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ETH Zürich
CH-8092 Zürich, Switzerland

Phone: 01-632 31 26
Fax: 01-632 11 72
eMail: jost@inf.ethz.ch

Kai Nagel
Department of Computer Science
ETH Zürich
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Abstract

There is discussion if traffic displays multiple phases (e.g. laminar, jammed, synchronized) or
not. This paper presents computational evidence that a stochastic car following model, by chang-
ing one of its parameters, can be moved from having two phases (laminar and jammed) to having
only one phase. Models with two phases show three states: two being homogeneous states corre-
sponding to each phase, and a third state which consists of a mix between the two phases (phase
coexistence).

Although the gas-liquid analogy to traffic models has been widely discussed, no traffic-related
model ever displayed a completely understood stochastic version of that transition. Having a
stochastic model is important to understand the potentially probabilistic nature of the transition.
Most importantly, if indeed 2-phase models describe certain aspects correctly, then this leads to
predictions for breakdown probabilities. Alternatively, if 1-phase models describe these aspects
better, then there is no breakdown. Interestingly, such 1-phase models can still allow for jam
formation on small scales, which may give the impression of having a 2-phase dynamics.

Besides going into the details with the above arguments, we will also provide some more gen-
eral overview about traffic jam dynamics and traffic jam modelling by microscopic and fluid-
dynamical models.
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1. Introduction

Both from an operations and from a design perspective, the capacity of a road is an important
quantity. If demand exceeds capacity, queues will form, which represent a cost to the driver and
thus to the economic system. In addition, such queues may impact other parts of the system, for
example by spilling back into links used by drivers who are on a path that is not overloaded.

This paper discusses freeway capacity. The question concerns the maximum flows that freeways
can reach, and if the maximum flows sometimes observed ( � 2500 vehicles per hour and lane)
are sustainable flows or short-term fluctuations. Let us assume that there is traffic with a fairly
high density � on a freeway, but vehicles are still able to drive at some fast velocity � . Throughput
is ������� . The question is what will happen if density is further increased: Can � further increase
because � increases more than � decreases? Will � gradually decrease because � increases but
� decreases faster? Or is there a possibility that traffic will break down, leading to stop-and-go
traffic?

More technically, the question is if there is, for each density � , a velocity �
	��
� and corresponding
throughput ��	��
��� ����	��
� at which traffic flow is smooth and homogeneous. Or is there a
density range where that homogeneous traffic flow is unstable, and traffic has a tendency to
reorganize into a stop-and-go pattern, with possibly lower throughput?

There is in fact a long history of publications about breakdown behavior in freeway traffic, some-
times called “reverse lambda shape of the fundamental diagram” (Koshi et al., 1983; Kerner,
1999), “hysteresis” (Treiterer and Myers, 1974), “capacity drop” (Kerner and Rehborn, 1996a),
“catastrophe theory” (Acha-Daza and Hall, 1993), and the like. From the modeling side, there
has since long been discussions about an analogy to a gas-liquid transition (Prigogine and Her-
man, 1971; Reiss et al., 1986), and recent work has established traffic models which display
deterministic versions of a liquid-gas-like transition (Kerner and Konhäuser, 1994; Bando et al.,
1995).

On the other hand, measurements by Cassidy (1998) indicate that there can be stable homoge-
neous flow at all densities. Muñoz and Daganzo (in press) point out correctly that many of the
“inverse lambda” observations could also be explained by geometrical constraints, in the follow-
ing way. A bottleneck downstream of a measurement location can cause the following temporal
sequence of measurements:

1. The system starts with low flow at low densities.

2. Both flow and density keep increasing, along the “free flow” branch of the fundamental
diagram.

3. This flow can be larger than what can flow through the bottleneck. Then, a queue starts
forming at the bottleneck, but that does not immediately influence the measurement.

4. Eventually, the queue will have spilled back to the measurement location. At that point in
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time, data points will move to a much higher density, while the flow value will drop to the
bottleneck capacity.

It can take up to 20 minutes for the transition zone (transition from free flow to queue)
to traverse a fixed detector location, leading to fundamental diagram data points that lie
between the free flow and the queue state (Muñoz and Daganzo, in press).

This mechanism generates data that looks similar to data shown in support of the breakdown
hypothesis. Unfortunately, many of the published data sets do not provide enough information
about the geometrical layout and the full spatio-temporal picture of the dynamics in order to
resolve this question.

This question is not just academic. The correct use of technical devices such as ramp metering
or adaptive speed limits (Zackor et al., 1988) depends on the answer. For example, let us assume
that the homogeneous solution is unstable in a certain density range, and that the alternative
stop-and-go solution has a lower throughput than homogeneous traffic at the same density. In
this case, the task of ramp metering might be to keep the density away from the unstable density
range. If density approaches this value, on-ramp traffic should be reduced.

