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Abstract 

Given the limited set of features that analytical models can include and the level of details re-
quired by practical applications, many transportation models have privileged by now the simu-
lation approach as a tractable way to describe the dynamics of traffic. Innovative models are 
mostly dynamic and concerned with the temporal patterns of travel decisions. We focus in this 
paper on the departure time choice of car drivers and on the within-day and day-to-day adjust-
ment of the travel demand to the driving conditions and conversely. Taking into account the 
time of usage leads to the production of a richer set of evaluation indicators. We illustrate this 
statement on several experiments to advocate the modelling of the departure time choice and the 
segmentation of the population. We show that these are two key issues to evaluate, at the global 
level, the differentiate responses to the introduction of transportation policies such as traffic re-
straint and road pricing. Some preliminary results are shown for the simulation of the Zurich 
area. 
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1. Introduction 

The general framework of this paper is that of dynamic traffic models. These models are now 

widely accepted in the transportation community as the “next big thing”. However, their 

broad usage in transportation agencies still poses problems at several levels, among which the 

availability of input data, the requirements in computer power and the lack of adequate tools 

to analyse their results (see the review of Algers et al., 1997). Part of the problem lies within 

the way that the temporal dimension is integrated into the models. Before we examine this is-

sue, recall that, historically, first generation models, such as the four-step planning scheme, 

completely ignored the dynamics of transportation systems and assumed a sequence of static 

pictures of the real world: the generation of trips, the choice of a travel mode and then of an 

itinerary were seen as unrelated sequential choices. The progresses of research in travel be-

haviour have encouraged, since about two decades, the emergence of second generation mod-

els that share the common concern to provide a temporal framework to describe the dynamics 

of the travel phenomena along with the different timescales involved.  The main behavioural 

assumption behind this trend is that users decisions are the outcome of several interacting lev-

els: for instance household lifestyle decisions affect home location and car ownership, which 

in turn affect the activity patterns and daily schedules, which eventually define the travel 

choices in term of mode, route and departure time (see the agent-based approach of Raney et 

al.). Note that this line of research is also fuelled by political reasons since current transporta-

tion policies in western countries are mostly oriented toward travel demand management 

(TDM) rather than improvement of the existing infrastructure. Intelligent Transportation Sys-

tems (ITS) such as road guidance play also an increasing role in the way people select travel 

options. Taking these systems into account obviously requires from traffic models to provide 

a temporal framework to measure the reaction of users to expected and unexpected traffic 

conditions. 

The time horizon modelled in this work is that of the morning peak up to a few days, as we 

focus on within-day and day-to-day adjustments. Within that time frame, the selection of a 

time of usage of the transportation system depends on many factors: the availability of public 

transportation, the congestion incurred on the road, the individual daily schedules, the open-

ing and closing hours of facilities (schools, shops), etc. We restrict ourselves to the context of 

car drivers who only have to perform one single trip in the morning period at a desired mo-

ment. As in most microscopic models, drivers are simulated individually with personal char-

acteristics. The variables that affect their choices are the traffic conditions incurred, the satis-

faction of their schedule wishes and, optionally, the tolls they have to pay to use some facili-
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ties. Obviously, the explanation of the schedules is left to upstream models such as activity 

pattern models and trip chaining models. These latter often require the acquisition and proc-

essing of  a lot of socio-economic data (see Bowman, 1998). As stated in the preamble, we 

favour dynamic traffic models that do not require too many additional data as compared to 

first generation models. Trip tables are often available and drivers schedules can be estimated 

independently. Nevertheless, this approach remains easy to integrate in a broader hierarchy of 

travel decision models.  

In the virtual world of the simulation, once drivers have selected their departure time and their 

itinerary, it is the role of the Dynamic Traffic Assignment (DTA) to compute the subsequent 

traffic conditions given the properties of the transportation network (topology and capacities). 

