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Abstract

Activity-based models in Transportation Science focus on the description of human trips and ac-
tivities. We address the modeling of activity location decision for large data sets: given both
home and work locations, where do individuals perform so-called secondary activities (e.g shop-
ping)? We propose a model where agents have limited, accurate information about a small subset
of the whole spatial environment. Agents are inter-connected by a social network through which
they can exchange information. This approach has several advantages: a) it can be faster to find
suboptimal solutions to build plausible choice sets b) the learning speed of the overall process is
governed by the greediness of the exchange and c) it can provide a useful framework to study the
propagation of any newly available information.
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1. General context

Activity-based models in Transportation Science focus on the description of the organization of
human activities in time and space. This organization determines the demand for travel, that is the
amount of users that the various transportation systems need to accommodate. It is assumed that
the demand for travel is derived from the demand for performing activities at specific locations.
Obviously, individuals constantly perform some trade-off between enjoying activities that have a
high reward value (for instance working at a company in the downtown area) and the time and
budget it takes to get to the specific location of these activities. Various operational models (such
as URBANSIM Waddell et al. (2003)) are available to describe this trade-off for the choice of the
home and work locations. It is essentially assumed that users perform a trade-off between rents,
travel costs and wages. However, empirical evidence (Axhausen et al. (2002)) have shown that a
significant amount of traffic is generated for other purposes than commuting, often referred to as
secondary activities: shopping, leisure, going to social events, etc.

2. Problem statement

Our work intends to model the specific process of the location choice of secondary activities in the
case of high resolution data sets. The methodological constraints are that the modeling should be
behaviorally sound, compatible with micro-economics foundations and computationally feasible.
The temporal dimension (i.e. the scheduling of the activities) is ignored for the time being. We
assume that the order of the activities -called a plan- is given (i.e. getting out from home, going to
work, working for eight hours, going for shopping at lunch time, etc.). The physical environment
is described by two large data sets that typically originate from Geographical Information Systems
(GIS): a) the land-use data and b) the transportation system data. The land usage is a raster-type
description that includes the information about the nature of each parcel of the studied area (e.g.
housing density, number of shops, type of area: rural, commercial, industrial). The transportation
system is a vector-type description of the various transportation mode available (e.g. car, rail,
bus) as a network with nodes and links. The travel time delays from point to point are given by
external traffic models. Nowadays, these data have reached a very high resolution: typical land-
use cells are 100 meters by 100 meters and road networks are described down to 10 meter road
sections. The long-term goal of our research is to model entire metropolitan areas microscopically
by simulating the individual decision of millions of citizens. Therefore, the problem at hand can
be stated as follows: how to simulate the selection of the activity locations of A = 109 citizens in
a grid that has C' = 10° cells.

3. Micro-Economics foundation

The standard practice in Transportation Science to approach such problems is to use random
utility models (RUM) borrowed from the discrete choice theory of Micro-Economics (Ben-Akiva



Marcn £o—29, ZUU4

and Lerman (1985); Domencich and McFadden (1975)). These models assume that individual
are maximizing their own utility. For instance, the utility to go shopping at a mall located in cell
¢ for a simple plan (i.e. home - shopping - work) is given by

Ui =R; — Chi — Cyyp + pe; = Vi + pg;

where R; is the reward associated to shopping at location 7, which depends on the availability
of goods, their prices, etc.; C;, is the travel cost to travel from home to cell i; C;, is the travel
cost to travel cell 7 to work; p is a scale factor and ¢; is a random variable that is specific to the
individual. The latter random utility part captures all the hidden preferences of a specific user for
location 7 that are not accessible to the modeler. By contrast, V; is called the deterministic part
of the utility. Under the assumption that ¢; are i.i.d extreme value distribution of type I, it can be
shown that the probability to choose to go shopping at cell & is given by:

exp(—Vi /1)
Zi exp(—V;-/,u)

Since a probability greater than zero is assigned to each potential intermediary stop on a cell,
this formulation requires a full enumeration of the possibilities on the spatial grid. For trips that
count S intermediary stops, the complexity is O(AC®) which is not feasible in realistic cases.
Initially, RUMs are intended for the description of choices between a finite set of alternatives
distinguishable by humans (e.g. car brands). But their application to a discretized continuum (i.e.
urban space) remains behaviorally questionable. Still, we believe it is fundamental to keep some
compatibility with RUMs because a huge amount of the literature has been devoted to developing
empirical techniques (e.g. surveys) to calibrate the parameters of those models. Another draw-
back of RUMs is that they provide only a static representation that does not take into account
the temporal dimension of the decision process. RUMs do not model explicitly the learning pro-
cess performed by human beings and the dynamics due, for instance, to some modification in the
land-use patterns.