If, on the other hand, the homogeneous solution is stable everywhere, then ramp metering shifts
capacity from the on-ramp to the through lanes, and it avoids slowdown on the freeway and its
emission consequences. There would however be no net capacity effect, in the sense that –in the
absence of additional obstructions– throughput downstream from the metered ramp would be the
same no matter if ramp metering was switched on or not.

If, in addition, breakdown is probabilistic, that is, the homogeneous solution can survive for
certain amounts of time, then the question becomes which risk of breakdown one would be
willing to accept. Accepting higher flow rates in the ramp metering algorithm might increase
average throughput, but it might also increase the probability of breakdown.

There is even discussion to include aspects of stochastic transitions into the Highway Capacity
Manual (L. Elefteriadou, personal communcation). This could for example mean that, for certain
flow levels, one would include a curve describing the probability that traffic flow has not broken
down as a function of time. From such a curve, one could for example look up the maximum
density and flow levels if one accepts a, say, 1% probability of breakdown.

Before continuing, let us make this more precise. Let us assume there is a density range where the
homogeneous solution is unstable. The way this could (in principle) be tested is to have homoge-
neous traffic operating at a certain density, and to introduce a strong disturbance, say by stopping
one car for several seconds. If the introduced disturbance heals out over time, then homogeneous
traffic at that density is stable; if the disturbance grows over time, then the homogeneous solution
is unstable at this density. The unstable solution needs two ingredients:

� Outflow from the jam is less than the maximally possible homogeneous flow.

� The jam, once it is there, remains compact; in other words, density inside the jam is a fixed
quantity that should essentially be the same from one location to the next.
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There are at least three references (Figs. 2 and 3 in Kerner and Rehborn (1996a); Fig. 3 in
Kerner and Rehborn (1996b); Fig. 4 in Kerner and Rehborn (1997)) where the data points to the
existence of a stable jam, embedded both upstream and downstream in free traffic, and where the
outflow from the jam is lower than the inflow. In the 2nd and the 3rd of these references, one can
in addition see that the jam is growing in width, as it should in such a situation, while remaining
compact. In the 1st of these references, the data to decide this question is not sufficient.

Given this state of affairs, it makes sense to look at modeling. The task is to understand which
model solutions are possible at all. This understanding will lead to the predictions of additional
features that will go along with one mechanism or the other, and it might be possible to measure
them, and so the issue will hopefully be eventually resolved. Until then, however, there is no
agreement on the issue of breakdown in freeway traffic, and in consequence all engineering
relying on one or the other assumption may not work as intended.

The starting point for our work are single-lane car following models. These models are typically
either of the type � 	 ������� � ��� 	
	���
 ��������� � or of the type � 	 ������� � ��� 	
	���
 ��������� � , where � 	 � �
is the velocity of a car at time

�
, 
 � is the velocity difference to the car ahead, and � is the

acceleration. 	 is the gap to the car ahead, where 	 ��
������ � , with 
�� the front-buffer-to-front-
buffer distance, and �!� is the space the car occupies in a jam. These models can for example be
found in Newell (1961)

� 	 �"����� � � ��	
	 	 � � �#� with � 	
	 � � �%$&� �%$('*),+ 	-�/.0	,1 �%$ �#� (1)

in Bando et al. (1994)

� 	 � � ��2�354 ��	 	 	 � � �6� � 	 � �87�� with ��	
	 � � �%$&3
	
9;:=<0> 	 	 �@? �6�@9�:=<0> 	 ? � �A� (2)

or in Herman et al. (1959)

� 	 ������� �ABDC � 	 �"�E��� �-F�G
C 
�� 	 � �-F�H 
 � 	 � �#� (3)

Additional parameters here are �I$ (the free speed), . , 2 , � , and J .

When these models are implemented on a computer, they need to be discretized in time, and one
has to concern oneself with the size of the integration time step, 
 �

. A typical discretization is

� 	 � � � given by the model (4)

� 	 �K� 
 �L � ��� 	 � � 
 �L � � 
 � � 	 � �M� (5)

and � 	 �N� 
 � � �O� 	 � � � 
 � � 	 �K� 
 �L �M� (6)

These discretizations are meant to approach the original coupled differential equations for 
 �MPQ
, and there is a whole body of literature available for this (see, e.g., Press et al. (different years),

and references therein). Once time delays (via
� � Q

) are introduced into such equations,
numerical treatment becomes more difficult, because the dynamical history between

�
and

� � �
needs to be memorized in increments of 
 �

.
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In this situation, it makes sense to look for computational models which are not based on the limit
 �AP Q
, but which generate useful results also for relatively large time steps of, say, one second.

The model that we will use in this paper has been introduced by Krauß (1997a); it is a variant
of a model used by Gipps (1981). The Krauß model has been shown to be free of collisions, i.e.
that 	�� Q

never occurs (Krauß, 1997a; Nagel et al., forthcoming).

In addition to being crash free at large time steps, the Krauß model is also stochastic. The
important parameter for our study is a noise amplitude � , which we will vary from 0.5 to 2. For
��� Q

or ��� L
the model leaves the range of where it is plausible for traffic.