Several methodologies exist to carry over this task. They are often categorized according to 

their level of details: macroscopic models assume that vehicles are homogenous and that traf-

fic variables (i.e. speed, flow, density) are continuous (DTA is often called the dynamic net-

work loading problem in this context). Microscopic models instantiate individual vehicles 

with their own characteristics and describe their complex motions in the network  (lane 

changing, overtake, acceleration, etc.). The approach adopted here models congestion at an in-

termediate “mesoscopic” level: it uses speed-density functions and discrete events instead of 

time slices for the time representation. We refer the reader to de Palma and Marchal (2002) 

for an exhaustive description of the simulation environment METROPOLIS and of its as-

signment module (see Figure 1 for the overall framework of model). Basically, the 

mesoscopic level of detail yields fast executing times by assuming that road sections behave 

as simple linear queues with fixed capacities. This allows to simulate large-scale systems (i.e. 

above several thousands links and 100,000 vehicles) two order of magnitude faster than micro 

simulations but at the cost of a loss in congestion details.  

The simulation of large data sets has at least two motivations. Firstly, most agencies have al-

ready available city-wide coded networks that have been used for transportation planning with 

static models. These data, together with the corresponding origin-destination matrices, are ex-

pensive data that usually require several man-years to gather and to code. The transition to a 

system of exactly the same size is obviously a benefit. Secondly, network data are often en-

coded manually and the estimation of origin-destination matrix typically requires a lot of ma-

nipulation from the operator. These tasks are likely to be performed automatically in the years 

to come: road networks can be extracted more or less automatically from aerial or satellite 

images and coded into geographical information systems. In practice, the level of details of 

these databases exceeds by far the need of the transportation planner and the simplification or 

reduction of these data is costly and ambiguous. Likewise, the data collection needed for ori-
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gin-destination matrices can be extracted from various digital sources (e.g. GPS equipped ve-

hicles, cell phones tracking, traffic counters, etc.). As the electronic automation of transporta-

tion systems proceed, we can conjecture that the cost of collecting data will steadily decrease 

while the cost to perform manual aggregation, reduction or interpretation will remain the 

same or even increase with the complexity of the databases. 

Day-to-day dynamics refers in this article to the adjustment of the balance between traffic 

conditions and users decisions. After each simulation of the morning period, users update 

their choices based on their driving experience. Given these choices, a new DTA can be per-

formed. The whole system can loop until some stationary regime is observed, under constant 

conditions. The update of users choices is performed using an information data structure that 

is constantly improved (see the main loop of Figure 1). The more drivers use the network, the 

better their “knowledge” of the time-dependent variations of the traffic conditions. This learn-

ing process, also detailed in de Palma and Marchal (2002), attempts to model how users react 

to unexpected conditions but it is not calibrated or backed up with real day-to-day observa-

tions. Its main purpose is to feature the feedback of traffic conditions on the patterns of the 

time of usage. The information data block (see Figure 1) is also constantly accessed as the 

drivers are allowed to revise their route choice in the presence of unexpected  conditions. To 

summarize, the dynamic aspects appear at several levels  in this framework: 

• departure time choice (i.e. pre-trip decision),  

• traffic dynamics (i.e. en-route diversion and time-dependent traffic), 

• information modelling (i.e. day-to-day adjustments) 

The discussion of the use of a departure time choice model instead of dynamic origin-

destination matrix is extended in Section 2. The remainder of this paper is organized as fol-

lows: Section 3 is devoted to the definition of new evaluation indicators adapted to the dy-

namic framework defined so far; Section 4 provides some preliminary results of the simula-

tion of the Zurich area; Hypothetical scenarios are presented to illustrate the concepts devel-

oped in the previous sections; Section 5 concludes. 
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Figure 1 Simulation framework of METROPOLIS 
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2. Synthetic demand module (SDDM) 