P(k)=P(U; < Up¥i # k) =

4. Multi-agent based approach

To overcome these limitations, we propose a multi-agent based simulation where each agent (i.e.
each simulated citizen) has only limited, accurate information about NV cells (/V < C) called the
“memory” of the agent. The intuition is that real humans have limited cognitive abilities and can
only consider a small amount of options at the same time. The organization of these options in
the mind and the human representation of space is probably far different from “pixels” but we put
that problem aside for the time being. Furthermore, we assume that agents are inter-connected
by a social network through which they can exchange information about their respective subsets.
Each agent is socially connected to K acquaintance or “kins”. The simulation is iterative and
each round has four stages: evaluation, socialization, exchange and exploration.

Evaluation: each agent performs the location choice of the intermediary stops of his plan based
on his own private information. The choice can be deterministic (the best cells are selected
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from the memory of the agent) or probabilistic (a RUM is applied to the finite set limited to
the memory of the agent). The computing load for building and storing the travel plans is
O(AN%). At this point, the plans are fed in some traffic model which is run to compute the
delays incurred due to traffic congestion. These penalties are to be used in the next round
of evaluation.

Socialization: social links disappear following an exponential decay law. Initially, the social
network is a random graph of degree K and each social connection has the same decay
time. When two agents perform activities at the same location, either they do not know
each other, in which case there is a given probability to meet and to establish a new social
connection or they do know each other, in which case the decay time increases, thus re-
reinforcing their social link. This task requires O(AK) operations for the enumeration of
the social links and O(C') operations to browse the cells for detecting interactions between
agents.

Exchange: for each of his social connection, an agent has the opportunity to exchange a piece
of information. A cell is picked up randomly from the agent’s memory and the other agent
is informed about it. The exchange is bi-directional and the outcome of the exchange is
described by the learning mechanism below.

Exploration: agents have the possibility to explore neighboring cells close to those that they
visit during their travel. This stage is mainly intended to recover potential information loss
in the other stages, thus relieving the implementation from checking that no cells is lost
from the global knowledge of all the agents. Obviously O(A) operations are required.

5. Learning mechanism

The memory of an agent is represented on Figure 1: a first buffer contains the information about
locations that are either close to home or close to work (e.g. a small circular area). The second
buffer called the “elite” buffer corresponds to locations that have the highest scores; the third
buffer contains “vague” information about cells that have poor scores. When an agent informs
another agent during the exchange stage, a cell is picked randomly from the three buffers of
memory of the informer. At that point, the informed agent evaluates how this new cell information
can potentially improve the score of his plan. This implies to evaluate the replacement of any
intermediary stop by the new cell: O(N(~1) operations are needed. If the score is better than the
worst solution of the elite buffer, the new cell is promoted to that buffer and the buffer is sorted:
O(K In K) operations are needed. If the cell does not improve one of the elite plans, the cell
information replaces a previous cell from the vague buffer. This has two consequences: Firstly,
agents keep information that is not relevant to themselves but that might be to others in the future,
hence they adopt a cooperative behavior that is not supervised. Secondly, the information in the
vague buffer can be erased and lost forever, which is most likely for cells that have the lowest
utilities. The exploration phase allows still to recover them. So far, the computation load of a
single round is O(AN®~9) + O(AK In K) +O(C) which is feasible for reasonable assumptions
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(S < 3,N < 50, K < 50). However, the number of iterations is still to be determined. Note that
the learning speed of the overall process depends on the greediness of the exchange which is a
function of the ratio between the sizes of the elite and the vague buffers.

HOME WORK BEST SCORE OTHER CELLS
CELLS CELLS CELLS
Agent X
memory
Give 1 random
cell information
Promote?[_\
HOME WORK BEST SCORE OTHER CELLS
CELLS CELLS CELLS
AgentY
memory
< > < >
Leave untouched Learning/gathering information

Figure 1: Agent memory organization and learning

6. Implementation issues

The code of the simulation has been written in Java. Input and output files use the XML file format
which is well suited to variable length content such as the description of the individual plans
with multiple stops. The goal being to simulate 10® agents on a single CPU, some performance
concerns have to be taken into account.