Our main results are the following:

� For medium � , there are three states of traffic, which we will call laminar, coexistence, and
jammed. The state depends on the density. Laminar, occurring at low density, means that
nearly all vehicles have large spacing, and are driving at or near free speeds. Occurrence of
some mini-jams is possible, but these mini-jams are not sustained and far apart. Jammed,
occurring at high density, means that nearly all vehicles have small spacing, and are driving
at low speeds or are stopped. Coexistence, occurring at intermediate density, means that the
system is a mix of laminar and jammed traffic. In the coexistence state, traffic is strongly
inhomogeneous.

It is important to note that there are three states (laminar, jammed, coexistence) but only
two phases (laminar, jammed). The phases refer to homogeneous sections of the system;
the state refers to the system as a whole.

� For large � , there is only one phase of traffic and therefore only one state. When going from
low to high density, cars move closer and closer together, but traffic remains homogeneous
at all times.

� At some � in between, there is a transition from the 2-phase to the 1-phase regime.

� In the Krauß model, changes of � also change the average acceleration. This is an unfor-
tunate coincidence, and we believe that our general results regarding the number of phases
are not related to this effect.

� Deterministic models, formulated either as car following models or as fluid-dynamical
models, can display 1-phase or 2-phase behavior. They can however not display stochastic
transitions between the phases.

The results are important for model building as well as for understanding field measurements.
In a 2-phase model, theory predicts that there can be a hysteretic transition from the laminar to
the coexistence state without a change in density. This means that, at a given density, traffic can
operate in the laminar flow state for long times, until it will eventually “break down” and switch
to the coexistence state. In a 1-phase model, this is impossible, and there is only one phase for
any given density.
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A direct consequence of this is that, if traffic follows a 1-phase model, any initial jam will “smear
out” and thus eventually go away, even with unchanged traffic conditions. Conversely, in a 2-
phase model with density in the coexistence range, jams have a typical density and a typical
shape of their upstream and downstream front. These shapes are stable under disturbances, that
is, the system will restore these densities and shapes after disturbances.

This paper starts with Sec. 2 which describes the general idea of a gas-liquid transition. Sec. 3
describes the general simulation setup including the car following model that is used, discusses
space-time plots of the resulting dynamics, and investigates transients vs. the steady state. Sec. 4
then establishes how a coexistence state can be numerically detected for a given model. Sec. 5
reports similar results for cellular automata (CA) models. Sec. 6 discusses how these results
relate to deterministic models; the paper is concluded by a discussion and a summary.

This paper is nearly identical to the TRB’03 Annual Meeting paper 03-4266.

2. Phases in Traffic

The analogy between a gas-liquid transition and the laminar-jammed transition of traffic was
pointed out many times (e.g. Reiss et al. (1986); Bando et al. (1994)). The description of traffic
in the well-known 2-fluid-model (Herman and Prigogine, 1979) assumes the existence of two
phases; and all simulation models which use spatial queues (e.g. DYNAMIT, DYNASMART (for
both see www.dynamictrafficassignment.org), Gawron (1998)) will display two phases because
of the definition of the dynamics. The two phases in models with queues are however much
easier to understand than the phases in more realistic models.

In a gas-liquid transition, one observes the following (see also Fig. 1(a) left):

� In the gas phase, at low densities, particles are spread out throughout the system. Distances
between particles vary, but the probability of having two particles close to each other is
very small.

� In the liquid phase, at high densities, particles are close to each other. There is no crys-
talline structure as in solids, but the density is similar and in some cases (e.g. in water)
even higher in the liquid than in the gas phase. Because of the fact that the particles are so
close to each other, it is difficult to compress the fluid any further.

� In between, there is the so-called coexistence state, where gas and liquid coexist. In typical
experiments in gravity, the liquid will be at the bottom and the gas will be above it. Without
gravity, as well as for example within clouds, droplets form within the gas and remain
interdispersed. In clouds, small droplets will eventually merge together into bigger droplets
(coagulation), which will fall out of the cloud as rain. Without gravity, the droplets will
just merge but never fall out. The final state of the system is having one big droplet of
liquid, surrounded by gas.
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increasing density

liquid gas

coexistence

liquid

gas

gas

(a)

one phase

laminar jammed

rho2(T)
rho1(T)

rho

T

coexistence

(b)

(i) ��� Q ���,� � � Q � L (ii) �����I� Q � � � Q ���

(iii ) �����I� Q � � � Q ����� (iv) ���	�=��
,� � � Q � L
(c)

Figure 1: (a) Schematic representation of the gas-liquid transition in one dimension. (b) State
of the gas-fluid model as a function of the density and the temperature � . (c) Space-time plots
for different parameters. Space is horizontal; time increases downward; each line is a snapshot;
vehicles move from left to right; fast cars are green, slow cars red. � ��
 Q=Q

for all plots.
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If a system in the coexistence state is compressed, more droplets form and/or existing ones
grow, but the density both inside and outside the droplets remains constant. That is, the
system reacts by allocating more space to the high density phase, but not by changing
the density either of the gas or the liquid phase. Let us call those two densities ��� and
��� . Eventually, all the space is used up by the liquid. At this point, the system will be
homogeneous again and remain so if density is increased further.