In most DTA models, the variability of demand over time is captured by dynamic origin-

destination matrices (DOM) that are input into the model (see the left part of Figure 2). The 

incoming rate of vehicles at each entry point is considered to be exogenous. The acquisition 

and estimation of these DOMs rely on traffic sensor data. Various sophisticated techniques, 

essentially originated from optimal control theory, have been developed to solve the DOM es-

timation problem (see Ashok (1996), Ashok and Ben_akiva (1993)). However, it should be 

noted that, while these methods have proven to be efficient on small networks (typically 

highway corridors with ramp metering), it is still unclear if DOMs can be estimated for large-

scale dense urban networks. Because the time-dependency of demand is not included, DTA 

models have to be fed with a historical database of DOMs to cover different types of days or 

traffic conditions. When such systems are embedded in real-time control schemes, a prelimi-

nary DOM estimation is performed by an expert system that combines this historical database 

with current traffic counts. Other demand data that play a part in the DTA model (e.g. driving 

behaviour, access to information provision or vehicle parameters) are usually assigned to the 

drivers by using disaggregate models such as prototype sampling or by assuming multiple 

classes of users (like in DYNAMIT, see Ben-Akiva et al. (1998)).  

The use of DOMs offers several advantages: the traffic counts can be acquired for a large va-

riety of conditions in an automatic way. The records over long periods can produce reliable 

historical databases. Moreover, real-time data acquisition allows an accurate instantaneous 

demand estimation, which makes DOMs very well suited for applications with a short-term 

horizon such as local traffic control or monitoring. However the DOM/DTA scheme suffers 

from disadvantages that limit its usage for medium to long term planning and for the evalua-

tion of ITS introduction or TDM policies:  

• DOMs are costly to collect for large-scale dense urban networks because of the pro-
hibitive number of loop detectors that would be required. However, this may im-
prove with future technologies such as car equipped with GPS. 

• If there is a lack of sensors data, the estimation of DOMs may be unreliable because 
there are just too many degrees of freedom (the underlying mathematical problem is 
over determined, see the method of Bierlaire (2002) to improve the quality of trip ta-
bles). 

• The assignment of specific characteristics to the drivers (e.g. value of time) is not 
completely consistent. Indeed, DOMs identify vehicles, not users: any measure that 
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affects the departure time choice differently for two classes of users (e.g. blue and 
white collars) cannot be properly captured.  

• DOMs are easy to upgrade with real flow data streams but are difficult to link with 
upstream models like activity models. 

• Any modification of the infrastructure (e.g. traffic restraints or capacity expansion) is 
likely to affect the route choice but also the departure time choice of users, thus in-
validating previously estimated DOMs  

• Similarly, the introduction of ITS is also likely to modify the behaviour of users in 
term of departure time choice, making calibrated DOMs inappropriate to evaluate or 
assess those policies ex ante.  

For all these reasons, the DOM/DTA scheme appears to be adequate for short term applica-

tions and for online control of real systems. However, this scheme falls short to provide 

enough structure in the demand to model the medium to long run required by planning appli-

cations or ITS introduction. 

Several types of explanatory models can be added to the picture to tell how users select the 

hour to start their trips (or sequence of trips), whether they are referred to as “daily schedule” 

models, “period switching” models or “departure time choice” models (DTC). Since the time 

of usage is given by those models, the remaining data is time-independent and can described 

in its simplest form by a static O-D matrix (SOM). We denote by “synthetic dynamic demand 

module” (SDDM) such a demand specification that consists of two separate blocks: a time-

independent trip table and a specification of departure time behaviour (see the right part of 

Figure 2). It is synthetic in the sense that it does not require time-disaggregate data. We pro-

pose to populate the SDDM with “demand segments”, each segment being composed of a 

static O-D trip matrix (SOM) and a set of behavioural rules that define how typical user types 

select their departure time choice. The overall demand specification can be segmented in an 

arbitrary number of segments. For the study of a given transportation system, these segments 

can reflect (a) the main trip purposes: home-to-work, business, leisure, etc. and (b) the main 

classes of users: white collars, blue collars, drivers with/without access to information, drivers 

with/without parking availability, etc. The set of behavioural rules that determines when users 

decide to initiate a trip should satisfy two constraints:  

• The DTC model should be consistent with the demand segmentation. In our view, the 
segmentation criteria should depend on the socio-economic characteristics, on the 
purpose of the trip (e.g. distinction between commute and non-commute trips, morn-
ing and evening commute, etc.) but not on the actual departure time choices.  

