -0.05
Scaled Estimate -0.06 -0.06 -0.06 -0.06
Rob. Std. 0.03 0.03 0.03 0.03
Rob. t-test -2.30 -2.51 -1.93 -2.02
Left Turns -0.39 -0.39 -0.41 -0.41
Scaled Estimate -0.39 -0.37 -0.48 -0.47
Rob. Std. 0.02 0.02 0.02 0.02
Rob. t-test -23.81 -23.76 -22.73 -22.82
o 0.04
Scaled Estimate 0.05
Rob. Std. 0.01
Rob. t-test 6.33
OR50N -0.05
Scaled Estimate -0.06
Rob. Std. 0.02
Rob. t-test -3.59
OR70N -0.04
Scaled Estimate -0.05
Rob. Std. 0.01
Rob. t-test -3.63
OR70S -0.04
Scaled Estimate -0.04
Rob. Std. 0.01
Rob. t-test -5.78
ORC 0.06
Scaled Estimate 0.06
Rob. Std. 0.01
Rob. t-test 4.57
1000 pseudo-random draws for Maximum Simulated Likelihestiimation
1355 observations
Null Log-Likelihood: -2885.61
BIOGEME (roso.epfl.ch/biogeme) has been used for all mogighations
(Bierlaire, 2003).

Table 6: Estimation Results Data 1
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MNL PSL EC, EC,
Nb parameters 7 8 9 12
Null L-L -2906.65 | -2906.65 || -2906.65 | -2906.65
Final L-L -2009.30 | -2006.94 || -1995.90 | -1989.86
Adj Rho-Square 0.309 0.307 0.310 0.311
Path Size 0.15 0.02 -0.01
Scaled Estimate 0.14 0.02 -0.01
Rob. Std. 0.08 0.08 0.08
Rob. t-test 1.92 0.27 -0.13
Crossing Dummy 0.71 0.69 0.72 0.77
Scaled Estimate 0.71 0.65 0.73 0.76
Rob. Std. 0.24 0.24 0.26 0.26
Rob. t-test 2.94 2.88 2.72 3.00
Estimated Time > 10 min -0.10 -0.10 -0.09 -0.10
Scaled Estimate -0.10 -0.10 -0.10 -0.10
Rob. Std. 0.03 0.03 0.03 0.03
Rob. t-test -2.89 -3.12 -3.07 -3.09
Left Turns -0.38 -0.38 -0.39 -0.40
Scaled Estimate -0.38 -0.36 -0.40 -0.40
Rob. Std. 0.02 0.02 0.02 0.02
Rob. t-test -23.55 -23.56 -23.00 -22.93
o 0.03
Scaled Estimate 0.04
Rob. Std. 0.01
Rob. t-test 6.24
OR50N -0.04
Scaled Estimate -0.04
Rob. Std. 0.02
Rob. t-test -2.60
OR70N -0.05
Scaled Estimate -0.05
Rob. Std. 0.01
Rob. t-test -4.16
OR70S -0.03
Scaled Estimate -0.03
Rob. Std. 0.01
Rob. t-test -4.99
ORC 0.05
Scaled Estimate 0.05
Rob. Std. 0.01
Rob. t-test 4.28
1000 pseudo-random draws for Maximum Simulated Likelihestiimation
1363 observations
Null Log-Likelihood: -2906.65
BIOGEME (roso.epfl.ch/biogeme) has been used for all mostehations
(Bierlaire, 2003).

Table 7: Estimation Results Data 2

18



Swiss Transport Research Conference

March 15-17, 2006

MNL PSL EC, EC,
Nb parameters 7 8 9 12
Final L-L -1990.77 | -1988.16 || -1979.87 | -1977.09
Adj Rho-Square 0.313 0.316 0.316 0.316
Path Size 0.16 0.05 0.03
Scaled Estimate 0.15 0.06 0.03
Rob. Std. 0.07 0.08 0.08
Rob. t-test 2.12 0.70 0.36
Crossing Dummy 0.84 0.80 0.84 0.86
Scaled Estimate 0.84 0.76 0.95 0.96
Rob. Std. 0.25 0.24 0.26 0.25
Rob. t-test 3.41 3.34 3.26 3.41
Estimated Time > 10 min -0.09 -0.09 -0.08 -0.08
Scaled Estimate -0.09 -0.09 -0.09 -0.09
Rob. Std. 0.03 0.03 0.03 0.03
Rob. t-test -2.73 -3.05 -2.76 -2.77
Left Turns -0.38 -0.38 -0.40 -0.40
Scaled Estimate -0.38 -0.36 -0.45 -0.45
Rob. Std. 0.02 0.02 0.02 0.02
Rob. t-test -22.56 -22.85 -22.13 -22.05
o 0.03
Scaled Estimate 0.04
Rob. Std. 0.01
Rob. t-test 5.66
OR50N -0.03
Scaled Estimate -0.04
Rob. Std. 0.02
Rob. t-test -2.08
OR70N -0.04
Scaled Estimate -0.05
Rob. Std. 0.01
Rob. t-test -3.22
OR70S -0.04
Scaled Estimate -0.04
Rob. Std. 0.01
Rob. t-test -5.06
ORC 0.04
Scaled Estimate 0.04
Rob. Std. 0.01
Rob. t-test 3.69
1000 pseudo-random draws for Maximum Simulated Likelihestiimation
1360 observations
Null Log-Likelihood: -2907.44
BIOGEME (roso.epfl.ch/biogeme) has been used for all mostehations
(Bierlaire, 2003).