The kinetics of the droplet formation (e.g. Lifschitz and Pitajewski (1987)) is ruled by a balance
between surface tension and vapor pressure. Since surface tension pulls the droplet together, it
increases the pressure inside the droplet. This interior pressure pushes water molecules out of
the droplet. Vapor pressure outside the droplet is the balancing force – it pushes particles into
the droplet.

Surface tension and thus interior pressure depend on the droplet radius – the smaller the droplet,
the larger the surface tension and thus the interior pressure. The result is that, when coming from
small densities, there is a regime, starting at ��� , where large droplets would already be stable, but
small droplets are not. That is, if the system were in equilibrium, there would be a coexistence
between gas and droplets. But when coming from low density, the homogeneous gaseous phase
can survive for some time. This super-critical gas is thus meta-stable. A direct consequence
of meta-stability is hysteresis: When coming from low densities, it is possible to go beyond ���
and still remain in the gaseous phase. Only after some waiting time will, by a fluctuation, some
particles get close enough to each other to start the formation of a droplet.

When increasing temperature � in a gas/liquid system, the 2-phase structure will eventually go
away. This happens via ��� and ��� approaching each other and eventually meeting (see Fig. 1(b)).
That is, depending on the temperature � , a fluid system will either display transitions from gas
to coexistence and from coexistence to liquid, or there will be no transition at all.

We will now move on to describe the supporting evidence for our claims. As is typical in com-
putational science, our evidence is based on computer simulations. It is however backed up by
generic knowledge about phase transitions as they are well understood in physics.

3. The Simulations

3.1 Krauß Model

The velocity update of the Krauß model (Krauß et al., 1996; Krauß, 1997b) reads as follows:

�	��

��� � �� 	 � � � 	 	 � ��� �� 	 � � �
� 1 � � � (7)

������� � ��� <�� � 	 � � � � 
 � � �	��

���*� ����

��� (8)

� 	 �K� 
 � � � � : )�� Q � �������K� ���! �� � (9)
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�� is the speed of the car in front, � � 	�� � �� � 1 L
is the average velocity of the two cars involved,

� H ���
is the maximum allowed velocity, � is the maximum acceleration of the vehicles,

�
their

maximum deceleration for ��� Q
, � is the noise amplitude, and  is a random number in C Q � �"F .

The meaning of the terms is as follows:

� Eq. (7): Calculation of a “safe” velocity. This is the maximum velocity that the follower
can drive when she wants to be sure to avoid a crash (Krauß et al., 1996; Krauß, 1997b).
The main assumption is that the car ahead will never decelerate faster than

�
, and that the

car of the follower can also decelerate with up to
�
.

� Eq. (8): The desired velocity is the minimum of: (a) current velocity plus acceleration, (b)
safe velocity, (c) maximum velocity (e.g. speed limit).

� Eq. (9): Some randomness is added to the desired velocity.

After the velocities of all vehicles are updated, all vehicles are moved.

The Krauß model has been proven to be free of crashes for numerical time steps 
 �
smaller

than or equal to the reaction time,
�

(Krauß, 1997b; Nagel et al., forthcoming). We will use
 � � � � � as has conventionally been used for the Krauß model. We further use � � Q � L ,� � Q ��
 , � H ��� � � for all simulations.

The model is free of units; this is a property that it has inherited from the cell-based cellular
automata models. A reasonable calibration is: time steps correspond to seconds and cells corre-
spond to � ��� meters. The reaction time then is assumed to be � second, and � H ��� ��� corresponds
to

LIL ��� m/s or 
 � km/h. � � Q � L corresponds to a maximum acceleration of �I� � m/s per second or
� � � km/h per second.

� � Q ��
 corresponds to a maximum deceleration of � 
,� L km/h per second.

All simulations are done in a 1-lane system of length � with periodic boundary conditions (i.e.
the road is bent into a ring). Let � be the number of cars on the road. The (global) density is
� ���� .

3.2 Pictures

Before analysing the Krauß-model numerically, it is instructive to look at the space-time plots
in Fig. 1(c). Space-time plots are pictures of the time evolution of the system. In Fig. 1(c),
vehicles drive to the right and time points down. Each row of pixels is a “snapshot” of the state
of the road. In principle, one could reconstruct the trajectory of a particular car by connecting the
corresponding pixels. In practice, at the displayed resolution this is close to impossible and one
mostly observes the larger scale traffic jam structure. Traffic jams move against the direction of
driving. The following refers to each individual case (i)–(iv) of Fig. 1(c):

(i) The laminar state: All cars drive at high speed. The available space is shared evenly among
the cars. The traffic is homogeneous.
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(ii) The coexistence state: The slow cars are all together in one big jam. On the rest of the
road, the cars drive at high speed. In consequence, the traffic is very inhomogeneous.