• The DTC model and its parameter values should remain invariant for long term 
prediction. It should be fairly independent of the features of the supply, except in 
term of performances (e.g. travel times). Ideally, it should only depend on variables 
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of performances (e.g. travel times). Ideally, it should only depend on variables that 
are exogenous to the transportation field (e.g. socio-economic variables or behav-
ioural parameters like the cost value of time).  

Finally, for innovative policies such as ITS introduction and TDM measures, the DTC model 

should have the following features:  

• Compliance with an information provision framework: the extension of the DTC 
model to integrate any pre-trip information system should be straightforward,  

• Availability of standard and relatively inexpensive econometric techniques to esti-
mate the DTC parameters from RP/SP surveys or from sparse traffic counts,  

• Straightforward extension to activity, trip chains and scheduling models. 

The SDDM scheme has more predictive power and is adequate for planning. However, traffic 

counts are used only to estimate the trip table and the time-dependent information is not ex-

ploited. Ideally, an hybrid scheme would conciliate both schemes although it is not clear how 

traffic counts could be back-propagated to calibrate the activity models for instance. The spe-

cific DTC adopted in METROPOLIS is an extension of Vickrey’s model (see appendix B). 

Figure 2 Two different schemes to model time-dependent demand. DOM=dynamic O-D 
matrix; SOM=static O-D matrix; DTA=dynamic traffic assignment 
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3. Evaluation measures 

This section discusses some issues about the management of output data of second generation 

models and the new evaluation measures they can provide. A classification is proposed below, 

that may help to define some data exchange standard between different dynamic models. A 

major difference between static and dynamic models lies in the output variables. Firstly, al-

most all static models share the same definition of output variables or measures of effective-

ness (“MOEs”), which is not the case for dynamic models. Secondly, most microsimulators 

models provide animated visual outputs of traffic dynamics but lack meaningful indicators 

that can be used to measure the system-wide performance of a given scenario. A set of MOEs 

for mesoscopic dynamic models with link-based congestion models is proposed below. We 

distinguish atomic MOEs that consist of the core output data (e.g auto volumes, travel times) 

of the models from derived MOEs that are combination of the atomic MOEs (e.g. CO emis-

sions).  

The atomic output of static models consists in the static traffic flow on each link of the coded 

network. These flows correspond to the car volumes for the time period considered. Since the 

demand is often described as a continuous variable, the result is a vector of  NL real numbers, 

where NL is the number of links in the network (we consider a network with NZ zones and NI 

intersections). From this atomic results, several derived MOEs can be computed: the average 

travel times and speeds are computed using the volume-delay relationships; turning propor-

tions at each intersections are deduced from the same data; point-to-point shortest routes are 

computed by static shortest path algorithms (e.g. Djikstra’s algorithm) using average travel 

times. All these MOEs are assigned to individual spatial entities of the system: links, zones or 

intersections. The following list presents a list of MOEs available for each of these types of 

element in the static case. Note that the number of trips is only considered as an output in the 

case of static models if there is elastic demand (i.e. mode choice). 
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Table 1 Static MOEs assigned to simulation entities 

Simulation entity MOE Source Dimension 

Link Traffic flow, density Atomic NL 
 Travel time, speed, 

congestion 
Volume-delay functions NL 

 Concentration of 
pollutants 

External emission models NL 

Intersection Turning proportions, 
throughput 

From flows NI 

Zone Emission and attraction From flows NZ 

 Accessibility Static shortest path algorithm NZ 

O-D pair Shortest path, travel time Static shortest path algorithm NZ NZ 

In the case of dynamic models, the atomic outputs are the time-dependent traffic flow pat-

terns. For each link, the output of the model is a pair of time-vectors  that represent the inflow 

and outflow of the road section. These variables are directly available in analytical dynamic 

models but they have to be aggregated over some time interval (e.g. every 5 minutes) for 

simulation models by counting entering and outgoing vehicles like real counter loops. The 

time-dependent travel time for each road section is not, in general, a simple function of the in-