Cells: each grid cell is stored as an individual object. With 105 cells, it is not crucial to store
the cell attributes as plain arrays. This allows to keep cell characteristics private and to
have cell references. Since cells have to be often compared during the learning process to
determine if a new cell is already known to an agent, it is far more efficient to use the equal
operator == than the default Java equals() method. This is valid as long as the cells are not
dynamically allocated or cloned once the simulation starts. Cells have to keep references
to agents that visit them (see the socialization stage). The average number of visits per cell
is small (O(SA/C)) so that we can allow for the overhead of a dynamic container (e.g.
vector).
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Agents: it is tempting to have a dynamic container steadily increasing in size for the agent mem-
ory. However, that would completely ruin the performances and is not compatible with our
assumption that only a limited number of simultaneous options can be memorized. Each
cell is referenced on average by O(AN/C) so that the initial coverage is sufficient to ensure
that there is not any information missing about the environment.

Random numbers:. a typical bottleneck of this kind of simulation is the computation of random
numbers. A priori, O(AK) random numbers have to be computed for each single iteration
of the information exchange stage. This quickly becomes prohibitive and can be avoided
by using two integer random seeds at the beginning of the exchange stage. One is used
to pick a cell from the informer agent, the other to replace a cell in the memory of the
informed agent. These two pointers can be simply incremented from one social link to the
other since there is no correlation between social links and they are accessed in a a priori
random order.

7. Results

The simulation is tested on a real-world example for the Zurich region for which we have available
a high resolution transportation network and a land-use raster (see Figure 2). The area covers
approximately a 50x50 kilometer square area where about one million inhabitants are living.
The land-use utility values R; are generated based on census data. Random plans with 1 or 2
intermediary stops are generated for 10® agents that are distributed on the area according to job
and housing densities. The home to work pairs are computed using an external model written by
one of the author (see Marchal (2003) for the computation of the rent values presented in Figure
2). The initial social network that connects them is a random graph. Obviously, this is not realistic
but we intend to evaluate only the computational feasibility in this preliminary work.

Figure 3 presents the evolution of the sum of the scores of all the agents during the iterative pro-
cess. It can be seen that the process converges in a few dozens of iterations but that the choices are
not optimal since the utility does not reach the maximum value obtained with a full enumeration
of the alternatives. This is due to the fact that some information is lost in the process and slow
to be recovered. Still, the value of the plateau is high enough to ensure plausible strategies for
the plans. Note that the size of the memory of the agent only slightly affects the convergence
properties.

Figure 4 illustrates the spatial adaptation process for a single agent with a two-stop plan: home-
work-leisure-shopping. On the first iteration, leisure (L1) and shopping (S1) are performed at the
home place because the agent ignores good locations to perform these activities. In the second
iteration, he/she learns that the location L2 — S2 is a good location for one of the two activities,
hence making the extra trip distance worth it. On the third iteration, the agent discovers that the
area around S3 has a high utility for shopping. During the fourth and fifth iterations, the agent
keeps shopping close to that area and only optimizes the leisure location (L3 — L4 — L5).

All the experiments were done on a computer equipped with a Intel Pentium4 clocked at 2.5Ghz.
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Figure 2: Zurich area: transportation network and rent values computed by the land use module.
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Figure 3: Performance of the multi-agent cooperation process.
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ome=L1=S1 Home-Work-Leisure-Shopping

Figure 4: Adaptation of the location for a two-stop plan.

The typical simulation performance for 100 iterations of a system with 10° agents is below one
hour of CPU time. This is for plans that have only one or two intermediary stops. In term of
memory requirement, about 400 Mbytes of RAM are needed. Obviously, the simulation of larger
systems and more sophisticated plans with more than two stops will require to distribute the
workload on several computers.

8. Conclusions

This preliminary work has shown that a multi-agent based approach to the location of secondary
activities is technically feasible and behaviorally plausible for high resolution data sets. Many
aspects still need to be addressed to improve the realism of the model. Nevertheless, the fact that
agents cooperate in even some simplistic way yields an important gain in term of computation
workload. This has to be compared with the standard practice in Transportation Science where it
is typically assumed that users are in the situation of a non-cooperative Nash equilibrium.
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