(iii) The jammed state: The density is so high that no single car can drive fast. As in (i), the
traffic is homogeneous.

(iv) The single phase at high � : Many small jams are distributed over the whole system. There
is neither a larger area of free flow, nor a major jam. The traffic is homogeneous.

Note that “homogeneous” here means “homogeneous on large scales”. This means that
there is a spatial measurement length

?
above which all density measurements return the

same value. If a system goes from a 2-phase to a 1-phase model, then even in the regime
which technically has only one phase, structure formation on small scales is still possible.
Fig. 1(c) bottom right is indeed an example for this. With larger distance from the 2-
phase model, i.e. larger � , the scale of these structures becomes smaller and smaller, which
means that the system is homogeneous already on smaller scales. This statement can
be quantified, for example via the gap distribution, i.e. the distribution of the distances
between jams (Jost, 2002).

3.3 Defining a Jam

In order to make progress, one needs to define where a jam starts and where it ends. Our definition
of homogeneity (see later) will not depend on this, however. A jam is a sequence of adjacent cars
driving with speed less or equal � H ��� 1 L

. The cars between two neighbouring jams are in laminar
flow.

This definition is very simple, but will not always correspond to our natural understanding of the
word jam. Thus, whether a car is jammed or not according to this definition is just a starting
point and not the final answer.

3.4 Initial Condition and Relaxation

For many parameters of the Krauß model, there is a unique equilibrium state, which the system
will attain after a finite time

��� � G ��� , no matter how it was started. Deciding when the equilibrium
is reached is not trivial.

Let ��� be the state of the road at time
�
. To find the equilibrium value of some property,� C � 	 �����
	�� 
�� �-F , we use the following idea: For small

�
,
� C � 	 ��� �-F will depend on the initial con-

dition. With increasing time,
� C � 	 ��� � F converges towards the equilibrium value. Assume the

convergence is from above. Now we need another initial condition that approaches the equilib-
rium value from below. Once these two sequences are close enough together, an estimate for the
equilibrium value is found. Unfortunately, it cannot be guaranteed that the value thus obtained
really is the equilibrium value. We use the following two initial conditions:
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� Laminar start: The cars are positioned equidistant over the road with speed zero.

� Jammed start: All cars are cramped together in a big jam without any gap. Their speed is
zero.

An example of this method is shown in Fig. 2(a). For � 	 � � the number of jams was used. Since
both initial conditions start with � � Q

, the criterion of Sec. 3.3 finds one large jam at
� � � .

After this, the following happens:

� Laminar start: Vehicles accelerate, but because of interaction, many small jams form, and
the number of jams increases rapidly. These jams then slowly coagulate, which slowly
reduces the number jams in the system, until the equilibrium value is reached.

� Jammed start: Vehicles accelerate out of the jam, but no or very few jams form in that
outflow. Only very slowly does the number of jams increase, either via new jams in the
outflow, or because of a “breaking apart” of the initial jam.

In Fig. 2(a), one sees that for both initial conditions the system eventually reaches the same
number of jams. With � � �I� Q , the system in equilibrium has, in the average, about 1.8 jams. In
contrast, with ���	�I��� , the system converges to an average of more than 20 jams.

4. Establishment of a Phase Diagram Via a Measure of
Inhomogeneity

In this section, a criterion is established that distinguishes homogeneous from coexistence states.
As pointed out before, coexistence states, for example at � � �I� Q and � � Q ��� in our model, see
Figs. 1(c) (ii) and 2(a), are characterized by the coexistence of laminar and jammed traffic. Deep
inside the coexistence regime, one would expect that the phases coagulate, leading to one large
laminar and one large jammed section in the system. As one has seen in Fig. 2(a) for � � �I� Q ,
this is essentially correct, except that small additional mini-jams always lead to the detection of
a small number of additional jams. When approaching the boundaries of the coexistence regime,
this characterization will become less clear-cut, and it may be possible to have more than one jam.
Typically, there will be one major jam and many small ones, and for many measurement criteria
this will cause enough problems to no longer be able to differentiate between the coexistence and
a homogeneous state. This is particularly true for criteria that attempt a binary classification into
homogeneous or not. In contrast, our criterion will show a gradual decrease in differentiating
power.

The criterion is defined as follows: Partition the road into segments of length
?

(for simplicity
let

?
divide � without remainder). For each segment the local density ��� can be computed as the

number of cars in that segment divided by
?
. An interesting value is the variance of the local
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density:

Var 	�� � � � �
�#1 ? �

� �� �
� � 4 � � 	�� �6� E 	�� � � 7 � � (10)

where
� 	 � � is the expected value, which in our case is the same as the systemwide density. Note

that since the density lies within C Q � �"F , the variance cannot exceed � 1 � .
What this value picks up is how much each individual measurement segment of length

?
deviates,

in terms of its density, from the average density. Assume a system consisting of jammed and
laminar traffic. If there is a jam in one segment, then the segment’s density will be much higher
than the average density. Conversely, if there is only laminar traffic in a segment, then the
segment’s density will be much lower than the average density. Var 	���� � takes the average over
the square of these deviations.