flow. It is a well-known effect from real traffic observation that there is no one-to-one rela-

tionship between speed and flow because of hysteretic effects in traffic. Even with 

mesoscopic congestion models, there is no fast way to compute the link travel time link from 

flows. (The computation of the travel time output vector from the flow vectors for a given link 

is equivalent to run again the simulation for that link.) Moreover, in the presence of spill-back 

effects, the waiting time component cannot be exactly reproduced with the knowledge of the 

time aggregated inflow and outflow. Therefore, the atomic dynamic output must include three 

time-dependent vectors:  inflow, outflow and incurred travel time (or speed). These vectors 

have the dimension of the number of aggregation steps NT. For instance, if we assume record 

intervals of 10 minutes each and a simulation period of  5 hours (e.g. morning peak), this 

yields three time-dependent vectors with NT =30. The total of 90 components is to be com-

pared to the single traffic flow value in static models. This simple fact explains why dynamic 

models generate at the minimum two order of magnitude more results than static models. This 

has important consequences for the design of analysis tools and databases. The following ta-

ble provides the list of MOEs updated for the dynamic case. MOEs specific to the demand 

have been added, based on the atomic demand results that are the departure and arrival times 

for each individual vehicle (the total number of vehicles being NU). 
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Table 2 Dynamic MOEs assigned to simulation entities 

Simulation entity MOE Source Dimension 

Link Inflow, outflow, travel time Atomic NT NL 
 Density, speed, congestion From atomic MOEs NT NL 

 Concentration of pollutants External emission models NT NL 

Intersection Turning proportions, 
throughput 

From inflows NT NI 

Zone Departure and arrival rates From inflows NT NZ 

 Accessibility Dynamic shortest path 
algorithm 

NT NZ  

NT NU 

O-D pair Shortest path, travel time Dynamic shortest path 
algorithm 

NT NZ NZ 

User Departure and arrival times Atomic NU 

 Travel cost, schedule delays From atomic MOEs NU 

Note the following changes from the static case: 

• Accessibility is now time-dependent and depends also on the user schedule. Obvi-
ously, some aggregation is needed. The logsum of the logit model corresponding to 
the departure time choice can be used as a time aggregated value (see Appendix B). 

• Deterministic dynamic shortest paths between O-D pairs are time-dependent and do 
not necessarily coincide with the actual paths taken by simulated vehicles since some 
models do not assume that drivers will take the shortest route at any time. However, 
the difference between the two measurements (i.e. path taken vs. deterministic path) 
could be a useful indicator of the simulation realism and ease the comparison be-
tween models. 

For the technological aspects, an SQL database supporting these MOEs has been designed in 

METROPOLIS. A set of Java classes (i.e. a database wrapper) has been  also implemented to 

easily retrieve these results for any scenario. The graphical user interface (GUI) (used to visu-

alize the results presented here) is just a database client that queries a MySQL server where 

the input and output data resides. Import and export filters using XML technology could be 

easily implemented from that starting point. This track of development is currently under con-

sideration to automate the data exchange with upstream activity models. Ideally, some XML 

format should emerge to allow transparent exchange of time-dependent network data. How-

ever, most GIS packages do not yet support temporal data so the emergence of a standard is 

still lagging behind. 
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4. Simulation experiments 

This section presents as a proof of concepts a few experiments performed on the test site of 

the Zurich area (see appendix A for the details of the data set). The technical requirements for 

a typical simulation of a morning period are 250Mbytes to 500Mbytes of RAM and 11 min-

utes of CPU on a PC with a 2.5 GHz Intel Pentium 4 processor. This yields a faster-than-real-

time ratio of about 25. (see de Palma and Marchal (2002) on performance issues). 

We consider four hypothetical scenarios:  

• a free-flow scenario provided to get a picture of the situation if drivers where not 
hindered by congestion, 

• a base case scenario (with congestion), 

• a traffic restraint case where capacities have been reduced by a factor of 2 in the area 
of Zurich city during the period from 07:30 to 08:30, 

• a road pricing test where the access to that same area is priced 3$. This setting is 
reminiscent of the central London pricing scheme that was recently introduced but 
we tested a modular version (e.g. access priced between 07:30 to 08:30). 