Table 8: Estimation Results Data 3
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MNL PSL EC, EC,
Nb parameters 7 8 9 12
Final L-L -1945.24 -1942.03 -1934.48 -1928.3
Adj Rho-Square 0.324 0.322 0.325 0.326
Path Size 0.18 0.07 0.03
Scaled Estimate 0.15 0.06 0.03
Rob. Std. 0.08 0.08 0.08
Rob. t-test 2.35 0.85 0.44
Crossing Dummy 0.56 0.52 0.62 0.64
Scaled Estimate 0.56 0.43 0.58 0.56
Rob. Std. 0.25 0.24 0.27 0.26
Rob. t-test 2.27 2.18 2.32 2.47
Estimated Time > 10 min -0.04 -0.05 -0.04 -0.05
Scaled Estimate -0.04 -0.04 -0.04 -0.04
Rob. Std. 0.02 0.02 0.03 0.03
Rob. t-test -1.71 -2.07 -1.70 -1.74
Left Turns -0.40 -0.40 -0.41 -0.42
Scaled Estimate -0.40 -0.33 -0.38 -0.36
Rob. Std. 0.02 0.02 0.02 0.02
Rob. t-test -23.90 -23.88 -23.09 -23.16
o 0.03
Scaled Estimate 0.03
Rob. Std. 0.01
Rob. t-test 5.78
OR50N -0.04
Scaled Estimate -0.04
Rob. Std. 0.02
Rob. t-test -2.51
OR70N -0.05
Scaled Estimate -0.05
Rob. Std. 0.01
Rob. t-test -3.75
OR70S -0.04
Scaled Estimate -0.03
Rob. Std. 0.01
Rob. t-test -5.51
ORC 0.04
Scaled Estimate 0.03
Rob. Std. 0.01
Rob. t-test 3.15
1000 pseudo-random draws for Maximum Simulated Likelihestiimation
1356 observations
Null Log-Likelihood: -2877.3
BIOGEME (roso.epfl.ch/biogeme) has been used for all mostehations
(Bierlaire, 2003).

Table 9: Estimation Results Data 4
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MNL PSL EC, EC,
Nb parameters 7 8 9 12
Final L-L -1943.66 | -1940.38 || -1928.45 | -1923.42
Adj Rho-Square 0.321 0.322 0.325 0.326
Path Size 0.18 0.04 0.01
Scaled Estimate 0.15 0.05 0.02
Rob. Std. 0.08 0.08 0.08
Rob. t-test 2.32 0.48 0.16
Crossing Dummy 0.64 0.63 0.66 0.69
Scaled Estimate 0.64 0.53 0.84 0.85
Rob. Std. 0.25 0.24 0.26 0.25
Rob. t-test 2.60 2.63 251 2.70
Estimated Time > 10 min -0.05 -0.06 -0.04 -0.04
Scaled Estimate -0.05 -0.05 -0.05 -0.05
Rob. Std. 0.03 0.03 0.03 0.03
Rob. t-test -1.74 -2.06 -1.51 -1.57
Left Turns -0.39 -0.39 -0.41 -0.41
Scaled Estimate -0.39 -0.33 -0.52 -0.51
Rob. Std. 0.02 0.02 0.02 0.02
Rob. t-test -23.55 -23.52 -22.74 -22.81
o 0.04
Scaled Estimate 0.05
Rob. Std. 0.01
Rob. t-test 6.57
OR50N -0.05
Scaled Estimate -0.06
Rob. Std. 0.01
Rob. t-test -3.59
OR70N -0.05
Scaled Estimate -0.07
Rob. Std. 0.01
Rob. t-test -4.04
OR70S -0.04
Scaled Estimate -0.05
Rob. Std. 0.01
Rob. t-test -5.00
ORC 0.04
Scaled Estimate 0.05
Rob. Std. 0.01
Rob. t-test 3.92
1000 pseudo-random draws for Maximum Simulated Likelihestiimation
1347 observations
Null Log-Likelihood: -2872.01
BIOGEME (roso.epfl.ch/biogeme) has been used for all mostehations
(Bierlaire, 2003).

Table 10: Estimation Results Data 5
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Data Set| Model 1 | Model 2 | Test | Threshold (95 %) | Threshold (90%)
1 PSL MNL 2.46 3.84 2.71
1 EC, EC 16.84 7.81 6.25
2 PSL MNL 4.72 3.84 2.71
2 EC, EC 12.08 7.81 6.25
3 PSL MNL 5.22 3.84 2.71
3 EC, EC, 5.56 7.81 6.25
4 PSL MNL 6.42 3.84 2.71
4 EC, EC 12.36 7.81 6.25
5 PSL MNL 6.56 3.84 2.71
5 EC, EC 10.06 7.81 6.25

Table 11: Likelihood Ratio Tests
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