Fig. 2(b) shows this value as a function of the global density � and the noise parameter � . Each
gridpoint is the result of a computer simulation. The simulations run until the average number of
jams over the last 100’000 time steps is (almost) equal for a system started with a big jam and a
system started with laminar flow (see Section 3.4). Over these last times the variance of the local
density is averaged.

Look at Fig. 2(b) for fixed � , say � � � . One sees that at densities up to ��� Q � L , the value of
Var 	�� � � is close to zero, indicating a homogeneous state, which is in this case the laminar state.
Similarly, for densities higher than

Q ��
 , Var 	�� � � is again close to zero, indicating a homogeneous
state, which is in this case the jammed state. In between, for

Q � L
	 � 	 Q ��
 , the value of Var 	�� � �
is significantly larger than zero, indicating a coexistence state.

Now slowly increase � . We see that the laminar regime ends at smaller and smaller densities,
while the jammed regime starts at smaller and smaller densities (see Fig. 2(b) bottom). The
latter means that for large � , the jammed phase has many relatively small holes, which reduce the
density, but do not break the jam. At ��� �=� � , the coexistence phase completely goes away; for
larger � , we do not pick up any inhomogeneity at any density (look at the bottom plot in order
to get information about behavior not visible in the 3d plot). Compare this to the theoretical
expectation in Fig. 1(b), where for increasing � the two densities eventually merge and thus the
different phases go away. Note that close to the transition the system still looks like it possesses
different phases (see Fig. 1(c)(iv) and locate the corresponding �����I��
 and � � Q � L in Fig. 2(b)).
These structures do however exist on small scales only. This means that for system size � P �
and measurement interval

?EP �
(but

?�
 � ), all intervals of size
?

will eventually return the
same density value. A segment length of

? � 
 L ��� , as used for Fig. 2(b), is already sufficient in
order to not measure any inhomogeneity for the state in Fig. 1(c)(iv). This will not be the case for
coexistence states: In coexistence state, there will always be segments with different densities,
unless

? � � . This is because droplets will coagulate so that they will eventually show up on all
possible length scales

?
.

Remember again that � is a model parameter while � is a traffic observable. That is, once one has
settled for an � , the model behavior is fixed, and one has decided if one can encounter a second
phase or not. If one can encounter a second phase, it will come into existence through changing
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traffic demand throughout the day – traffic can move from the laminar into the coexistence and
potentially into the jammed state and back.

As a side remark, let us note that there is also another 1-phase regime for � P Q
. Albeit poten-

tially interesting, this is outside the scope of this paper.

In summary, one obtains, for the traffic model, a phase diagram as in Fig. 1(b), which is the
schematic phase diagram for a gas-liquid transition in fluids. Again, the important feature of this
phase diagram is that there are three states for low temperatures (small � or small � ): gas/laminar;
coexistence; liquid/jammed. For higher temperatures, the coexistence range becomes more and
more narrow, while the density of the gas phase and the density of the liquid phase in the coex-
istence state approach each other. Eventually, these densities become equal, and the coexistence
state dies out. The only important difference is that for our traffic model the phase diagram is
bent to the left with increasing � .

There are other criteria which can be used to understand these types of phase transitions. In
particular, one can look at the gap distribution between jams, and one would expect a fractal
structure at the point where the 2-phase and the 1-phase model meet, i.e. at ��� Q � L and � � �I��� .
This is indeed the case but goes beyond the scope of this paper; see Jost (2002) for further
information.

5. Cellular Automata Models

Many of the arguments regarding the nature of a stochastic and possibly critical phase transition
(Nagel, 1994; Nagel and Paczuski, 1995; Sasvari and Kertesz, 1997; Roters et al., 1999; Chowd-
hury et al, 2000) have been made using so-called cellular automata (CA) models. CA models
use coarse spatial, temporal, and state space resolution. For traffic, a standard way is to segment
a 1-lane road into cells of length �!� , where � � is the length a vehicle occupies in the average in a
jam, i.e. � � �	� 1 � � � H � � ��� m.

As with the Krauß model, the time step for the CA models is best selected similar to the reaction
time; a time step of 1 second works well in practice. Taking the time step together with � � ,
one finds that a speed of 135 km/h corresponds to five cells per time step; this is often taken as
maximum velocity � H ���

.

Stochastic CA models contain a noise parameter � that introduces randomness into the driving
rules: With a probability � , the deterministically calculated velocity gets reduced by one. This
is the same idea as Eq. (9) in the model by Krauß. One can make � dependent on the veloc-
ity (Barlovic et al., 1998); the resulting models are sometimes called models with “velocity-
dependent randomization (VDR)”. Often one uses just two probablilities: ��� when the car is
standing and ����� when the car is driving. Standard values are ��� � Q � � and �	��� � Q � Q � . This
models that drivers, once stopped, are a bit sloppy in restarting again.