Global indicators for the whole transportation system are provided in Appendix C for these 

scenarios. The MOE “consumer surplus” is measured as the weighted sum of all accessibili-

ties in the driver population, that is the accessibility averaged over users. The MOE “equity” 

is the opposite of the standard deviation of the accessibility distribution. Note that the sched-

ule delay cost is about 2$ while the variable cost (i.e. travel cost minus the fixed free flow 

cost) is about 4$, a result compatible with the model of Vickrey. The MOEs are given after 

different periods of time for the traffic restraint and the pricing scenarios. Note the difference, 

for instance, of travel time and congestion, after one day or after 50 days. Obviously, drivers 

have adjusted both their routes and their departure after 50 days, while on the first day their 

departure rate was the same as before. Using fixed dynamic O-D matrices would generate the 

same result as day #1. Consequently, the use of a departure time choice model seems relevant 

to assess medium to long term impacts of access control policies. Note also the fairly limited 

impact on the mileage: drivers may have diverted their route choice but not in favour of much 

longer alternatives. In the case of pricing, it is noticeable that driving conditions have slightly 

improved. 



Swiss Transport Research Conference 

_______________________________________________________________________________ March 19-21, 2003 

12 

Figure 3 presents the time evolution of the network occupancy for the different users seg-

ments. A first interesting result is that the overall time horizon is completely endogenous: 

schedule constraints have been set between 07:30 and 12:00 and drivers adjust their departure 

time accordingly. No arbitrary period has been specified. As intuitively expected, Blue Col-

lars (BC) travel earlier (about 18 minutes) in the morning since earlier arrival is less costly for 

them than for White Collars (WC). This figure also picture the “soft” interaction between 

commuting and non-commuting drivers: the overlapping period when they both occupy the 

network is endogenous. The distribution of Non-Commuters (NC) is slightly skewed to the 

left since they incur an impediment caused  by the late congestion provoked by commuting 

activities.  

Figure 3 Network occupancy in the base case scenario 
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Figure 4 Isochrones from a zone close to Zurich downtown. Evolutions for two periods (left: 
from 6AM to 7AM; right: from 7AM to 8AM). 

 

Figure 4 illustrates the congestion evolution during the time of the day for the base case sce-

nario: isochrones graphs taken from a zone close to downtown Zurich shrink due to the con-

gestion that builds up between 07:30 and 08:30. Note that accessibility maps would not reveal 

the same behaviour exactly since travel cost integrates not only travel time but also schedule 

delay costs.  
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Figure 5 shows the change of traffic occupation inside the restrained area of the city and the 

corresponding change in CO emission. The small “load surge” of non-commuting trips at the 

end of the period (08:30) indicates that the restraint period may be too small to be fully effi-

cient. 

Figure 5 Traffic inside the city and CO emission. Base case and traffic restraint scenario. 
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5. Conclusion 

This paper presents the barebones of the time-dependent specification of the demand imple-

mented in METROPOLIS. Basically, it stresses out the advantages of modelling the choice of 

departure time to overcome some problems of dynamic models, namely 1) limiting the 

amount of input data, 2) performing fast computations and 3) providing analysis tools. Per-

formance issues have been studied in other publications. The focus here is on the input and 

output issues that are often more important to the practitioner. The so-called Synthetic Dy-

namic Demand Module has very low data requirements and can cope with large-scale data-

bases. At the other end of the process, we provided a tentative list of standard MOEs that 

every dynamic traffic model could produce. This could in turn improve the comparison be-

tween models and allow test suites, benchmarks, etc. The benefit of the selected approach is 

demonstrated on a sample of results that can be obtained easily with such an architecture. Our 

next goals are to calibrate this database of the Zurich area. Future research efforts will be de-

voted to link the traffic model with upstream models such as an activity model (medium term 

forecast) (see the agent-based approach of Raney et al.) or a land use model (long term fore-

cast). 
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Appendix A: Data set 

A1: Network 

The network data set was provided by the IVT team of Professor Axhausen at ETH. It con-

sists of a detailed NavTech road database for the region around Zürich. The studied area is 

about 4200 square kilometres (roughly a square of 65x65 kilometres). The car network pic-

tured below has 75,203 links and 37,588 nodes.  