With this family of models, one can again plot the density variance (Fig. 2(c)). Instead of the
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Figure 2: (a) Time evolution of the number of jams. All four curves are for 1000 cars and
� � Q ��� . Each curve is an average over at least 80 realizations, each with a different random
seed. (b) 3d-plot and isolines of the density variance in the Krauß model. The outermost isoline
is Var 	�� � � � Q � Q � , the innermost Var 	�� � � � Q � Q � . � � � QIQ=Q

and
? ��
 L ��� (c) 3d-plot and isolines

of the density variance in the cellular automata model with velocity dependent randomization.
The outermost isoline is Var 	�� � � � Q � Q � , the innermost Var 	�� � � � Q � � 
 . � � L=Q=QIQ

and
? � 
 L � �
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noise amplitude � , the parameter ����� is used. �	��� � Q
means deterministic driving except when

accelerating from zero; increasing � ��� means increasingly more randomness when moving. In
this plot, one finds a behavior similar to Fig. 2(b): For small � ��� , the system displays three states
(laminar, coexistence, and jammed). For � ��� � Q � � , the system is a 1-phase system. Close
to �	��� � Q � � and still at �	��� � Q ��� , the system displays a lot of jam formation and structure
which vanishes only when observed at very large scales (very large

?
). In consequence, it is now

clear why there was so much discussion about possible fractals for the original model (Nagel and
Schreckenberg, 1992) where ��� � �	��� � Q ��� : It is indeed close to a critical point, and therefore
fractal behavior up to a certain cut-off length scale should be expected.

6. Phase Transitions in Deterministic Models

Only stochastic models can display spontaneous transitions between homogeneous and coexis-
tence states. The nature of the transition can however also become clear in deterministic models.
We will discuss these similarities first for a deterministic car following model and then for deter-
ministic fluid-dynamical models.

6.1 Car Following Models

For the model of Eq. (2), it has been shown (Bando et al., 1995) that the homogeneous solution
of the model is linearly unstable for densities where � � 	
	 ���O2 1 L

, where � �
is the first derivative

of the function �
	
	 � , and 	 � �
� � ��� is the gap. The instability sets in for intermediate densities;

for low and high densities all models are stable in the homogeneous (laminar or jammed) state.
For intermediate densities, one can select the curve � 	 	 � and the parameter 2 such that the model
either has unstable ranges, or not.

If all parameters including the density are such that the homogeneous solution is not stable, then
the system rearranges itself into a pattern of stop-and-go traffic, corresponding to the coexistence
state. The density of the laminar and the jammed phase in the coexistence state are independent
from the average system density, that is, if in that state system density goes up, it is reflected in
the jammed phase using up a larger fraction of space.

The type of the instability is similar to the better-known instability of Eq. (3). However, once the
instability is triggered in Eq. (3), it will just grow exponentially, and no stable 2-phase solution
is found (e.g. Gerlough and Huber (1975)).

6.2 Fluid-Dynamical Models

Standard Lighthill-Whitham theory, of the type
� � � � � � ��	��
� � Q

(11)
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with a strictly convex flow-density-curve �
	��
� , results in a 1-phase model, meaning that shocks
smear out over time. When ��	��
� has linear sections, then in those sections shock waves are
marginally stable, in the sense that disturbances to those shocks are neither amplified nor dissi-
pated away.

Fluid-dynamical theory, of the type

� � � � � � 	�� � � � Q
(12)

and
� � � � � � � � � �� 4 �
	��
� � � 7 � 2 	��
� � � � ��� 	��
� � �� � (13)

can, depending on the choice of parameters including the � 	��
� -curve, either be a 1-phase/1-
state or a 2-phase/3-state model (Kühne and Beckschulte, 1993). For example, the homogeneous
solution of the model with 2�	��
� � ����

� and
� 	��
� � �

� is linearly unstable at densities where� � � 	��
� � � � �
� , where � � 	��
� is the first derivative of � with respect to � (Kühne and Beckschulte,

1993). This is similar to the instability condition in Sec. 6.1; note that � � 	��
� and � � 	
	 � are, albeit
related, not the same.

As pointed out before, these models are deterministic, so in no situation will these models display
stochastic transitions.

7. Discussion

This paper establishes that stochastic models either possess one homogeneous phase of traffic
across the whole density range (1-phase behavior), or they possess two disjoint homogeneous
phases, “laminar” and “jammed”, which are separated by a density regime where the two phases
coexist (2-phase behavior). Speculations about this have been around for a rather long time
(e.g. Prigogine and Herman (1971); Reiss et al. (1986); Treiterer and Myers (1974)); corre-
sponding deterministic models have been established more recently (e.g. Kerner and Konhäuser
(1994); Bando et al. (1995)). However, despite much discussion (e.g. Nagel (1994); Nagel and
Paczuski (1995); Sasvari and Kertesz (1997); Roters et al. (1999); Chowdhury et al (2000)) no
clear picture for stochastic models was established. Only stochastic models allow to look at
meta-stable states, spontaneous transitions, and fractal-like structure, all of which are important
for real world traffic. Importantly, 1-phase and 2-phase behavior can be obtained from the same
model by just changing one parameter.