Figure 6 Zurich area network with 12-hour capacities. The square are the zones with size and 
colour proportional to the sum of emissions and attractions. 
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A2: Demand 

In this preliminary study, we had no data for the trip matrix so it was build artificially. We 

created 400 traffic zones (that is approximately one zone for every 3.2km x 3.2km square) for 

the sources and sinks of traffic (origin and destination zones). They are uniformly assigned to 

random intersections so that more zones are present where the network is denser as repre-

sented on Figure 6. For the simulation of the morning peak, we used a logistic-like matrix: the 

number of trips N between two zones distant from a distance d is given by  

( )( )
( )( )0

0

exp1

exp

ddK

ddK
AN

−−+
−−

= , 

where A, K and d0  have been adjusted so that the total number of vehicles is 269,000 vehicles 

and the distribution of trips has a mean of 28km and a standard deviation of 13km. 

The demand has been categorized as follows: 

• Commuters that travel during the peak period from home to work. 

• Non-commuters that perform other purpose trip during the off-peak morning period. 

Moreover, we distinguish commuters with a high value of time (i.e. “White Collars”) from 

commuters with a low value of time.(i.e. “Blue Collars). The following table provides the 

values of the dynamic parameters associated to each of them. Note that these are hypothetical 

values that have not yet been calibrated. 

Table 3 Demand segmentation and values of parameters of the Vickrey model 

 # of vehicles α (VOT) β  γ  µ t* ∆ 
 [-] [$/hr] [$/hr] [$/hr] [$] (distribution) [min.]

Blue Collars 67,500 10 5 20 1.6 [07:30 - 08:30] 10
White Collars 67,500 20 19 21 3.0 [07:30 - 08:30] 10
Non- Commuters 135,000 14 12 20 2.3 [08:00 - 12:00] 10
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Appendix B: The Vickrey model 

This section recalls the original model due to Vickrey (1969). Assume N drivers commute 

from a given origin (O) to a given destination (D) connected by a single road O-D. Commut-

ers face a unique choice: departure time. Let tt(td) be the travel time of a commuter departing 

from the origin O at time td. The arrival time of this commuter is therefore ta=td+tt(td). The 

desired arrival time for all commuters is assumed to be the same and equal to t*. Therefore, 

the early delay is t*-[td+tt(td)] and the late delay is td+tt(td)-t*. Commuters select their de-

parture time in order to minimize a combination of travel time costs and schedule delay costs. 

Schedule delay costs occur because commuters who arrive too early or too late at the destina-

tion are penalized. Without any travel time cost all commuters would depart at the same time, 

generating a large amount of congestion. Conversely, without any schedule delay cost the de-

parture distribution would be infinitely spread over time. Commuters therefore face the fol-

lowing trade-off: either they arrive on time and incur a maximum level of congestion, or they 

arrive very early (or very late) and incur no congestion. Clearly, intermediary cases are possi-

ble. The user cost (or travel cost) function is assumed to be the sum of penalties due to travel 

time and (early or late) schedule delay costs:  

[ ]{ } ( )[ ]{ }0,max0,)(max)()( ** tdtttdtttdtttdtdtttdC −−+−++= γβα , (1) 

where α is the unit price of time, β is the unit price for early arrival and γ is the unit price for 

late arrival. Typically we have: β<α<γ (see Bates (1996)). The travel time tt(td) is assumed to 

be the sum of a fixed travel time tt0, and a variable travel time ttv(td). The total and variable 

travel times are given by:  

( )
s

tttdQ
tttdtttttdtt v

0
00 )()(

++=+= , (2) 

where s is the capacity of the bottleneck (i.e. its maximum discharge rate). Q(.) is the number 

of cars waiting in the queue, hence Q(td+tt0) is the number of cars that will be waiting in the 

queue when the driver reaches the shoulder of the bottleneck. At the equilibrium, no driver 

can modify her departure time in order to strictly decrease her travel cost. This definition is 

the natural extension of the static Wardrop user equilibrium concept -Wardrop's first princi-

ple. Solving the equilibrium yields:  
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00 , (3) 

where the first term is the free flow cost and the second term is voluntarily split into the queu-

ing time cost and the schedule delay cost (each of these terms is equal). Note that queuing 

costs equals to schedule delay costs: this shows that the cost for early and late arrivals, for any 

parameter values is expected to be of the same order of magnitude as the variable or queuing 

time cost. METROPOLIS uses a stochastic extension of the model given by the following 

continuous logit model: 

( ) ( )( )
( )( )

t

duuC

tdC
tdtttdt ∆

−

−=∆+≤<

∫
∞+

∞−

µ

µ

/exp

/exp
Pr , (5) 

where Pr(.)∆t gives the probability to select a departure time in interval t,t+∆t. Moreover, we 

allow a time period without schedule delay penalty (∆) around t*. We denote by SDP the set 

of dynamic parameters {α, β, γ, t∗, ∆, µ }. This model offers several advantages for the 

SDDM scheme: 

• The SDP reflects intuitive properties from the users behaviour. 

• It seems unlikely that the SDP will change with infrastructure changes, with TDM 
measures or with the introduction of ATIS because:  

• the penalties incurred in the car (α) can change only on the long term given the 
improvement in comfort and safety, 

• the penalties at the arrival (β, γ) are completely exogenous to the transportation 
system, 

• the schedule constraints (t∗, ∆) can change if local policies provide incentives to 
do so, but in this case, it defines a TDM measure in itself, 

• The SDP depends on socio-economic values that can be linked with upstream models 
(e.g. parameterisation with respect to job, revenue, age, etc.), The segmentation into 
classes of trip purposes or behaviours is straightforward and it should be embeddable 
in an activity model. 

• It provides an estimate of the schedule delay costs. 

• The time-aggregated logsum can be interpreted as the time-independent accessibility: 

( )( )∫
+∞

∞−

−= duuCA µµ /expln  



Swiss Transport Research Conference 

_______________________________________________________________________________ March 19-21, 2003 

21 

Appendix C: Global system-wide indicators 

MOEs Units Free flow Base case Traffic restraint  Pricing  

    1 day 15days 50 days 5 days 40 days 

Travel time [min.] 22.4 30.7 37.1 32.8 31.6 31.6 30.4

Travel cost [$] 6.9 9.6 12.9 10.3 9.9 10.3 9.8

Schedule delay cost[$] 1.5 2.1 3.8 2.3 2.2 2.3 2.2

Free flow cost [$] 5.4 6.0 5.9 6.1 6.0 6.1 6.0

Collected revenues [$] 0 0 0 0 0 68856 71599

Consumer surplus [$] -9.0 -11.1 -10.6 -11.1 -11.0 -10.9 -10.9

Equity [$] -3.5 -5.0 -4.8 -5.2 -5.1 -5.1 -5.0

Late delay [min.] 7.1 11.6 23.4 13.0 12.4 13.3 12.1

Early delay [min.] 13.2 15.5 15.7 16.1 15.9 16.0 15.9

Early ratio [%] 42.6 49.3 37.8 43.8 45.0 42.7 44.0

On-time ratio [%] 34.0 28.3 25.7 28.5 29.0 29.1 29.8

Late ratio [%] 23.4 22.4 36.5 27.6 26.0 28.1 26.2

Period [h] 4.5 4.6 4.5 4.5 4.6 4.5 4.5

Congestion [%] 0.0 16.8 31.9 20.7 18.7 18.3 15.2

Mileage [10^6 km] 7.6 7.8 7.7 7.9 7.9 7.9 7.9

Num. of arcs [-] 186.7 210.6 210.2 221.2 216.7 220.0 216.4

Speed [km/h] 75.0 59.9 53.4 58.0 59.2 59.0 61.2

 