With respect to reality, there is no general agreement if measurements show 1-phase/1-state or
2-phase/3-state traffic. As discussed in the introduction, there is some evidence for 2-phase be-
havior in German data (Kerner and Rehborn, 1996a,b, 1997). Measurements in Northern Amer-
ica (Cassidy, 1998) point towards 1-phase behavior. In addition, many of the earlier measure-
ments that point towards 2-phase behavior can in fact be explained by 1-phase models together
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with geometric constraints (Muñoz and Daganzo, in press). To make matters worse, newer pub-
lications claim the existence of three (e.g. Kerner and Rehborn (1996b)) or even more (e.g. Hel-
bing et al. (1999)) phases, while other publications (e.g. Daganzo et al. (1999)) claim that these
different phases are just queues.

Since there is discussion of entering the notion of stochastic breakdown into the Highway Ca-
pacity Manual, and since, as discussed in the introduction, the correct operation of devices, such
as ramp metering and adaptive speed limit, depends on the answer of the breakdown question, it
seems critical to fully understand these issues. It also seems critical to consider stochastic mod-
els, in order to not base the notion of stochastic breakdown on deterministic models. This paper’s
contribution is a solid step towards understanding the consequences of stochastic traffic break-
down, if it exists. In other words, this model will allow the development of further predictions,
which are impossible to make by deterministic models, and these predictions could be tested
against field data. For example, a stochastic model would predict a certain wave structure inside
a queue caused by a downstream bottleneck, similar to Windover and Cassidy (2001), although
a bottleneck with fixed capacity would be better suited to test the theory.

The basic theory of phase transitions, which is behind the much of this modeling work, applies in
the so-called thermodynamic limit, which refers to infinitely large systems. Since traffic systems
are small when compared to thermodynamic systems, the theory needs to be modified for those
smaller-scale systems. Both the theory and computer modeling provide the tools for this, but
great care has to be taken to find predictions which could actually be tested in the real world with
finite queue lengths and finite durations. In consequence, such comparisons are highly desirable,
but outside the scope of this paper.

8. Summary

This paper shows, via computational evidence, that two specific stochastic car following models
can either display 1-phase/1-state or 2-phase/3-state traffic, depending on the choice of param-
eters. With 2-phase parameters, the two phases are: “laminar”, and “jammed”. These phases
also correspond to two of the three states. Those states are homogeneous. The third state, at
intermediate densities, is a coexistence state, consisting of sections with jammed and sections
with laminar traffic.

The transition to a 1-phase/1-state model happens via the densities of the laminar and of the
jammed phase approaching each other until they become the same. Beyond this point, there is
only one homogeneous phase of traffic.

Some of these findings can be understood by looking at deterministic models for traffic, either
car-following or fluid-dynamical. However, the stochastic elements of the transition cannot be
explained by deterministic models. An important stochastic element is meta-stability, which
means that a “super-critical” homogeneous state can survive for long times before it “breaks
down” and reorganizes into stop-and-go traffic. Another important stochastic element is that
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structure formation and strong variability can also happen in a 1-phase model as long as the
parameters are close to the 2-phase model – a deterministic model would converge to a homoge-
neous solution here.

It is important to understand this possibility of stochastic models to be in different regimes if
one considers to enter discussions of traffic breakdown probabilities into the Highway Capacity
Manual. If traffic is best described by a 1-phase model, then there is, in our view, no theoretical
justification for such probabilities. If, however, traffic is best described by a 2-phase model, then
the 2-phase model could give theoretical predictions for breakdown probabilities. A discussion
of breakdown probabilities in 2-phase models can be found in Nagel et al. (In press).
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Roters, L., S. Lübeck and K. Usadel (1999) Critical behavior of a traffic flow model, Physical
Review E, 59 2672.

Sasvari, M. and J. Kertesz (1997) Cellular automata models of single lane traffic, Physical Review
E, 56 (4) 4104–4110.

Treiterer, J. and J. Myers (1974) The hysteresis phenomenon in traffic flow, in D. Buckley (Ed.),
Proc. 6th ISTT, 13, A.H. & A.W. Reed Pty Ltd., Artarmon, New South Wales.

Windover, J. and M. Cassidy (2001) Some observed details for freeway traffic evolution, Trans-
portation Research A, A35 881–894.

Zackor, H., R. Kühne and W. Balz (1988) Untersuchungen des Verkehrsablaufs im Bereich der
Leistungsfähigkeit und bei instabilem Fluß, Forschung Straßenbau und Straßenverkehrstech-
nik, 524, Bundesminister für Verkehr, Bonn–Bad Godesberg.

19


